Houghton Mifflin Harcourt

6th Grade C A L I FORNIA

CALIFORNIA CD

Copyright © 2015 by Houghton Mifflin Harcourt Publishing Company
All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, broadcasting or by any other information storage and retrieval system, without written permission of the copyright owner unless such copying is expressly permitted by federal copyright law.

Only those pages that are specifically enabled by the program and indicated by the presence of the print icon may be printed and reproduced in classroom quantities by individual teachers using the corresponding student's textbook or kit as the major vehicle for regular classroom instruction.

Common Core State Standards © Copyright 2010. National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.

This product is not sponsored or endorsed by the Common Core State Standards Initiative of the National Governors Association Center for Best Practices and the Council of Chief State School Officers.

HOUGHTON MIFFLIN HARCOURT and the HMH Logo are trademarks and service marks of Houghton Mifflin Harcourt Publishing Company. You shall not display, disparage, dilute or taint Houghton Mifflin Harcourt trademarks and service marks or use any confusingly similar marks, or use Houghton Mifflin Harcourt marks in such a way that would misrepresent the identity of the owner. Any permitted use of Houghton Mifflin Harcourt trademarks and service marks inures to the benefit of Houghton Mifflin Harcourt Publishing Company.
All other trademarks, service marks or registered trademarks appearing on Houghton Mifflin Harcourt Publishing Company websites are the trademarks or service marks of their respective owners.

CALIFORNIA

 CD
Authors

Juli K. Dixon, Ph.D.

Professor, Mathematics Education University of Central Florida Orlando, Florida

Edward B. Burger, Ph.D.
President, Southwestern University Georgetown, Texas

Steven J. Leinwand

Principal Research Analyst
American Institutes for Research (AIR)
Washington, D.C.

Contributor

Rena Petrello
Professor, Mathematics
Moorpark College
Moorpark, CA

Matthew R. Larson, Ph.D. K-12 Curriculum Specialist for Mathematics Lincoln Public Schools Lincoln, Nebraska

Martha E. Sandoval-Martinez

Math Instructor
El Camino College Torrance, California

English Language Learners Consultant

Elizabeth Jiménez

CEO, GEMAS Consulting
Professional Expert on English
Learner Education
Bilingual Education and
Dual Language
Pomona, California

The Number System

2018 COMMON
Critical Area Completing understanding of division of fractions and extending the notion of number to the system of rational numbers, which includes negative numbers
Project: Sweet Success 2
1 Whole Numbers and Decimals 3
Domain The Number System
CALIFORNIA COMMON CORE STANDARDS 6.NS.2, 6.NS.3, 6.NS. 4
\checkmark Show What You Know 3
Vocabulary Builder 4
1 Divide Multi-Digit Numbers 5
2 Prime Factorization 9
3 Least Common Multiple 13
4 Greatest Common Factor 17
5 Problem Solving • Apply the Greatest Common Factor 21
\checkmark Mid-Chapter Checkpoint 25
6 Add and Subtract Decimals 27
7 Multiply Decimals 31
8 Divide Decimals by Whole Numbers 35
9 Divide with Decimals 39
\checkmark Chapter 1 Review/Test 43
2 Fractions 49
Domain The Number System
CALIFORNIA COMMON CORE STANDARDS 6.NS.1, 6.NS.4, 6.NS.6c
\checkmark Show What You Know 49
Vocabulary Builder 50
1 Fractions and Decimals 51
2 Compare and Order Fractions and Decimals 55
3 Multiply Fractions 59
4 Simplify Factors 63
\checkmark Mid-Chapter Checkpoint 67
5 Investigate • Model Fraction Division 69
6 Estimate Quotients 73
7 Divide Fractions 77
8 Investigate • Model Mixed Number Division 81
9 Divide Mixed Numbers 85
10 Problem Solving • Fraction Operations 89
\checkmark Chapter 2 Review/Test 93

Critical Area

(1)
 DICITAL

Go online! Your math lessons are interactive. Use iTools, Animated Math Models, the Multimedia eGlossary, and more.

Chapter 1 Overview

In this chapter, you will explore and discover answers to the following
Essential Questions:

- How do you solve real-world problems involving whole numbers and decimals?
- How does estimation help you solve problems involving decimals and whole numbers?
- How can you use the GCF and the LCM to solve problems?

Chapter 2 Overview

In this chapter, you will explore and discover answers to the following
Essential Questions:

- How can you use the relationship between multiplication and division to divide fractions?
- What is a mixed number?
- How can you estimate products and quotients of fractions and mixed numbers?

Chapter 3 Overview

In this chapter, you will explore and discover answers to the following
Essential Questions:

- How do you write, interpret, and use rational numbers?
- How do you calculate the absolute value of a number?
- How do you graph an ordered pair?

Ratios and Rates

4COMMON CORE
Critical Area Connecting ratio and rate to whole number multiplication and division and using concepts of ratio and rate to solve problems
Project: Meet Me in St. Louis 150
14 Ratios and Rates 151
Domain Ratios and Proportional Relationships CALIFORNIA COMMON CORE STANDARDS 6.RP.1, 6.RP.2, 6.RP.3a, 6.RP.3b
\checkmark Show What You Know 151
Vocabulary Builder 152
1 Investigate • Model Ratios. 153
2 Ratios and Rates 157
3 Equivalent Ratios and Multiplication Tables 161
4 Problem Solving • Use Tables to Compare Ratios 165
5 Algebra • Use Equivalent Ratios 169
\checkmark Mid-Chapter Checkpoint 173
6 Find Unit Rates 175
7 Algebra • Use Unit Rates 179
8 Algebra•Equivalent Ratios and Graphs 183
\checkmark Chapter 4 Review/Test 187
5 Percents 193
Domain Ratios and Proportional Relationships
CALIFORNIA COMMON CORE STANDARDS 6.RP.3c
\checkmark Show What You Know 193
Vocabulary Builder 194
1 Investigate • Model Percents 195
2 Write Percents as Fractions and Decimals 199
3 Write Fractions and Decimals as Percents 203
\checkmark Mid-Chapter Checkpoint 207
4 Percent of a Quantity 209
5 Problem Solving • Percents 213
6 Find the Whole from a Percent 217
\checkmark Chapter 5 Review/Test 221

Critical Area

co
 DIGITAL

Go online! Your math lessons are interactive. Use iTools, Animated Math Models, the Multimedia eGlossary, and more.

Chapter 4 Overview

In this chapter, you will explore and discover answers to the following Essential Questions:

- How can you use ratios to express relationships and solve problems?
- How can you write a ratio?
- What are equivalent ratios?
- How are rates related to ratios?

Chapter 5 Overview
In this chapter, you will explore and discover answers to the following Essential Questions:

- How can you use ratio reasoning to solve percent problems?
- How can you write a percent as a fraction?
- How can you use a ratio to find a percent of a number?

Chapter 6 Overview
In this chapter, you will explore and discover answers to the following Essential Questions:

- How can you use measurements to help you describe and compare objects?
- Why do you need to convert between units of measure?
- How can you use a ratio to convert units?
- How do you transform units to solve problems?
6 Units of Measure 227
Domain Ratios and Proportional RelationshipsCALIFORNIA COMMON CORE STANDARDS 6.RP.3d
\checkmark Show What You Know 227
Vocabulary Builder 228
1 Convert Units of Length 229
2 Convert Units of Capacity 233
3 Convert Units of Weight and Mass 237
\checkmark Mid-Chapter Checkpoint 241
4 Transform Units 243
5 Problem Solving • Distance, Rate, and Time Formulas 247
\checkmark Chapter 6 Review/Test 251

Expressions and Equations

201

COMMON

 COREProject: The Great Outdoors . 258

1

Algebra: Expressions 259

Domain Expressions and Equations
CALIFORNIA COMMON CORE STANDARDS 6.EE.1, 6.EE.2a, 6.EE.2b, 6.EE.2c, 6.EE.3, 6.EE.4, 6.EE. 6
\checkmark Show What You Know 259
Vocabulary Builder 260
1 Exponents 261
2 Evaluate Expressions Involving Exponents. 265
3 Write Algebraic Expressions 269
4 Identify Parts of Expressions 273
5 Evaluate Algebraic Expressions and Formulas 277
\checkmark Mid-Chapter Checkpoint 281
6 Use Algebraic Expressions 283
7 Problem Solving • Combine Like Terms 287
8 Generate Equivalent Expressions 291
9 Identify Equivalent Expressions 295
\checkmark Chapter 7 Review/Test 299

Critical Area

GO
 DICITAL

 purisGo online! Your math lessons are interactive. Use iTools, Animated Math Models, the Multimedia eGlossary, and more.

Chapter 7 Overview

In this chapter, you will explore and discover answers to the following Essential Questions:

- How do you write, interpret, and use algebraic expressions?
- How can you use expressions to represent real-world situations?
- How do you use the order of operations to evaluate expressions?
- How can you tell whether two expressions are equivalent?

Chapter 8 Overview

In this chapter, you will explore and discover answers to the following
Essential Questions:

- How can you use equations and inequalities to represent situations and solve problems?
- How can you use Properties of Equality to solve equations?
- How do inequalities differ from equations?
- Why is it useful to describe situations by using algebra?

Chapter G Overview
In this chapter, you will explore and discover answers to the following Essential Questions:

- How can you show relationships between variables?
- How can you determine the equation that gives the relationship between two variables?
- How can you use tables and graphs to visualize the relationship between two variables?
8 Algebra: Equations and Inequalities 305
Domain Expressions and Equations
CALIFORNIA COMMON CORE STANDARDS 6.EE.5, 6.EE.7, 6.EE. 8
Show What You Know 305
Vocabulary Builder 306
1 Solutions of Equations 307
2 Write Equations 311
3 Investigate • Model and Solve Addition Equations 315
4 Solve Addition and Subtraction Equations 319
5 Investigate • Model and Solve Multiplication Equations 323
6 Solve Multiplication and Division Equations 327
7 Problem Solving • Equations with Fractions 331
\checkmark Mid-Chapter Checkpoint 335
8 Solutions of Inequalities 337
9 Write Inequalities 341
10 Graph Inequalities. 345
\checkmark Chapter 8 Review/Test 349
4 Algebra: Relationships Between Variables 355
Domain Expressions and EquationsCALIFORNIA COMMON CORE STANDARDS 6.EE. 9
\checkmark Show What You Know 355
Vocabulary Builder 356
1 Independent and Dependent Variables 357
2 Equations and Tables 361
3 Problem Solving • Analyze Relationships 365
\checkmark Mid-Chapter Checkpoint 369
4 Graph Relationships 371
5 Equations and Graphs 375
\checkmark Chapter 9 Review/Test 379

Geometry and Statistics

2 COMMONCritical Area Solve real-world and mathematical problems involving area, surface area, and volume; and developing understanding of statistical thinking
Project: This Place Is a Zoo! 386
10 Area 387
Domain Geometry
CALIFORNIA COMMON CORE STANDARDS 6.G.1, 6.G. 3
\checkmark Show What You Know 387
Vocabulary Builder 388
1 Algebra • Area of Parallelograms 389
2 Investigate • Explore Area of Triangles 393
3 Algebra • Area of Triangles 397
4 Investigate • Explore Area of Trapezoids 401
5 Algebra• Area of Trapezoids 405
\checkmark Mid-Chapter Checkpoint 409
6 Area of Regular Polygons. 411
7 Composite Figures 415
8 Problem Solving • Changing Dimensions 419
9 Figures on the Coordinate Plane 423
\checkmark Chapter 10 Review/Test 427
11 Surface Area and Volume
Domain Geometry433CALIFORNIA COMMON CORE STANDARDS 6.G.2, 6.G. 4
\checkmark Show What You Know 433
Vocabulary Builder 434
1 Three-Dimensional Figures and Nets 435
2 Investigate • Explore Surface Area Using Nets. 439
3 Algebra • Surface Area of Prisms 443
4 Algebra • Surface Area of Pyramids 447
\checkmark Mid-Chapter Checkpoint 451
5 Investigate • Fractions and Volume 453
6 Algebra • Volume of Rectangular Prisms 457
7 Problem Solving • Geometric Measurements. 461
\checkmark Chapter 11 Review/Test 465

Critical Area

Chapter 10 Overview

In this chapter, you will explore and discover answers to the following Essential Questions:

- How can you use measurements to describe twodimensional figures?
- What does area represent?
- How are the areas of rectangles and parallelograms related?
- How are the areas of triangles and trapezoids related?

Chapter 11 Overview

In this chapter, you will explore and discover answers to the following Essential Questions:

- How can you use measurements to describe threedimensional figures?
- How can you use a net to find the surface area of a three-dimensional figure?
- How can you find the volume of a rectangular prism?

Chapter 12 Overview

In this chapter, you will explore and discover answers to the following
Essential Questions:

- How can you display data and analyze measures of center?
- When does it make sense to display data in a dot plot? in a histogram?
- What are the differences between the three measures of center?

Chapter 13 Overview

In this chapter, you will explore and discover answers to the following
Essential Questions:

- How can you describe the shape of a data set using graphs, measures of center, and measures of variability?
- How do you calculate the different measures of center?
- How do you calculate the different measures of variability?

12 Data Displays and Measures of Center 471
Domain Statistics and Probability
CALIFORNIA COMMON CORE STANDARDS 6.SP.1, 6.SP.4, 6.SP.5a, 6.SP.5b, 6.SP.5c, 6.SP.5d
\checkmark Show What You Know 471
Vocabulary Builder 472
1 Recognize Statistical Questions. 473
2 Describe Data Collection. 477
3 Dot Plots and Frequency Tables 481
4 Histograms 485
\checkmark Mid-Chapter Checkpoint 489
5 Investigate • Mean as Fair Share and Balance Point 491
6 Measures of Center 495
7 Effects of Outliers 499
8 Problem Solving • Data Displays 503
\checkmark Chapter 12 Review/Test 507
13 Variability and Data Distributions 513
Domain Statistics and ProbabilityCALIFORNIA COMMON CORE STANDARDS 6.SP.2, 6.SP.3, 6.SP.4, 6.SP.5c, 6.SP.5d
\checkmark Show What You Know 513
Vocabulary Builder 514
1 Patterns in Data 515
2 Box Plots. 519
3 Investigate • Mean Absolute Deviation 523
4 Measures of Variability 527
\checkmark Mid-Chapter Checkpoint 531
5 Choose Appropriate Measures of Center and Variability 533
6 Apply Measures of Center and Variability 537
7 Describe Distributions 541
8 Problem Solving • Misleading Statistics 545
\checkmark Chapter 13 Review/Test 549
Glossary H1
California Common Core State Standards Correlations H17
Index H27
Table of Measures H39

Project

Sweet Success

Businesses that sell food products need to combine ingredients in the correct amounts. They also need to determine what price to charge for the products they sell.

Get Started

A company sells Apple Cherry Mix. They make large batches of the mix that can be used to fill 250 bags each. Determine how many pounds of each ingredient should be used to make one batch of Apple Cherry Mix. Then decide how much the company should charge for each bag of Apple Cherry Mix, and explain how you made your decision.

Completed by \qquad

1Whole Numbeis and Decimals

Show What You Know

Check your understanding of important skills.
Name \qquad

Factors Find all of the factors of the number.

1. 16 \qquad 2. 27 \qquad
2. 30 \qquad 4. 45 \qquad
Round Decimals Round to the place of the underlined digit.
3. 0.323
4. 4.096
5. $1 \underline{0} .67$
\qquad
\qquad
\qquad
6. $5.2 \underline{7} 8$

Multiply 3-Digit and 4-Digit Numbers Multiply.
9. 2,143

$\times \quad 6$

10. 375
$\begin{array}{r}\times 8 \\ \hline\end{array}$
11. 3,762
$\begin{array}{r}7 \\ \hline\end{array}$
12. 603
$\begin{array}{r}\times \quad 9 \\ \hline\end{array}$

Maxwell saved $\$ 18$ to buy a fingerprinting kit that costs $\$ 99$. He spent 0.25 of his savings to buy a magnifying glass. Be a Math Detective and help Maxwell find out how much more he needs to save to buy the fingerprinting kit.

Vocabulary Builder

Visualize It

Complete the Flow Map using the words with a \checkmark.

Estimation

Division

\qquad
$80 \div 20 \div 4$

Understand Vocabulary

Complete the sentences using the preview words.

1. The least number that is a common multiple of two or more numbers is the \qquad .
2. The greatest factor that two or more numbers have in common is the \qquad .
3. A number that is a factor of two or more numbers is a
\qquad .
4. A number written as the product of its prime factors is the
\qquad of the number.

Review Words

\checkmark compatible numbers
decimal
\checkmark dividend
divisible
\checkmark divisor
factor
prime number
\checkmark quotient
thousandth

Preview Words
common factor
greatest common
factor
least common multiple
prime factorization
\qquad

Divide Multi-Digit Numbers

Essential Question How do you divide multi-digit numbers?

Unlock the Problem

When you watch a cartoon, the frames of film seem to blend together to form a moving image. A cartoon lasting just 92 seconds requires 2,208 frames. How many frames do you see each second when you watch a cartoon?

0
Divide 2,208 $\div 92$.
Estimate using compatible numbers. \qquad \div \qquad $=$ \qquad

Compare your estimate with the quotient. Since the estimate, \qquad ,
is close to \qquad , the answer is reasonable.

So, you see \qquad frames each second when you watch a cartoon.

(1) Example 1 divide 12,79 - 18 .

Estimate using compatible numbers. \qquad \div \qquad $=$ \qquad

STEP 2 Check your answer.

STEP 1 Divide.

So, $12,749 \div 18=$ \qquad .
\qquad

Math Idea

You can write a remainder with an r, as a fractional part of the divisor, or as a decimal. For $131 \div 5$, the quotient can be written as 26 r1, $26 \frac{1}{5}$, or 26.2. -

1. Example 2

Divide 59,990 $\div 280$. Write the remainder as a fraction.
Estimate using compatible numbers. \qquad \div \qquad $=$ \qquad

STEP 1 Divide.

STEP 2 Write the remainder as a fraction.

$$
\frac{\text { remainder }}{\text { divisor }}=\overline{280} \quad \begin{aligned}
& \text { Write the remainder over } \\
& \text { the divisor. }
\end{aligned}
$$

$$
\frac{70 \div}{280 \div}=-\quad \text { simplify } .
$$

Compare your estimate with the quotient. Since the estimate, \qquad
is close to \qquad the answer is reasonable.

So, $59,990 \div 280=$ \qquad .

Maryingical (1) Describe two ways to check your answer in Example 2.
\qquad
\qquad

Share and Show

Estimate. Then find the quotient. Write the remainder, if any, with an r.

1. $2 9 \longdiv { 9 8 6 }$

Think: $30 \times 3=90$
2. $3 7 \longdiv { 3 , 7 8 6 }$

Share and Show

Estimate. Then find the quotient. Write the remainder, if any, as a fraction.
3. $6,114 \div 63$
(1) $411,050 \div 26$

On Your Own

Estimate. Then find the quotient. Write the remainder, if any, as a fraction.
5. $3,150 \div 9$
6. $2,115 \div 72$
+
Find the least whole number that can replace \square to make the statement true.
8.
$\div 9>700$
9. $\square \div 19>89$
10. $110<\square \div 47$
7. $20,835 \div 180$
11. Maritwaical (2) Use Reasoning Name two whole numbers that can replace \square to make both statements true.
$2 \times \square<1,800 \div 12 \quad \square>3,744 \div 52$

$$
1,000
$$

ne
12. G■DEEPER A factory produces 30,480 bolts in 12 hours. If the same number of bolts are produced each hour, how many bolts does the factory produce in 5 hours?

Problem Solving • Applications (Warld

Use the table for 13-16.

13. A Boeing 747-400 jet carried 6,045 passengers last week, and all of its flights were full. How many flights did the jet make last week?
14. HIDEEPER Last month an airline made 6,322 reservations for flights from Newark, New Jersey, to Frankfurt, Germany. If there were 21 full flights and 64 reservations were cancelled, which airplane made the flights?
15. THINKSMARTER An airline carries about 750 passengers from Houston to Chicago each day. How many McDonnell Douglas MD-90 jets would be needed to carry this many passengers, and how many empty seats would there be?
\qquad

Airplane Passenger Seats	
Type of Plane	Seats
Airbus A330-300	298
Boeing 747-400	403
McDonnell Douglas MD-90	160
Embraer 170	70

16. THINKSMARTER Pose a Problem Refer back to Problem 13. Use the information in the table to write a similar problem involving airplane passenger seats.
\qquad
\qquad
17. THINKSMARTER For numbers 17a-17d, choose Yes or No to indicate whether the equation is correct.

17a. $1,350 \div 5=270$ Yes \bigcirc No
17b. $3,732 \div 4=933 \quad$ Yes \quad No
17c. $4,200 \div 35=12 \quad$ Yes \bigcirc No
17d. $\quad 1,586 \div 13=122 \quad$ Yes \bigcirc No
\qquad

Prime Factorization

Essential Question How do you write the prime factorization of a number?

The Number System6.NS. 4

MATHEMATICAL PRACTICES MP.1, MP.7, MP. 8

Unlock the Problem

Secret codes are often used to send information over the Internet. Many of these codes are based on very large numbers. For some codes, a computer must determine the prime factorization of these numbers to decode the information.

The prime factorization of a number is the number written as a product of all of its prime factors.

\&)One Way Use a factor tree.

The key for a code is based on the prime factorization of 180. Find the prime factorization of 180.

Choose any two factors whose product is 180. Continue finding factors until only prime factors are left.

Remember

A prime number is a whole number greater than 1 that has exactly two factors: itself and 1.

Use a basic fact.
Think: 10 times what number is equal to 180 ?
$10 \times$ \qquad $=180$

$180=$ \qquad \times \qquad \times \qquad \times

So, the prime factorization of 180 is

3 Use a divisibility rule.

Think: 180 is even, so it is divisible by 2.
$2 \times$ \qquad $=180$

\qquad \times \qquad List the prime factors from least to greatest.
\qquad \times \qquad \times \qquad \times \qquad \times \qquad .

() Another Way usea adderer rigaram.

The key for a code is based on the prime factorization of 140 . Find the prime factorization of 140.

Choose a prime factor of 140 . Continue dividing by prime factors until the quotient is 1 .

Use the divisibility rule for 2.
Think: 140 is even, so 140 is divisible by 2 .

$140=$ \qquad \times \qquad \times \qquad \times \qquad -
\qquad \times \qquad \times \qquad \times \qquad .
So, the prime factorization of 140 is x \times

Share and Show

Find the prime factorization.

B Use the divisibility rule for 5 .
Think: The last digit is 0 , so 140 is divisible by 5 .

List the prime factors from least to greatest.

So, the prime factorization of 1 ho
\qquad

Share and Show

MATH
 BOARD

Find the prime factorization.

3. 75
\qquad

On Your Own

© 4.12
\qquad
5. 65

Mathematical Practices
Explain why a prime number cannot be written as a product of prime factors.

Write the number whose prime factorization is given.
6. $2 \times 2 \times 2 \times 7$
7. $2 \times 2 \times 5 \times 5$
8. $2 \times 2 \times 2 \times 2 \times 3 \times 3$

Practice: Copy and Solve Find the prime factorization.
9. 45
10. 50
11. 32
12. 76
13. 108
14. 126
15. The area of a rectangle is the product of its length and width. A rectangular poster has an area of 260 square inches. The width of the poster is greater than 10 inches and is a prime number. What is the width of the poster?
16. MATHEMATICAL
PRACTICE 7 Look for Structure Dani says she is thinking of a secret number. As a clue, she says the number is the least whole number that has three different prime factors. What is Dani's secret number? What is its prime factorization?

Problem Solving • Applications (arall

Use the table for 17-19. Agent Sanchez must enter a code on a keypad to unlock the door to her office.
17. In August, the digits of the code number are the prime factors of 150 . What is the code number for the office door in August?
18. GIDEEPER In September, the fourth digit of the code number is 2 more than the fourth digit of the code number based on the prime factors of 225 . The prime factors of what number were used for the code in September?
19. THINK SMARTER One day in October, Agent Sanchez enters the code 3477. How do you know that this code is incorrect and will not open the door?

20. THINKSMARIER Use the numbers to complete the factor tree. You may use a number more than once.

Write the prime factorization of 36 .

\qquad

Unlock the Problem

In an experiment, each flowerpot will get one seed. If the flowerpots are in packages of 6 and the seeds are in packets of 8 , what is the least number of plants that can be grown without any seeds or pots left over?

The least common multiple, or LCM, is the least number that is a common multiple of two or more numbers.

(One Way use a ist.

Make a list of the first eight nonzero multiples of 6 and 8. Circle the common multiples. Then find the least common multiple.

Multiples of 6: 6, 12, 18, \qquad , \qquad , \qquad , \qquad

- Explain why you cannot buy the same number of packages of each item.
\qquad
\qquad
\qquad

The least common multiple, or LCM, is \qquad .

(1) Another Way Use prime factorization and a Venn diagram.

Write the prime factorization of each number.
$6=2 \times$ \qquad
$8=2 \times$ \qquad \times \qquad
\qquad in common.
List the common prime factors of the
6 and 8 have one prime factor of numbers, if any.

Place the prime factors of the numbers in the appropriate parts of the Venn diagram.

To find the LCM, find the product of all of the prime factors in the Venn diagram.
$3 \times 2 \times 2 \times 2=$ \qquad
Prime factors of $6 \quad$ Prime factors of 8

So, the least number of plants is \qquad .

P. Example use prime factorization to find the LCM of 12 and 18 .

Write the prime factorization of each number.

Line up the common factors.
Multiply one number from each column.

Math Idea

The factors in the prime factorization of a number are usually listed in order from least to greatest.

So, the LCM of 12 and 18 is \qquad .

Try This! Find the LCM.

(A) 10, 15, and 25

Use prime factorization.
$10=$ \qquad
$15=$ \qquad
$25=$ \qquad

The LCM is \qquad .

1. How can you tell whether the LCM of a pair of numbers is one of the numbers? Give an example.
\qquad
\qquad
2. Matinnatical (6) Explain one reason why you might use prime factorization instead of making a list of multiples to find the LCM of 10,15 , and 25.

Share and Show

```
MATH BOARD
```

1. List the first six nonzero multiples of 6 and 9 . Circle the common multiples. Then find the LCM.

Multiples of 6: \qquad
Multiples of 9: \qquad The LCM of 6 and 9 is \qquad .

Share and Show

MATH
BOARD

Find the LCM.

2. 3,5
\qquad

On Your Own

Find the LCM.

3. 3,9
\qquad
4. 5,10
5. 5,8
LCM:
6. 5 ,
\square
LCM: 15
7.

$\square, 6$
LCM: 42
$\square=$ \qquad
11. Maphemaical 3)Verify the Reasoning of Others Mr. Haigwood is shopping for a school picnic. come in packages of 6 . He wants to serve veggie burgers on buns and wants to have no items left over. Mr. Haigwood says that he will have to buy at least 90 of each item, since $6 \times 15=90$. Do you agree with his reasoning? Explain.
12. G■DEEPER A deli has a special one-day event to celebrate its anniversary. On the day of the event, every eighth customer receives a free drink. Every twelfth customer receives a free sandwich. If 200 customers show up for the event, how many of the customers will receive both a free drink and a free sandwich?

Unlock the Problem

13. Katie is making hair clips to sell at the craft fair. To make each hair clip, she uses 1 barrette and 1 precut ribbon. The barrettes are sold in packs of 12 , and the precut ribbons are sold in packs of 9 . How many packs of each item does she need to buy to make the least number of hair clips with no supplies left over?
a. What information are you given? \qquad
\qquad
\qquad
b. What problem are you being asked to solve? \qquad
\qquad
\qquad
c. Show the steps you use to solve the problem.
d. Complete the sentences.

The least common multiple of
12 and 9 is \qquad .

Katie can make \qquad hair clips with no supplies left over.

To get 36 barrettes and 36 ribbons, she needs to buy \qquad packs of barrettes
and \qquad packs of precut ribbons.
14. THINKSMARTER Reptile stickers come in sheets of 6 and fish stickers come in sheets of 9 . Antonio buys the same number of both types of stickers and he buys at least 100 of each type. What is the least number of sheets of each type he might buy?

15. THINKSMARTER For numbers 15a-15d, choose Yes or No to indicate whether the LCM of the two numbers is 16 .
15a. 2, 8
O Yes
O No
15b. 2,16Yes
No
15c. 4,8
\bigcirc Yes
No
15d. 8,16
O Yes
O No

Name

The Number System6.NS. 4
 MATHEMATICAL PRACTICES MP.2, MP. 4

Remember

A number that is multiplied by another number to find a product is a factor.
Factors of 6: 1, 2, 3, 6
Factors of 9: 1, 3, 9
Every number has 1 as a factor. or more numbers have in common. The greatest common factor of 16 and 20 is 4.

Unlock the Problem

Jim is cutting two strips of wood to make picture frames. The wood strips measure 12 inches and 18 inches. He wants to cut the strips into equal lengths that are as long as possible. Into what lengths should he cut the wood?

Find the greatest common factor, or GCF, of 12 and 18.

(One Way use a ist.

Factors of 12: 1, 2, \qquad , \qquad , \qquad 12

Factors of 18: 1, \qquad , \qquad , \qquad , \qquad , \qquad
The greatest common factor, or GCF, is \qquad .

(1) Another Way use prime factorization.

Write the prime factorization of each number.
$12=2 \times$ \qquad $\times 3$
$18=$ \qquad $\times 3 \times$ \qquad
Place the prime factors of the numbers in the appropriate parts of the Venn diagram.

To find the GCF, find the product of the common prime factors.
$2 \times 3=$ \qquad The GCF is \qquad .

So, Jim should cut the wood into \qquad -inch lengths.

Distributive Property

Multiplying a sum by a number is the same as multiplying $5 \times(8+6)=(5 \times 8)+(5 \times 6)$ each addend by the number and then adding the products.

You can use the Distributive Property to express the sum of two whole numbers as a product if the numbers have a common factor.

(1) Example Use the GCF and the Distributive

Property to express $36+27$ as a product.

Find the GCF of 36 and 27.

Write each number as the product of the GCF and another factor.

GCF: \qquad

Use the Distributive Property to
write $36+27$ as a product.

Check your answer.
$36+27=$ \qquad
$9 \times(4+$ \qquad) $=9 \times$ \qquad
\qquad
So, $36+27=$ \qquad $\times($ \qquad $+$ \qquad).

1. Explain two ways to find the GCF of 36 and 27.
 shows that $36+27=9 \times(4+3)$.
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Name

Share and Show

1. List the factors of 12 and 20 . Circle the GCF.

Factors of 12: \qquad
Factors of 20: \qquad

Find the GCF.

2. 16,18
3. 25,40
4. 24,40
5. 14,35

Use the GCF and the Distributive Property to express the sum as a product.
6. $21+28$
7. $15+27$
8. $40+15$
9. $32+20$

On Your Own

Find the GCF.
10. 8,25
\qquad
12. 56,64
\qquad
\qquad
13. 150,275

Explain how to use the prime factorization of two numbers to find their GCF.

Math
Mathematical Practices

Use the GCF and the Distributive Property to express the sum as a product.
14. $24+30$
15. $49+14$
16. $63+81$
17. $60+12$
18.

Describe the difference between the LCM and the GCF of two numbers.

Problem Solving • Applications (Warld

Use the table for 19-22. Teachers at the Scott School of Music teach only one instrument in each class.
19. Francisco teaches group lessons to all of the violin and viola students at the Scott School of Music. All of his classes have the same number of students. What is the greatest number of students he can have in each class?
\qquad

20. GПDEEPER Amanda teaches all of the bass and viola students. All her classes have the same number of students. Each class has the greatest possible number of students. How many of these classes does she teach?

Scott School of Music	
Instrument	Number of Students
Bass	20
Cello	27
Viola	30
Violin	36

21. THINK SMARTER Mia teaches jazz classes. She has 9 students in each class, and she teaches all the students who play two instruments. How many students does she have, and which two instruments does she teach?

22. WRITE Math Explain how you could use the GCF and the Distributive Property to express the sum of the number of bass students and the number of violin students as a product.
\qquad
\qquad
\qquad
\qquad
23. THINKSMARTER The prime factorization of each number is shown.
$6=2 \times 3$
$12=2 \times 2 \times 3$
Using the prime factorization, complete the Venn diagram and write the GCF of 6 and 12 .

GCF = \qquad

Common prime factors

Problem Solving • Apply the Greatest Common Factor

Essential Question How can you use the strategy draw a diagram to help you solve problems involving the GCF and the Distributive Property?

The Number System6.NS. 4

mathematical practices MP.1, MP.4, MP.5, MP. 6

Unlock the Problem

A trophy case at Riverside Middle School holds 18 baseball trophies and 24 soccer trophies. All shelves hold the same number of trophies. Only one sport is represented on each shelf. What is the greatest number of trophies that can be on each shelf? How many shelves are there for each sport?

Use the graphic organizer to help you solve the problem.

Read the Problem

What do I need to find?
I need to find \qquad
\qquad
\qquad

What information do I need to use?

I need to use \qquad
\qquad

How will I use the information?
I can find the GCF of \qquad and use it to draw a diagram representing the \qquad of the trophy case.

baseball trophies and \qquad shelves of soccer trophies.

(1) Try Another Problem

Delia is bagging 24 onion bagels and 16 plain bagels for her bakery customers. Each bag will hold only one type of bagel. Each bag will hold the same number of bagels. What is the greatest number of bagels she can put in each bag? How many bags of each type of bagel will there be?

Use the graphic organizer to help you solve the problem.

Read the Problem	Solve the Problem
What do I need to find?	
What information do I need to use?	
How will I use the information?	

So, there will be \qquad bagels in each bag. There will be
\qquad bags of onion bagels and \qquad bags of plain bagels.
-

Explain how knowing that the GCF of 24 and 16 is 8 helped you solve the bagel problem.

Name

Share and Show

MATH
 BOARD

1. Toby is packaging 21 baseball cards and 12 football cards to sell at a swap meet. Each packet will have the same number of cards. Each packet will have cards for only one sport. What is the greatest number of cards he can place in each packet? How many packets will there be for each sport?

First, find the GCF of 21 and 12.

Next, use the Distributive Property to write $21+12$ as a product, with the GCF as one of the factors.

So, there will be \qquad packets of baseball cards and
\qquad packets of football cards. Each packet will
contain \qquad cards.
2. THINKSMARTER What if Toby had decided to keep one baseball card for himself and sell the rest? How would your answers to the previous problem have changed?
\qquad
\qquad
\qquad
\qquad
3. Melissa bought 42 pine seedlings and 30 juniper seedlings to plant in rows on her tree farm. She wants each row to have the same number of seedlings. She wants only one type of seedling in each row. What is the greatest number of seedlings she can plant in each row? How many rows of each type of tree will there be?

On Your Own

4.

MATHEMATICAL (1)
Make Sense of Problems A drum and bugle
5. THINKSMARTER The "color guard" of a drum and bugle band consists of members who march with flags, hoops, and other props. How would your answers to Exercise 4 change if there were 21 color guard members marching along with the bugle players and drummers?
\qquad
\qquad
\qquad
\qquad
6. G■DEEPER If you continue the pattern below so that you write all of the numbers in the pattern less than 500 , how many even numbers will you write?

$$
4,9,14,19,24,29 \ldots
$$

Personal Math Trainer

7. THINKSMARTER Mr. Yaw's bookcase holds 20 nonfiction books and 15 fiction books. Each shelf holds the same number of books and contains only one type of book. How many books will be on each shelf if each shelf has the greatest possible number of books? Show your work.
\qquad

(V) Mid-Chapter Checkpoint

Vocabulary

Choose the best term from the box to complete the sentence.

1. The \qquad of two numbers is greater than
or equal to the numbers. (p.13)
2. The \qquad of two numbers is less than or equal to the numbers. (p.17)

Concepts and Skills

Estimate. Then find the quotient. Write the remainder, if any, with an r. (6.Ns.2)
3. $2,800 \div 25$

5

\qquad
Find the prime factorization. (6.Ns.4)
6. 44 \qquad

Find the LCM. (6.Ns.4)
9. 8,10

Find the GCF. (6.ns.4)
12. 16,20
4. $19,129 \div 37$
7. 36
10. 4,14
\qquad
13. 8,52
5. $32,111 \div 181$
8. 90
11. 6,9
\qquad
14. 36,54
15. A zookeeper divided 2,440 pounds of food equally among 8 elephants. How many pounds of food did each elephant receive? (6.Ns.2)
16. DVD cases are sold in packages of 20 . Padded mailing envelopes are sold in packets of 12 . What is the least number of cases and envelopes you could buy so that there is one case for each envelope with none left over? (6.NS.4)
17. Max bought two deli sandwich rolls measuring 18 inches and 30 inches. He wants them to be cut into equal sections that are as long as possible.
Into what lengths should the rolls be cut? (6.Ns.4)
18. Susan is buying supplies for a party. If spoons only come in bags of 8 and forks only come in bags of 6 , what is the least number of spoons and the least number of forks she can buy so that she has the same number of each? (6.Ns.4)
19. Tina is placing 30 roses and 42 tulips in vases for table decorations in her restaurant. Each vase will hold the same number of flowers. Each vase will have only one type of flower. What is the greatest number of flowers she can place in each vase? (6.Ns.4)

Name

Add and Subtract Decimals

Essential Question How do you add and subtract multi-digit decimals?

CONNECT The place value of a digit in a number shows the value of the digit. The number 2.358 shows 2 ones, 3 tenths, 5 hundredths, and 8 thousandths.

Place Value							
Thousands	Hundreds	Tens	Ones	Tenths	Hundredths	Thousandths	
			2	3	5	8	

Unlock the Problem

Amanda and three of her friends volunteer at the local animal shelter. One of their jobs is to weigh the puppies and kittens and chart their growth.

- How do you know whether to add or subtract the weights given in the problem? Amanda's favorite puppy weighed 2.358 lb last month. If it gained 1.08 lb , how much does it weigh this month?

Add 2.358 + 1.08.
Estimate the sum. \qquad $+$ \qquad $=$ \qquad
Add the thousandths first.

Then add the hundredths, tenths, and ones.

Regroup as needed.

Compare your estimate with the sum. Since the estimate,
\qquad is close to \qquad the answer is reasonable.

So, the puppy weighs \qquad lb this month.

1. Маमझimaical (7) Look for Structure Is it necessary to add a zero after 1.08 to find the sum? Explain.
2. Explain how place value can help you add decimals.

1. Example 1

A bee hummingbird, the world's smallest bird, has a mass of 1.836 grams. A new United States nickel has a mass of 5 grams. What is the difference in grams between the mass of a nickel and the mass of a bee hummingbird?

Remember

You can place zeros to the right of a decimal without changing its value.

$$
4.91=4.910=4.9100
$$

Subtract 5 - 1.836 .
Estimate the difference. \qquad - \qquad $=$ \qquad
Think: $5=5$. \qquad
Subtract the thousandths first.

Then subtract the hundredths, tenths, and ones.

Regroup as needed.

Compare your estimate with the difference. Since the estimate,
\qquad is close to \qquad the answer is reasonable.

So, the mass of a new nickel is \qquad grams more than the mass of a bee hummingbird.

U.S. Nickel

Bee hummingbird

Mathematical Practices
Explain how to use inverse operations to check your answer to $5-1.836$.

(1) Example 2 Evaluate (6.5 - 1.97) + 3.461 using the order of operations.

Write the expression.

$$
(6.5-1.97)+3.461
$$

Perform operations in parentheses.

Add.

So, the value of the expression is \qquad .

Share and Show

MATH

BOARD

1. Find $3.42-1.9$.

Estimate. \qquad - \qquad $=$ \qquad

Subtract the \qquad first.

Estimate. Then find the sum or difference.
$\sigma 2$
. $2.3+5.68+21.047$
3. $33.25-21.463$

On Your Own

4. Evaluate

$$
(8.54+3.46)-6.749
$$

\qquad

Explain why it is important to align the decimal points when you add or subtract decimals.

Estimate. Then find the sum or difference.

5. $57.08+34.71$
6. $20.11-13.27$
7. $62-9.817$
8. $35.1+4.89$

Practice: Copy and Solve Evaluate using the order of operations.
9. $8.01-(2.2+4.67)$
11. $(3.26+1.51)+4.77$
13. $21.3-(19.1-3.22)$
10. $54+(9.2-1.413)$
12. $(2.4+13.913)-0.92$
14. $23.7+(96.5+9.25)$
15. Marimenaical 3 Make Arguments A student evaluated $19.1+(4.32+6.9)$ and got 69.2.

How can you use estimation to convince the student that this answer is not reasonable?
16. THINK'SMARTER For numbers 16a-16d, select True or False for each equation.
16a. $3.76+2.7=6.46$
O True
O False
16b. $4.14+1.8=4.32$
○ True
○ False
16c. $2.01-1.33=0.68$
O True
O False
16d. $51-49.2=1.8$
O True
O False

Connect tol Science

Comparing Eggs

Different types of birds lay eggs of different sizes. Small birds lay eggs that are smaller than those that are laid by larger birds. The table shows the average lengths and widths of five different birds' eggs.

Average Dimensions of Bird Eggs		
Bird	Length (m)	Width (m)
Canada Goose	0.086	0.058
Hummingbird	0.013	0.013
Raven	0.049	0.033
Robin	0.019	0.015
Turtledove	0.031	0.023

Use the table for 17-19.
17. What is the difference in average length between the longest egg and the shortest egg?
18. G■DEEPER Which egg has a width that is eight thousandths of a meter shorter than its length?
\qquad
19. THINKSMARIER How many robin eggs, laid end to end, would be about equal in length to two raven eggs? Justify your answer.
\qquad
\qquad

\qquad

Multiply Decimals

Essential Question How do you multiply multi-digit decimals?

Unlock the Problem

Last summer Rachel worked 38.5 hours per week at a grocery store. She earned $\$ 9.70$ per hour.
How much did she earn in a week?

> - How can you estimate the product?
\qquad

1
Multiply $\$ 9.70 \times 38.5$.
First estimate the product. $\$ 10 \times 40=$ \qquad
You can use the estimate to place the decimal in a product.
\qquad You can use the estimate place the decima in a product.

1. Explain how your estimate helped you know where to place the decimal in the product.

Try This! What if Rachel gets a raise of $\$ 1.50$ per hour? How much will she earn when she works 38.5 hours?

Counting Decimal Places Another way to place the decimal in a product is to add the numbers of decimal places in the factors.

(1) Example 1 Multiply 0.084×0.096.

0.084 \qquad decimal places
$\times 0.096$ \qquad decimal places

Multiply as you would with whole numbers.
\qquad $+$ $+$
\square
\qquad $+$ \qquad or \qquad decimal places

1) Example 2
 Evaluate $0.35 \times(0.48+1.24)$ using the order of operations.

Write the expression.
$0.35 \times(0.48+1.24)$
Perform operations in parentheses.
$0.35 \times$ \qquad

Multiply.

\qquad decimal places
\qquad decimal places
\qquad $+$ \qquad , or \qquad decimal places

So, the value of the expression is \qquad .
2. Малमimagical (8) Use Repeated Reasoning Look for a pattern. Explain.
$0.645 \times 1=0.645$
$0.645 \times 10=6.45$
$0.645 \times 100=$ \qquad
The decimal point moves \qquad place to the right.
$0.645 \times 1,000=$ \qquad The decimal point moves \qquad places to the right.

Share and Show

Estimate. Then find the product.

1. 12.42×28.6
\qquad \times \qquad $=$ \qquad Estimate.
Think: The estimate is

about \qquad so the decimal point should be placed after \qquad .

आन्मि:

3. $0.24 \times(7.3+2.1)$
(4. $0.075 \times(9.2-0.8)$
4. $2.83+(0.3 \times 2.16)$

On Your Own

Estimate. Then find the product.

6. 29.14×5.2
7. 6.95×12
8. 0.055×1.82

Maमi:nanical 6 Attend to Precision Algebra Evaluate using the order of operations.
9. $(3.62 \times 2.1)-0.749$
10. $5.8-(0.25 \times 1.5)$
11. $(0.83+1.27) \times 6.4$
\qquad
\square
12. GПDEEPER Jamal is buying ingredients to make a large batch of granola to sell at a school fair. He buys 3.2 pounds of walnuts for $\$ 4.40$ per pound and 2.4 pounds of cashews for $\$ 6.25$ per pound. How much change will he receive if he pays with two $\$ 20$ bills?

PUnlock the Problem

The table shows some currency exchange rates for 2009.

Major Currency Exchange Rates in 2009				
Currency	U.S. Dollar	Japanese Yen	European Euro	Canadian Dollar
U.S. Dollar	1	88.353	0.676	1.052
Japanese Yen	0.011	1	0.008	0.012
European Euro	1.479	130.692	1	1.556
Canadian Dollar	0.951	83.995	0.643	1

13. THINKSMARTER When Cameron went to Canada in 2007, he exchanged 40 U.S. dollars for 46.52 Canadian dollars. If Cameron exchanged 40 U.S. dollars in 2009, did he receive more or less than he received in 2007?
How much more or less?

Different denominations of Euro
a. What do you need to find?
\qquad
\qquad
b. How will you use the table to solve the problem?
\qquad
\qquad
\qquad
\qquad
c. Complete the sentences.

40 U.S. dollars were worth \qquad _
Canadian dollars in 2009.
So, Cameron would receive
Canadian dollars in 2009.
\qquad

Mrs. Jensen says the total cost for everything before tax is $\$ 56.66$. Do you agree with her? Explain why or why not.

Personal Math Traine			
Item	Calculation	Cost	
Gasoline	$12.4 \times \$ 3.80$		
Water bottles	$4 \times \$ 1.99$		
Snacks	$2 \times \$ 1.55$		

14. THINK SMARTER At a convenience store, the Jensen family puts 12.4 gallons of gasoline in their van at a cost of $\$ 3.80$ per gallon. They also buy 4 water bottles for $\$ 1.99$ each, and 2 snacks for $\$ 1.55$ each. Complete the table to find the cost for each item.
[^0]
Divide Decimals by Whole Numbers

Essential Question How do you divide decimals by whole numbers?

The Number System-6.NS. 3 MATHEMATICAL PRACTICES
MP.1, MP.2, MP. 6

Unlock the Problem

Dan opened a savings account at a bank to save for a new snowboard. He earned $\$ 3.48$ interest on his savings account over a 3-month period. What was the average amount of interest Dan earned per month on his savings account?

Remember

First estimate. $3 \div 3=$ \qquad

Think: 3.48 is shared among 3 groups.

Divide the ones. Place a decimal point after the ones place in the quotient.

Divide the tenths and then the hundredths. When the remainder is zero and there are no more digits in the dividend, the division is complete.

Check your answer.

$\times \quad 3$
$\$ 3.48$

Multiply the quotient by the divisor to check your answer.

So, Dan earned an average of \qquad in interest per month.

1. Marifmaical (1) Analyze Relationships What if the same amount of interest was gained over 4 months? Explain how you would solve the problem.

(1) Example Divide $42.133 \div 7$.

First estimate. $42 \div 7=$ \qquad
6.0

Think: 42.133 is shared among 7 groups.
Divide the ones. Place a decimal point after the ones place in the quotient.

Divide the tenths. Since 1 tenth cannot be shared among 7 groups, write a zero in the quotient. Regroup the 1 tenth as 10 hundredths. Now you have 13 hundredths.

Continue to divide until the remainder is zero and there are no more digits in the dividend.

Check your answer.
$6.019 \quad$ Multiply the quotient by the divisor to

6.7
$\times \quad 7$

So, $42.133 \div 7=$ \qquad .
2. Explain how you know which numbers to multiply when checking your answer.
\qquad
\qquad

Share and Show

MATH
BOARD

1. Estimate $24.186 \div 6$. Then find the quotient. Check your answer.

Estimate. \qquad \div \qquad $=$ \qquad
Think: Place a decimal point after the ones place in the quotient.

Share and Show

Estimate. Then find the quotient.
2. $7 \longdiv { \$ 1 7 . 1 5 }$

4. $1 2 \longdiv { 6 0 . 8 4 }$
5. $18.042 \div 6$

On Your Own

Estimate. Then find the quotient.
6. $\$ 21.24 \div 6$
7. $28.63 \div 7$

MATHEMATICA
PRACTICE
(6) Attend to Precision
10. $(3.11+4.0) \div 9$
11. $(6.18-1.32) \div 3$
12. $(18-5.76) \div 6$
13. Маाम:maical (5) Use Appropriate Tools Find the length of a dollar bill to the nearest tenth of a centimeter. Then show how to use division to find the length of the bill when it is folded in half along the portrait of George Washington.
\qquad
14. FロDEEPER Emilio bought 5.65 pounds of green grapes and 3.07 pounds of red grapes. He divided the grapes equally into 16 bags. If each bag of grapes has the same weight, how much does each bag weigh?

Problem Solving • Applications

Pose a Problem

15. THINKSMARTER This table shows the average height in inches for girls and boys at ages $8,10,12$, and 14 years.

To find the average growth per year for girls from age 8 to age 12, Emma knew

Average Height (in.)				
	Age 8	Age 10	Age 12	Age 14
Girls	50.75	55.50	60.50	62.50
Boys	51.00	55.25	59.00	65.20

Emma used this expression: $\quad(60.50-50.75) \div 4$
She evaluated the expression using the order of operations.

Write the expression.
$(60.50-50.75) \div 4$
Perform operations in parentheses.
Divide.
$9.75 \div 4$
2.4375

So, the average annual growth for girls ages 8 to 12 is 2.4375 inches.
Write a new problem using the information in the table for the average height for boys. Use division in your problem.

Pose a Problem
\square
16. THINKSMARTER The table shows the number of books each of three friends bought and the cost. On average, which friend spent the most per book? Use numbers and words to explain your answer.
\qquad

Friend	Number of books Purchased	Total Cost (in dollars) $)$	Average Cost (in dollars)
Joyce	1	$\$ 10.95$	
Nabil	2	$\$ 40.50$	
Kenneth	3	$\$ 51.15$	

\qquad
\qquad
\qquad

Divide with Decimals

Essential Question How do you divide whole numbers and decimals by decimals?
connect Find each quotient to discover a pattern.

$$
\begin{array}{r}
4 \div 2= \\
40 \div 20= \\
400 \div 200=
\end{array}
$$

When you multiply both the dividend and the divisor by the same power of \qquad the quotient is the \qquad . You can use this fact to help you divide decimals.

Unlock the Problem

Tami is training for a triathlon. In a triathlon, athletes compete in three events: swimming, cycling, and running. She cycled 66.5 miles in 3.5 hours. If she cycled at a constant speed, how far did she cycle in 1 hour?

Remember

Compatible numbers are pairs of numbers that are easy to compute mentally.

Divide $66.5 \div 3.5$
Estimate using compatible numbers.
$60 \div 3=$ \qquad

STEP 1

Make the divisor a whole number by multiplying the divisor and dividend by 10 .

Think: $3.5 \times 10=35 \quad 66.5 \times 10=665$

STEP 2

Divide.

So, Tami cycled \qquad in 1 hour.
So in 1 hour.

1) Example 1

Divide $17.25 \div 5.75$. Check.

STEP 1

Make the divisor a whole number by multiplying the divisor and dividend by \qquad $5 . 7 5 \longdiv { 1 7 . 2 5 }$ $5.75 \times$ \qquad $=$ \qquad
$17.25 \times$ \qquad $=$ \qquad -

STEP 2
Divide.

STEP 3

Check.

So, $17.25 \div 5.75=$ \qquad .

Fxample 2 Divide $37.8 \div 0.14$

STEP 1

Make the divisor a whole number by multiplying the divisor and dividend by \qquad
\qquad
\qquad $=$ \qquad
\qquad \times \qquad $=$ \qquad _
$0 . 1 4 \longdiv { 3 7 . 8 0 }$
Think: Add a zero to the right of the dividend so that you can move the decimal point.

STEP 2
Divide.

ERROR Alert

Be careful to move the decimal point in the dividend the same number of places that you moved the decimal point in the divisor.

Explain how to check the quotient.

Name

Share and Show

MATH
 BOARD

1. Find the quotient.

Think: Make the divisor a whole number by
multiplying the divisor and dividend by \qquad .

Estimate. Then find the quotient.

2. $\$ 10.80 \div \$ 1.35$

On Your Own

3. $26.4 \div 1.76$
$+$
4. $8 . 7 \longdiv { 5 3 . 0 7 }$

Mathematical Practices
Explain how you know how many places to move the decimal point in the divisor and the dividend.

Estimate. Then find the quotient.
5. $75 \div 12.5$

6. $544.6 \div 1.75$
\qquad
7. $2 . 7 \longdiv { 2 2 . 4 1 }$

Practice: Copy and Solve Find the quotient.
8. $2.64 \div 0.2$
9. $1.43 \div 1.1$
10. $0 . 3 \longdiv { 3 . 1 5 }$
11. $0 . 7 8 \longdiv { 0 . 2 3 4 }$

MATHEMATICAL 6 Attend to Precision Algebra Evaluate using the order of operations.
12. $36.4+(9.2-4.9 \div 7)$
13. $16 \div 2.5-3.2 \times 0.043$
14. $142 \div(42-6.5) \times 3.9$
15. THINKSMARTER The table shows the earnings and the number of hours worked for three employees. Complete the table by finding the missing values. Which employee earned the least per hour? Explain.

Employee	Total Earned (in dollars)	Number of Hours Worked	Earnings per Hour (in dollars)
1	$\$ 34.02$		$\$ 9.72$
2	$\$ 42.75$	4.5	
3	$\$ 52.65$		$\$ 9.75$

Connect tro Science

Amoebas

Amoebas are tiny one-celled organisms. Amoebas can range in size from 0.01 mm to 5 mm in length. You can study amoebas by using a microscope or by studying photographic enlargements of them.

Jacob has a photograph of an amoeba that has been enlarged 1,000 times. The length of the amoeba in the photo is 60 mm . What is the actual length of the amoeba?

Divide $60 \div \mathbf{1 , 0 0 0}$ by looking for a pattern.
$60 \div 1=60$
$60 \div 10=6.0$
The decimal point moves \qquad place to the left.
$60 \div 100=$ \qquad The decimal point moves \qquad places to the left.
$60 \div 1,000=$ \qquad The decimal point moves \qquad places to the left.

So, the actual length of the amoeba is \qquad mm .
16. THINKSMARIER Explain the pattern.
\qquad
\qquad
17. G■DEEPER Pelomyxa palustris is an amoeba with a length of 4.9 mm . Amoeba proteus has a length of 0.7 mm . How many Amoeba proteus would you have to line up to equal the length of three Pelomyxa palustris? Explain.

\qquad
\qquad

(V) Chapter 1 Review/Test

1. Use the numbers to complete the factor tree. You may use a number more than once.

2. For 2a-2d, choose Yes or No to indicate whether the LCM of the two numbers is 15 .
2a. 5,3Yes
No

2b. 5,10
O Yes
O No
2c. 5,15
Yes
\bigcirc No
2d. 5, 20
Yes
O No
3. Select two numbers that have 9 as their greatest common factor. Mark all that apply.
(A) 3,9
(B) 3,18
(C) 9,18
(D) 9,36
(E) 18,27
4. The prime factorization of each number is shown.

$$
\begin{aligned}
& 15=3 \times 5 \\
& 18=2 \times 3 \times 3
\end{aligned}
$$

Part A

Using the prime factorization, complete the Venn diagram.

Part B

Find the GCF of 15 and 18.
5. For numbers 5a-5d, choose Yes or No to indicate whether each equation is correct.

5a. $222.2 \div 11=22.2$Yes
5b. $400 \div 50=8$YesNo

5c. $\quad 1,440 \div 36=40$YesNo

5d. $7,236 \div 9=804$
\bigcirc Yes
\bigcirc No

Name
6. For numbers 6a-6d, select True or False for each equation.
6a. $\quad 1.7+4.03=6$
○ True
O False
6b. $2.58+3.5=6.08$TrueFalse
6c. $\quad 3.21-0.98=2.23$TrueFalse
6d. $14-1.3=0.01$
○ True
\bigcirc False
7. Four friends went shopping at a music store. The table shows the number of CDs each friend bought and the total cost. Complete the table to show the average cost of the CDs each friend bought.

Friend	Number of CDs Purchased	Total Cost (in dollars)	Average Cost (in dollars)
Lana	4	$\$ 36.72$	
Troy	5	$\$ 40.50$	
Juanita	5	$\$ 47.15$	
Alex	6	$\$ 54.36$	

8. The table shows the earnings and the number of hours worked for five employees. Complete the table by finding the missing values.

Employee	Total Money Earned (in dollars)	Number of Hours Worked	Earnings per Hour (in dollars)
1	$\$ 23.75$		$\$ 9.50$
2	$\$ 28.38$	3.3	
3	$\$ 38.50$		$\$ 8.75$
4	$\$ 55.00$	5.5	
5	$\$ 60.00$	2.5	

9. The distance around the outside of Cedar Park is 0.8 mile. Joanie ran 0.25 of the distance during her lunch break. How far did she run? Show your work.
\square
10. A one-celled organism measures 32 millimeters in length in a photograph. If the photo has been enlarged by a factor of 100 , what is the actual length of the organism? Show your work.
\square
11. You can buy 5 T -shirts at Baxter's for the same price that you can buy 4 T-shirts at Bixby's. If one T-shirt costs $\$ 11.80$ at Bixby's, how much does one T-shirt cost at Baxter's? Use numbers and words to explain your answer.

12. Crackers come in packages of 24 . Cheese slices come in packages of 18 . Andy wants one cheese slice for each cracker. Patrick made the statement shown.

If Andy doesn't want any crackers or cheese slices left over, he needs to buy at least 432 of each.

Is Patrick's statement correct? Use numbers and words to explain why or why not. If Patrick's statement is incorrect, what should he do to correct it?
\square
13. There are 16 sixth graders and 20 seventh graders in the Robotics Club. For the first project, the club sponsor wants to organize the club members into equal-size groups. Each group will have only sixth graders or only seventh graders.

Part A

How many students will be in each group if each group has the greatest possible number of club members? Show your work.
\square

Part B

If each group has the greatest possible number of club members, how many groups of sixth graders and how many groups of seventh graders will there be? Use numbers and words to explain your answer.

14. The Hernandez family is going to the beach. They buy sun block for $\$ 9.99,5$ snacks for $\$ 1.89$ each, and 3 beach toys for $\$ 1.49$ each. Before they leave, they fill up the car with 13.1 gallons of gasoline at a cost of $\$ 3.70$ per gallon.

Part A

Complete the table by calculating the total cost for each item.

Item	Calculation	Total Cost
Gasoline	$13.1 \times \$ 3.70$	
Snacks	$5 \times \$ 1.89$	
Beach toys	$3 \times \$ 1.49$	
Sun block	$1 \times \$ 9.99$	

Part B

What is the total cost for everything before tax? Show your work.
\square

Part C

Mr. Hernandez calculates the total cost for everything before tax using this equation.

$$
\text { Total cost }=13.1+3.70 \times 5+1.89 \times 3+1.49 \times 9.99
$$

Do you agree with his equation? Use numbers and words to explain why or why not. If the equation is not correct, write a correct equation.
\square

2 fictions

Show What You Know

Check your understanding of important skills.
Name \qquad

Compare and Order Whole Numbers Compare.

 Write $<,>$, or $=$ for the \bigcirc.1. 289 \square 291
2. 5,823
 5,286
3. 476,225476,225
4. 30,189
 30,201

Benchmark Fractions Write whether the fraction is closest to $0, \frac{1}{2}$ or 1 .
5. $\frac{3}{5}$ \qquad
6. $\frac{6}{7}$ \qquad
7. $\frac{1}{6}$
\qquad
8. $\frac{1}{3}$

Multiply Fractions and Whole Numbers Find the product.

 Write it in simplest form.9. $\frac{2}{3} \times 21$
\qquad
10. $\frac{3}{4} \times 14$
11. $\frac{1}{4} \times 10$
\qquad
12. $35 \times \frac{2}{5}$
13. $6 \times \frac{2}{9}$
14. $\frac{3}{8} \times 12$

Cyndi bought an extra large pizza, cut into 12 pieces, for today's meeting of the Mystery Club. She ate $\frac{1}{6}$ of the pizza yesterday afternoon. Her brother ate $\frac{1}{5}$ of what was left last night. Cyndi knows that she needs 8 pieces of pizza for the club meeting. Be a Math Detective and help Cyndi figure out if she has enough pizza left for the meeting.

Vocabulary Builder

Visualize It

Complete the Bubble Map using review words that are related to fractions.

Review Words

\checkmark benchmark
\checkmark compatible numbers
denominator
equivalent fractions
fractions
mixed numbers
numerator
\checkmark simplest form

Preview Words
multiplicative inverse
\checkmark reciprocal

Understand Vocabulary

Complete the sentences using the checked words.

1. \qquad are numbers that are easy to compute with mentally.
2. One of two numbers whose product is 1 is a
\qquad or a \qquad
3. A \qquad is a reference point that is used for estimating fractions.
4. When the numerator and denominator of a fraction have only

1 as a common factor, the fraction is in \qquad .
5. Fractions that name the same amount are \qquad .
\qquad

Fractions and Decimals

Essential Question How can you convert between fractions and decimals?

Unlock the Problem

The African pygmy hedgehog is a popular pet in North America. The average African pygmy hedgehog weighs between 0.5 lb and 1.25 lb . How can these weights be written as fractions or mixed numbers?

Write 0.5 as a fraction and 1.25 as a mixed number in simplest form.
(A) 0.5
0.5 is five \qquad .
Simplify using the GCF.
The GCF of 5 and 10 is \qquad

$$
0.5=\frac{5}{\square}
$$

$$
\frac{5}{\square \div}=\frac{5 \div}{\square}
$$

Divide the numerator and
connect You can use place value to write a decimal as a fraction or a mixed number.

The Number System 6.NS.6c
 mathematical practices MP.2, MP. 4

Place Value				
Ones	Tenths	Hundredths	Thousandths	
1	2	3	4	

- How do you know if a fraction is in simplest form?
\qquad

(I)the denominator by \qquad .

(B) 1.25

1.25 is one and

$$
1.25=1
$$

Simplify using the GCF.
The GCF of 25 and 100 is \qquad $1-\frac{\square}{\square}=1-$

Divide the numerator and

 the denominator by \qquad .So, the average African pygmy hedgehog weighs between
\qquad lb and \qquad lb.

Explain how you can use place value to write 0.05 and 0.005 as fractions. Then write the fractions in simplest form.

You can use division to write a fraction or a mixed number as a decimal.

(1) Example witte $6_{\bar{\xi}}^{3}$ as a decimal.

STEP 1

Use division to rename the fraction part as a decimal.

The quotient has \qquad decimal places.

STEP 2

Add the whole number to the decimal.
$6+$ \qquad $=$ \qquad

Mathematical Practices
Explain why zeros were placed after the decimal point in the dividend.

So, $6 \frac{3}{8}=$ \qquad .

1. Marificaical 4) Use Graphs Sometimes you can use a number line to convert between fractions and decimals. Can you use this number line to write a decimal for $3 \frac{3}{5}$? Explain.

\qquad
\qquad
\qquad
\qquad
2. THINKSMARIER On the number line below, write decimals for the fractions $\frac{1}{50}$ and $\frac{2}{25}$.

Share and Show

Write as a fraction or as a mixed number in simplest form.

1. $95.5=95 \underline{5}=$
2. 0.6
3. 5.75

Write as a decimal.
4. $\frac{7}{8}$

$$
\text { 5. } \frac{13}{20}
$$

6. $\frac{3}{25}$

On Your Own

Write as a fraction or as a mixed number in simplest form.
7. 0.27
8. 0.055

Write as a decimal.
10. $\frac{3}{8}$
11. $3 \frac{1}{5}$
12. $2 \frac{11}{20}$

Identify a decimal and a fraction in simplest form for the point.

13. Point A
\qquad
14. Point B $\xrightarrow{\square}$
15. Point C
\qquad
16. Point D

Problem Solving • Applications (aed (arld)

Use the table for 17 and 18.

17. Members of the Ozark Trail Hiking Club hiked a steep section of the trail in June and July. The table shows the distances club members hiked in miles. Write Maria's July distance as a decimal.
\qquad
18. G■DEEPER How much farther did Zoey hike in June and July than Maria hiked in June and July? Explain how you found your answer.
\qquad
\qquad
19. THINKSMARIER What's the Error? Tabitha's hiking distance in July was $2 \frac{1}{5}$ miles. She wrote the distance as 2.02 miles. What error did she make?
\qquad
\qquad
\qquad
20. Martimatical (5) Use Patterns Write $\frac{3}{8}, \frac{4}{8}$, and $\frac{5}{8}$ as decimals. What pattern do you see? Use the pattern to predict the decimal form of $\frac{6}{8}$ and $\frac{7}{8}$.
\qquad
\qquad
21. THINKSMARTER Identify a decimal and a fraction in simplest form for the point.

Point A

Point B

Point C

Point D \square
\qquad

To compare fractions with the same denominators, compare the numerators. To compare fractions with the same numerators, compare the denominators.

Same Denominators

$\frac{2}{3}$

Two of three equal parts is greater than one of three equal parts.
So, $\frac{2}{3}>\frac{1}{3}$.

Same Numerators

Two of three equal parts is greater than two of five equal parts.
So, $\frac{2}{3}>\frac{2}{5}$.

Unlock the Problem
 13 Unlock the Problem

Three new flowering dogwood trees were planted in a park in Springfield, Missouri. The trees were $6 \frac{1}{2} \mathrm{ft}, 5 \frac{2}{3} \mathrm{ft}$, and $5 \frac{5}{8} \mathrm{ft}$ tall. Order the plant heights from least to greatest.

To compare and order fractions with unlike denominators, write equivalent fractions with common denominators.

(1) One Way Order $6 \frac{1}{2}, 5 \frac{2}{3}$, and $5 \frac{5}{8}$ from least to greatest.

STEP 1

Compare and Order Fractions and Decimals

Essential Question How can you compare and order fractions and decimals?
(agol

Remember

- Equivalent fractions are fractions that name the same amount or part.
- A common denominator is a denominator that is the same in two or more fractions.

Compare the whole numbers first.

$5 \frac{5}{8}$

STEP 2

If the whole numbers are the same, compare the fractions.

Use common denominators to write equivalent fractions.

Think: \qquad is a multiple of 3 and 8 ,
so \qquad is a common denominator.

$$
5 \frac{2 \times 8}{3 \times 8}=5-\quad 5 \frac{5 x}{8 x}=5
$$

Fractions and Decimals You can compare fractions and decimals.

P) One Way compare to $\frac{1}{2}$.

Compare 0.92 and $\frac{2}{7}$. Write $<,>$, or $=$.

STEP 1 Compare 0.92 to $\frac{1}{2}$.

STEP 2 Compare $\frac{2}{7}$ to $\frac{1}{2}$.

So, $0.92 \bigcirc \frac{2}{7}$.
\qquad

Compare 0.8 and $\frac{3}{4}$. Write $<,>$, or $=$.
STEP 1 Write $\frac{3}{4}$ as a decimal.
STEP 2 Use $<,>$, or $=$ to
compare the decimals. compare the decimals.

0.80 \qquad

(1) Another Way Rewrite the fraction as a decimal.

$4 \longdiv { 3 . 0 0 }$
-
$\frac{3}{4}=$ \qquad
So, 0.8

You can use a number line to order fractions and decimals.

Example Use a number line to order $0.95, \frac{3}{10}, \frac{1}{4}$, and 0.45

 from least to greatest.STEP 1 Write each fraction as a decimal.

$$
\frac { 3 } { 1 0 } \rightarrow 1 0 \longdiv { 3 . 0 0 } \quad \frac { 1 } { 4 } \rightarrow 4 \longdiv { 1 . 0 0 }
$$

STEP 2 Locate each decimal on a number line.

Math Idea

- Numbers read from left to right on a number line are in order from least to greatest.
- Numbers read from right to left are in order from greatest to least.

So, from least to greatest, the order is \qquad , \qquad , \qquad , \qquad .

Name

Share and Show

MATH
 BOARD

Order from least to greatest.

1. $3 \frac{3}{6}, 3 \frac{5}{8}, 2 \frac{9}{10}$

Think: Compare the whole numbers first.

$$
3 \frac{3 x}{6 x}=3-3 \frac{5 x}{8 x}=3
$$

Write $<,>$, or $=$.
2. $0.8 \bigcirc \frac{4}{12}$
3. 0.22

4. $\frac{1}{20} \bigcirc 0.06$

Use a number line to order from least to greatest.
5. $1 \frac{4}{5}, 1.25,1 \frac{1}{10}$

\qquad

On Your Own

Explain how to compare $\frac{3}{5}$
and 0.37 by comparing to $\frac{1}{2}$
and 0.37 by comparing to $\frac{1}{2}$.

Order from least to greatest.

6. $1 \frac{3}{4}, \frac{5}{7}, 1 \frac{3}{5}$
\qquad

Write $<,>$, or $=$.
9. $\frac{7}{15}$

$\frac{7}{10}$

Order from greatest to least.
12. $5 \frac{1}{2}, 5.05,5 \frac{5}{9}$
10.

13. $\frac{37}{10}, 3 \frac{2}{5}, 3 \frac{1}{4}$
8. $\frac{1}{2}, \frac{2}{5}, \frac{7}{15}$
11. $7 \frac{1}{3} \bigcirc 6 \frac{2}{3}$
14. $\frac{5}{7}, \frac{5}{6}, \frac{5}{12}$

Problem Solving • Applications Warld

Use the table for 15-18.

15. GIDEEPER In one week, Altoona, PA, and Bethlehem, PA, received snowfall every day, Monday through Friday. On which days did Altoona receive over 0.1 inch more snow than Bethlehem?
\qquad
16. THINKSMARTER What if Altoona received an additional 0.3 inch of snow on Thursday? How would the total amount of snow in Altoona compare to the amount received in Bethlehem that day?
\qquad
\qquad

17.

Altoona and Bethlehem Snowfall (inches) amounts in Altoona and Bethlehem on Monday.
\qquad
\qquad
\qquad
\qquad
18. WRITE Math Explain how you could compare the snowfall amounts in Altoona on Thursday and Friday.
\qquad
\qquad
\qquad
19. THINKSMARTER Write the values in order from least to greatest.
$\frac{1}{3}$
$\frac{1}{3}$ 0.45 0.39 $\frac{2}{5}$
\qquad
\qquad
\qquad
\qquad
\qquad

Multiply Fractions

Essential Question How do you multiply fractions?

Unlock the Problem

Sasha still has $\frac{4}{5}$ of a scarf left to knit. If she finishes $\frac{1}{2}$ of the remaining part of the scarf today, how much of the scarf will Sasha knit today?

Ω
Multiply $\frac{1}{2} \times \frac{4}{5}$. Write the product in simplest form.

Multiply the numerators. Multiply the denominators.

Simplify using the GCF.

The GCF of 4 and 10 is \qquad .

Divide the numerator and the

$$
\frac{1}{2} \times \frac{4}{5}=\frac{1 \times}{2 x}=
$$

 $=\frac{\div}{10 \div}=\square$ denominator by \qquad .
$\frac{1}{2} \times \frac{4}{5}=$ \qquad , so Sasha will knit \qquad of the scarf today.

Remember

You can find the product of two fractions by multiplying the numerators and multiplying the denominators.

$$
\frac{1}{3} \times \frac{2}{5}=\frac{1 \times 2}{3 \times 5}=\frac{2}{15}
$$

(1) Example 1

Multiply $1 \frac{1}{4} \times 1 \frac{2}{3}$. Write the product in simplest form.
Estimate. $1 \times$ \qquad $=$ \qquad
Write the mixed numbers as fractions greater than 1.

$$
1 \frac{1}{4} \times 1 \frac{2}{3}=\frac{5}{4} \times \frac{}{3}
$$

Multiply the fractions.

$$
=\frac{5 \times}{4 \times 3}=- \text { or }
$$

\qquad
Write the product as a fraction or
mixed number in simplest form.
Since the estimate is \qquad the answer is reasonable.

So, $1 \frac{1}{4} \times 1 \frac{2}{3}=$ \qquad or \qquad .

Mathematical Practices
Explain whether the product $\frac{1}{3} \times \frac{3}{4}$ will be less than or greater than $\frac{3}{4}$.

1) Example 2

Evaluate $\frac{4}{5}+\left(6 \times \frac{3}{8}\right)$ using the order of operations.

Remember
A benchmark is a reference point, such as $0, \frac{1}{2}$, or 1 , that is used for estimating fractions.

Estimate using benchmarks.

$$
+\left(6 \times \frac{1}{2}\right)=\quad+3=
$$

STEP 2

Perform operations

$$
\frac{4}{5}+\left(6 \times \frac{3}{8}\right)=\frac{4}{5}+\left(\frac{6 \times 3}{\times 8}\right)
$$ in parentheses.

$$
=\frac{4}{5}+
$$

STEP 3

Write equivalent fractions using a common
denominator.
Then add.

$$
\begin{aligned}
& =\frac{4 \times 8}{5 \times 8}+\frac{\times 5}{\times 5} \\
& =\frac{32}{40}+\square=
\end{aligned}
$$

STEP 4

Simplify using the GCF.

$$
\begin{aligned}
& =\frac{122 \div}{40 \div} \\
& =- \text { or }
\end{aligned}
$$

\qquad

Since the estimate is \qquad , the answer is reasonable.

So, $\frac{4}{5}+\left(6 \times \frac{3}{8}\right)=$ \qquad , or \qquad .

1. Mathematical (2) Use Reasoning What if you did not follow the order of operations and instead worked from left to right? How would that affect your answer?
\qquad
\qquad
2.

Explain how you used benchmarks to estimate the answer.
\qquad
\qquad

Share and Show

Find the product. Write it in simplest form.

1. $6 \times \frac{3}{8}$
2. $\frac{3}{8} \times \frac{8}{9}$

or \qquad
©2. $\frac{3}{8} \times \frac{8}{9}$
3. Sam and his friends ate $3 \frac{3}{4}$ bags of fruit snacks. If each bag contained $2 \frac{1}{2}$ ounces, how many ounces of fruit snacks did Sam and his friends eat?

Marismaical (6) Attend to Precision Algebra Evaluate using the order of operations.
Write the answer in simplest form.
4. $\left(\frac{3}{4}-\frac{1}{2}\right) \times \frac{3}{5}$
5. $\frac{1}{3}+\frac{4}{9} \times 12$
6. $\frac{5}{8} \times \frac{7}{10}-\frac{1}{4}$

On Your Own

Math

Talk

Mathematical Practices
Explain why the product of two fractions has the same value before and after dividing the numerator and denominator by the GCF.

Practice: Copy and Solve Find the product. Write it in simplest form.

8. $1 \frac{2}{3} \times 2 \frac{5}{8}$	9. $\frac{4}{9} \times \frac{4}{5}$

12. $\frac{5}{6}$ of the pets in the pet show are cats. $\frac{4}{5}$ of the cats are calico cats. What fraction of the pets are calico cats?
13. $\frac{1}{6} \times \frac{2}{3}$
14. $4 \frac{1}{7} \times 3 \frac{1}{9}$
15. Five cats each ate $\frac{1}{4}$ cup of cat food. How much food did the five cats eat?

MATHEMATICAL 6 Attend to Precision Algebra Evaluate using the order of operations.

Write the answer in simplest form.
14. $\frac{1}{4} \times\left(\frac{3}{9}+5\right)$
15. $\frac{9}{10}-\frac{3}{5} \times \frac{1}{2}$
16. $\frac{4}{5}+\left(\frac{1}{2}-\frac{3}{7}\right) \times 2$
17. $15 \times \frac{3}{10}+\frac{7}{8}$
18. THINKSMARTER Write and solve a word problem for the expression $\frac{1}{4} \times \frac{2}{3}$. Show your work.
\qquad
\qquad
\qquad

Connect to Health

Changing Recipes

You can make a lot of recipes more healthful by reducing the amounts of fat, sugar, and salt.

Kelly has a recipe for muffins that asks for $1 \frac{1}{2}$ cups of sugar. She wants to use $\frac{1}{2}$ that amount of sugar and more cinnamon and vanilla. How much sugar will she use?

Find $\frac{1}{2}$ of $1 \frac{1}{2}$ cups to find what part of the original amount of sugar to use.

Write the mixed number as a
fraction greater than 1.

$$
\begin{aligned}
\frac{1}{2} \times 1 \frac{1}{2} & =\frac{1}{2} \times \frac{}{2} \\
& =
\end{aligned}
$$

Multiply.
\qquad cup of sugar.
So, Kelly will use
19. $G \square D E E P E R$ Michelle has a recipe that asks for $2 \frac{1}{2}$ cups of vegetable oil. She wants to use $\frac{2}{3}$ that amount of oil and use applesauce to replace the rest. How much applesauce will she use?
20. THINKSMARTER Cara's muffin recipe asks for $1 \frac{1}{2}$ cups of flour for the muffins and $\frac{1}{4}$ cup of flour for the topping. If she makes $\frac{1}{2}$ of the original recipe, how much flour will she use for the muffins and topping?

\qquad

Simplify Factors

Essential Question How do you simplify fractional factors by using the greatest common factor?

Unlock the Problem

Some of the corn grown in the United States is used for making fuel. Suppose $\frac{7}{10}$ of a farmer's total crop is corn. He sells $\frac{2}{5}$ of the corn for fuel production. What fraction of the farmer's total crop does he sell for fuel production?

Multiply $\frac{2}{5} \times \frac{7}{10}$.

? One Way simplify the product.

Multiply the numerators. Multiply the denominators.

$$
\begin{aligned}
\frac{2}{5} \times \frac{7}{10} & =\frac{2 \times 7}{5 \times 10}= \\
& =\frac{\div 2}{50 \div}=
\end{aligned}
$$

So, $\frac{2}{5} \times \frac{7}{10}=$ \qquad .

I. Another Way simplify before multiplying.

Write the problem as a single fraction.

Think: Do any numbers in the numerator have common factors with numbers in the denominator?

Divide the numerator and the denominator by the GCF.

The GCF of 2 and 10 is \qquad .

$$
\frac{2 x 7}{5 \times 10}
$$

$2 \div 2=$ \qquad $10 \div 2=$ \qquad
Multiply the numerators.
Multiply the denominators.
$\frac{2}{5} \times \frac{7}{10}=$ \qquad , so the farmer sells \qquad of his crop for fuel production.

$$
\frac{2}{5} \times \frac{7}{10}=\frac{2 \times 7}{5 \times 10}
$$

2 in the numerator and \qquad in the denominator have a common factor other than 1.

1. Example

Find $\frac{5}{8} \times \frac{14}{15}$. Simplify before multiplying.

Divide a numerator and a denominator by their GCF.
$\frac{15}{8} \times \frac{14}{15}$
The GCF of 5 and 15 is \qquad -.

ERROR Alert

Be sure to divide both a numerator and a denominator by a common factor to write a fraction in simplest form.

The GCF of 8 and 14 is \qquad .

Multiply the numerators.
Multiply the denominators.

$$
{ }^{1} \frac{D}{8} \times \frac{14}{15}
$$

$$
\frac{1}{3} \times \frac{}{3}=\square
$$

So, $\frac{5}{8} \times \frac{14}{15}=$ \qquad .

Try This! Find the product. Simplify before multiplying.
(A) $\frac{3}{8} \times \frac{2}{9}$

The GCF of 3 and 9 is \qquad $-$

The GCF of 2 and 8 is \qquad $-$

(B) $\frac{4}{7} \times \frac{7}{12}$

The GCF of 4 and 12 is \qquad .

The GCF of 7 and 7 is \qquad .

1. MATHEMATICAL 6 ERACTICE Explain why you cannot simplify before multiplying when finding $\frac{3}{5} \times \frac{6}{7}$.
\qquad
\qquad
2.

Compare Strategies What if you divided by a common factor other than the GCF before you multiplied? How would that affect your answer?
\qquad
\qquad

Share and Show

Find the product. Simplify before multiplying.

1. $\frac{5}{6} \times \frac{3}{10}$
2. $\frac{3}{4} \times \frac{5}{9}$
3. $\frac{2}{3} \times \frac{9}{10}$
4. After a picnic, $\frac{5}{12}$ of the cornbread is left over. Val eats $\frac{3}{5}$ of the leftover cornbread. What fraction of the cornbread does Val eat?

On Your Own

Find the product. Simplify before multiplying.
6. $\frac{3}{4} \times \frac{1}{6}$
7. $\frac{7}{10} \times \frac{2}{3}$
8. $\frac{5}{8} \times \frac{2}{5}$
9. $\frac{9}{10} \times \frac{5}{6}$
10. $\frac{11}{12} \times \frac{3}{7}$
11. Shelley's basketball team won $\frac{3}{4}$ of their games last season. $\operatorname{In} \frac{1}{6}$ of the games they won, they outscored their opponents by more than 10 points. What fraction of their games did Shelley's team win by more than 10 points?
\qquad
12. GПDEEPER Mr. Ortiz has $\frac{3}{4}$ pound of oatmeal. He uses $\frac{2}{3}$ of the oatmeal to bake muffins. How much oatmeal does Mr. Ortiz have left?
 fractions and then simplify the product or you can simplify the fractions and then multiply. Which method do you prefer? Explain.

Problem Solving • Applications

14. Three students each popped $\frac{3}{4}$ cup of popcorn kernels. The table shows the fraction of each student's kernels that did not pop. Which student had $\frac{1}{16}$ cup unpopped kernels?
15. G■DEEPER The jogging track at Francine's school is $\frac{3}{4}$ mile long. Yesterday Francine completed two laps on the track. If she $\operatorname{ran} \frac{1}{3}$ of the distance and walked the remainder of the way, how far did she walk?
16. THINK SMARTER At a snack store, $\frac{7}{12}$ of the customers bought pretzels and $\frac{3}{10}$ of those customers bought low-salt pretzels. Bill states that $\frac{7}{30}$ of the customers bought low-salt pretzels. Does Bill's statement make sense? Explain.

\qquad
\qquad
\qquad

(V) Mid-Chapter Checkpoint

Vocabulary

Choose the best term from the box to complete the sentence.

1. The fractions $\frac{1}{2}$ and $\frac{5}{10}$ are \qquad . (p. 55)
2. A \qquad is a denominator that is the same in two
or more fractions. (p. 55)

Concepts and Skills

Write as a decimal. (6.Ns.6c)
5. $1 \frac{5}{8}$
3. $\frac{7}{20}$

4. $8 \frac{39}{40}$

Order from least to greatest. (6.Ns.6c)
6. $\frac{19}{25}$

Vocabulary
common denominator equivalent fractions mixed number
© Houghton Mifflin Harcourt Publishing Company
Find the product. Write it in simplest form. (6.NS.4)
11. $\frac{2}{3} \times \frac{1}{8}$
12. $\frac{4}{5} \times \frac{2}{5}$
13. $12 \times \frac{3}{4}$
14. Mia climbs $\frac{5}{8}$ of the height of the rock wall. Lee climbs $\frac{4}{5}$ of Mia's distance. What fraction of the wall does Lee climb?
15. In Zoe's class, $\frac{4}{5}$ of the students have pets. Of the students who have pets, $\frac{1}{8}$ have rodents. What fraction of the students in Zoe's class have rodents? (6.Ns.4)
16. A recipe calls for $2 \frac{2}{3}$ cups of flour. Terell wants to make $\frac{3}{4}$ of the recipe. How much flour should he use? (6.Ns.4)
17. Following the Baltimore Running Festival in 2009, volunteers collected and recycled 3.75 tons of trash. Write 3.75 as a mixed number in simplest form. (6.Ns.6c)
18. Four students took an exam. The fraction of the total possible points that each received is given. Which student had the highest score? (6.ns.6c)

Student	Score
Monica	$\frac{22}{25}$
Lily	$\frac{17}{20}$
Nikki	$\frac{4}{5}$
Sydney	$\frac{3}{4}$

Name

CONNECT There are two types of division problems. In one type you find how many or how much in each group, and in the other you find how many groups.

Investigate

Materials $■$ fraction strips
A class is working on a community project to clear a path near the lake. They are working in teams on sections of the path.
A. Four students clear a section that is $\frac{2}{3}$ mi long. If each student clears an equal part, what fraction of a mile will each clear?

Divide $\frac{2}{3} \div 4$.

- Use fraction strips to model the division.
Draw your model.

- What are you trying to find?
\qquad
\qquad
$\frac{2}{3} \div 4=$ \qquad , so each student will clear \qquad of a mile.
B. Another team clears a section of the path that is $\frac{3}{4}$ mi long. If each student clears $\frac{1}{8}$ of a mile, how many students are on the team?

Divide $\frac{3}{4} \div \frac{1}{8}$.

- Use fraction strips to model the division. Draw your model.

- What are you trying to find?
$\frac{3}{4} \div \frac{1}{8}=$ \qquad , so there are \qquad students on the team.

Draw Conclusions

1. Mathematical (4) Use Models Explain how the model in problem A
shows a related multiplication fact.
2. MATHEMATICCL (1) Analyze Suppose a whole number is divided by a
fraction between 0 and 1 . Is the quotient greater than or less
than the dividend? Explain and give an example.
\qquad
\qquad
\qquad

Make Connections

You can draw a model to help you solve a fraction division problem.
Jessica is making a recipe that calls for $\frac{3}{4}$ cup of flour.
Suppose she only has a $\frac{1}{2}$ cup-size measuring scoop.
How many $\frac{1}{2}$ cup scoops of flour does she need?
Divide $\frac{3}{4} \div \frac{1}{2}$.

STEP 1 Draw a model that represents the total amount of flour.

Think: Divide a whole into \qquad -
\qquad cup.

STEP 2 Draw fraction parts that represent the scoops of flour.

Think: What are you trying to find?

Jessica needs
\square

There is \qquad full group of $\frac{1}{2}$ and \qquad of a group of $\frac{1}{2}$.

So, there are \qquad groups of $\frac{1}{2}$ in $\frac{3}{4}$.
$\frac{3}{4} \div \frac{1}{2}=$ \qquad so Jessica will need \qquad scoops of flour.

- What if Jessica's recipe calls for $\frac{1}{4}$ cup flour?

How many $\frac{1}{2}$ cup scoops of flour does she need?

Explain how you used the model to determine the number of groups of $\frac{1}{2}$ in $\frac{3}{4}$.

Share and Show

Use the model to find the quotient.

1. $\frac{1}{2} \div 3=$ \qquad
Think: $\frac{1}{2}$ is shared among 3 groups.

2. $\frac{3}{4} \div \frac{3}{8}=$ \qquad

Use fraction strips to find the quotient. Then draw the model.
3. $\frac{1}{3} \div 4=$ \qquad
\qquad

Draw a model to solve.
5. How many $\frac{1}{4}$ cup servings of raisins are in $\frac{3}{8}$ cup of raisins?
6. How many $\frac{1}{3}$ lb bags of trail mix can Josh make from $\frac{5}{6} \mathrm{lb}$ of trail mix?
7. WRITE Math Pose a Problem Write and solve a problem for $\frac{3}{4} \div 3$ that represents how much in each of 3 groups.

Problem Solving • Applications

The table shows the amount of each material that students in a sewing class need for one purse.

Use the table for 8-10. Use models to solve.
8. G■DEEPER Mrs. Brown has $\frac{1}{3} y d$ of blue denim and $\frac{1}{2}$ yd of black denim. How many purses can be made using denim as the main fabric?
9. IHINKSMARTER One student brings $\frac{1}{2}$ yd of ribbon. If 3 students receive an equal length of the ribbon, how much ribbon will each student receive? Will each of them have enough ribbon for a purse? Explain.

10.

Matilematical
Practic: Make Arguments There was $\frac{1}{2}$ yd of purple and pink striped fabric. Jessie said she could only make $\frac{1}{24}$ of a purse using that fabric as the trim. Is she correct? Use what you know about the meanings of multiplication and division to defend your answer.
11. THINKSMARTER Draw a model to find the quotient.

$$
\frac{1}{2} \div 4=\square
$$

\qquad

Estimate Quotients

Essential Question How can you use compatible numbers to estimate quotients of fractions and mixed numbers?

CONNECT You have used compatible numbers to estimate quotients of whole numbers and decimals. You can also use compatible numbers to estimate quotients of fractions and mixed numbers.

The Number System 6.NS. 1
 mathematical practices MP.1, MP.2, MP.3, MP. 6

Remember

Compatible numbers are pairs of numbers that are easy to compute mentally.

Unlock the Problem

Humpback whales have "songs" that they repeat continuously over periods of several hours. Eric is using an underwater microphone to record a $3 \frac{5}{6}$ minute humpback song. He has $15 \frac{3}{4}$ minutes of battery power left. About how many times will he be able to record the song?

() One Way Estimate $11_{4}^{3}=>\frac{5_{6}^{5} \text { using }}{}$

 compatible numbers.Think: What whole numbers close to $15 \frac{3}{4}$ and $3 \frac{5}{6}$ are easy to divide mentally?

Rewrite the problem using compatible numbers.

Divide.
$15 \frac{3}{4}$ is close to \qquad -

> How do you know that the problem calls for an estimate?

- Which operation should you use to solve the problem? Why?
\qquad .

$$
\begin{gathered}
15 \frac{3}{4} \div 3 \frac{5}{6} \\
\downarrow \\
\downarrow \\
16 \div 4=
\end{gathered}
$$

\qquad

So, Eric will be able to record the complete whale song about \qquad times.

1. Marimanical 3 Compare Strategies To estimate $15 \frac{3}{4} \div 3 \frac{5}{6}$, Martin used 15 and 3 as compatible numbers. Tina used 15 and 4 . Were their choices good ones? Explain why or why not.

(f) Example Estimate using compatible numbers.

(A) $5 \frac{2}{3} \div \frac{5}{8}$
Rewrite the problem using compatible numbers.

$5 \frac{2}{3}$	\div	$\frac{5}{8}$
\downarrow		\downarrow

Think: How many halves are there in 6 ?

$$
6 \div \frac{1}{2}=
$$

\qquad

So, $5 \frac{2}{3} \div \frac{5}{8}$ is about \qquad .
(B) $\frac{7}{8} \div \frac{1}{4}$

Rewrite the problem using compatible numbers.

$\frac{7}{8}$	\div	$\frac{1}{4}$
\downarrow		\downarrow
	\div	$\frac{1}{4}$

Think: How many fourths are there in 1 ?

$$
1 \div \frac{1}{4}=
$$

\qquad
So, $\frac{7}{8} \div \frac{1}{4}$ is about \qquad .
2. MATHEMATICAL (2) Use Reasoning Will the actual quotient $5 \frac{2}{3} \div \frac{5}{8}$ be greater than or less than the estimated quotient? Explain.
\qquad
\qquad
\qquad
3. Will the actual quotient $\frac{7}{8} \div \frac{1}{4}$ be greater than or less than the estimated quotient? Explain.
\qquad
\qquad
\qquad
 using compatible numbers.

Share and Show

Estimate using compatible numbers.

1. $22 \frac{4}{5} \div 6 \frac{1}{4}$
$\downarrow \quad \downarrow$
\qquad \div \qquad
\qquad
2. $12 \div 3 \frac{3}{4}$
\qquad
3. $3 \frac{7}{8} \div \frac{5}{9}$
\qquad
4. $34 \frac{7}{12} \div 7 \frac{3}{8}$
5. $1 \frac{2}{9} \div \frac{1}{6}$

Math

Explain how using compatible numbers is different than rounding to estimate $35 \frac{1}{2} \div 6 \frac{5}{6}$.

On Your Own

Estimate using compatible numbers.

7. $44 \frac{1}{4} \div 11 \frac{7}{9}$
\qquad
8. $71 \frac{11}{12} \div 8 \frac{3}{4}$
\qquad
9. $1 \frac{1}{6} \div \frac{1}{8}$

THINKSMARTER Estimate to compare. Write $<,>$, or $=$.
10. $21 \frac{3}{10} \div 2 \frac{5}{6} \bigcirc 35 \frac{7}{9} \div 3 \frac{2}{3}$
11. $29 \frac{4}{5} \div 5 \frac{1}{6} \bigcirc 27 \frac{8}{9} \div 6 \frac{5}{8}$
12. $55 \frac{5}{6} \div 6 \frac{7}{10} \bigcirc 11 \frac{5}{7} \div \frac{5}{8}$
13. Marion is making school flags. Each flag uses $2 \frac{3}{4}$ yards of felt. Marion has $24 \frac{1}{8}$ yards of felt. About how many flags can he make?
\qquad
14. $5 \square D E E P E R$ A garden snail travels about $2 \frac{3}{5}$ feet in 1 minute. At that speed, about how many hours would it take the snail to travel 350 feet?

Problem Solving • Applications

What's the Error?

15. Megan is making pennants from a piece of butcher paper that is $10 \frac{3}{8}$ yards long. Each pennant requires $\frac{3}{8}$ yard of paper. To estimate the number of pennants she could make, Megan estimated the quotient $10 \frac{3}{8} \div \frac{3}{8}$.

Look at how Megan solved the problem. Find her error.

Correct the error.

Estimate:
$10 \frac{3}{8} \div \frac{3}{8}$
$\downarrow \downarrow$
$10 \div \frac{1}{2}=5$

So, Megan can make about \qquad pennants.
-
Mariticaical (1) Describe the error that Megan made.
\qquad
\qquad
(Maringaical (6) Explain Tell which compatible numbers you used to estimate $10 \frac{3}{8} \div \frac{3}{8}$. Explain why you chose those numbers.
16. THINKSMARTER For numbers 16a-16c, estimate to compare.

Choose $<,>$, or $=$.
16a. $18 \frac{3}{10} \div 2 \frac{5}{6} \begin{aligned} & < \\ & >\end{aligned} \quad 30 \frac{7}{9} \div 3 \frac{1}{3}$
16b. $\quad 17 \frac{4}{5} \div 6 \frac{1}{6}$

$$
19 \frac{8}{9} \div 4 \frac{5}{8}
$$

16c. $\quad 35 \frac{5}{6} \div 6 \frac{1}{4}$ \square $11 \frac{5}{7} \div 2 \frac{3}{4}$
\qquad

Divide Fractions

Essential Question How do you divide fractions?

Unlock the Problem

Toby and his dad are building a doghouse. They need to cut a board that is $\frac{2}{3}$ yard long into $\frac{1}{6}$ yard pieces. How many $\frac{1}{6}$ yard pieces can they cut?

1) One Way Divide $\frac{2}{3}+\frac{1}{6}$ by using a number line.

STEP 1 Draw a number line, and shade it to represent the total length of the board.

Think: Divide a whole into thirds.
Toby and his dad have $\frac{2}{3}$ yard, so shade $\frac{2}{3}$.

STEP 2 Show fraction parts that represent the pieces of board.

Think: Find the number of groups of $\frac{1}{6}$ in $\frac{2}{3}$.

So, there are \qquad $\frac{1}{6}$ yard pieces in $\frac{2}{3}$ yard.

(1) Another Way Divide $\frac{2}{3} \div \frac{1}{6}$ by using a common denominator.

STEP 1 Write equivalent fractions using a common denominator.

$$
\frac{2}{3} \div \frac{1}{6}=\frac{2 x}{3 x} \div \frac{1}{6}=\frac{}{6} \div \frac{1}{6}
$$

Think: \qquad is a multiple of 3 and 6 ,
so \qquad is a common denominator.

STEP 2 Divide.
Think: There are \qquad groups of $\frac{1}{6}$ in $\frac{4}{6}$.

So, $\frac{2}{3} \div \frac{1}{6}=$ \qquad Toby and his dad can cut \qquad $\frac{1}{6}$ yard pieces.

You can use reciprocals and inverse operations to divide fractions.
Two numbers whose product is 1 are reciprocals or multiplicative inverses.
$\frac{2}{3} \times \frac{3}{2}=1$
$\frac{2}{3}$ and $\frac{3}{2}$ are reciprocals.

(1) Activity find apater.

- Complete the table by finding the products.
- How are each pair of division and multiplication problems the same, and how are they different?
\qquad
\qquad

Division	Multiplication
$\frac{4}{7} \div \frac{2}{7}=2$	$\frac{4}{7} \times \frac{7}{2}=$
$\frac{5}{6} \div \frac{4}{6}=\frac{5}{4}$	$\frac{5}{6} \times \frac{6}{4}=$
$\frac{1}{3} \div \frac{5}{9}=\frac{3}{5}$	$\frac{1}{3} \times \frac{9}{5}=$

- How could you use the pattern in the table to rewrite a division problem involving fractions as a multiplication problem?

1. Example

Winnie needs pieces of string for a craft project. How many $\frac{1}{12}$ yd pieces of string can she cut from a piece that is $\frac{3}{4} \mathrm{yd}$ long?

Divide $\frac{3}{4} \div \frac{1}{12}$.
Estimate. \qquad $\div \frac{1}{12}=$ \qquad
Use the reciprocal of the divisor to write a multiplication problem.

$$
\frac{3}{4} \div \frac{1}{12}=\frac{3}{4} x
$$

$$
=\frac{3}{4} \times \frac{12}{1}
$$

Multiply.
Check your answer.

$$
\frac{1}{12} \times
$$

\qquad $=$ \qquad $=$ \qquad
Since the estimate is \qquad , the answer is reasonable.

So, Winnie can cut \qquad $\frac{1}{12}$ yd pieces of string.

Share and Show

```
MATH
BOARD
```

Estimate. Then find the quotient.

1. $\frac{5}{6} \div 3$

Write the whole number as a fraction.

Estimate. \qquad $\div 3=$ \qquad

$$
\frac{5}{6} \div \frac{3}{}
$$

Use the reciprocal of the divisor to write a multiplication problem.
$\frac{5}{6} \times-=$

Use a number line to find the quotient.
2. $\frac{3}{4} \div \frac{1}{8}=$ \qquad

3. $\frac{3}{5} \div \frac{3}{10}=$ \qquad

Estimate. Then write the quotient in simplest form.
4. $\frac{3}{4} \div \frac{5}{6}$
5. $3 \div \frac{3}{4}$
6. $\frac{1}{2} \div \frac{3}{4}$
7. $\frac{5}{12} \div 3$
\qquad
\qquad 1

On Your Own

Practice: Copy and Solve Estimate. Then write the quotient in simplest form.

8. $2 \div \frac{1}{8}$
9. $\frac{3}{4} \div \frac{3}{5}$
10. $\frac{2}{5} \div 5$
11. $4 \div \frac{1}{7}$

Practice: Copy and Solve Evaluate using the order of operations.
Write the answer in simplest form.
12. $\left(\frac{3}{5}+\frac{1}{10}\right) \div 2$
13. $\frac{3}{5}+\frac{1}{10} \div 2$
14. $\frac{3}{5}+2 \div \frac{1}{10}$
15. Marinamical 8 Generalize Suppose the divisor and the dividend of a division problem are both fractions between 0 and 1 , and the divisor is greater than the dividend. Is the quotient less than, equal to, or greater than 1 ?

Problem Solving - Applications (rad

Use the table for 16-19.

16. Kristen wants to cut ladder rungs from a 6 ft board. How many ladder rungs can she cut?
17. THINKSMARIER

Pose a Problem Look back at Problem 16. Write and solve a new problem by changing the length of the board Kristen is cutting for ladder rungs.
\qquad
\qquad
\qquad
\qquad
18. Dan paints a design that has 8 equal parts along the entire length of the windowsill. How long is each part of the design?
19. GПDEEPER Dan has a board that is $\frac{15}{16} \mathrm{yd}$. How many "Keep Out" signs can he make if the length of the sign is changed to half of the original length?

Personal Math Trainer
20. THINKSMARTER 3 Lauren has $\frac{3}{4}$ cup of dried fruit. She puts the dried fruit into bags, each holding $\frac{1}{8}$ cup. How many bags will Lauren use? Explain your answer using words and numbers.
\qquad

Model Mixed Number Division

Essential Question How can you use a model to show division of mixed numbers?

The Number System 6.NS. 1

mathematical practices MP.1, MP.2, MP.4, MP. 5

Investigate

Materials ${ }^{-1}$ pattern blocks
A science teacher has $1 \frac{2}{3}$ cups of baking soda. She performs an experiment for her students by mixing $\frac{1}{6}$ cup of baking soda with vinegar. If the teacher uses the same amount of baking soda for each experiment, how many times can she perform the experiment?
A. Which operation should you use to find the answer? Why?
\qquad
\qquad
B. Use pattern blocks to show $1 \frac{2}{3}$.

Draw your model.

Think: A hexagon block is one whole, and a rhombus is
\qquad of a whole.

- What type and number of blocks did you use to model $1 \frac{2}{3}$?
\qquad
C. Cover $1 \frac{2}{3}$ with blocks that represent $\frac{1}{6}$ to show dividing by $\frac{1}{6}$. Draw your model.

Think: One \qquad
block represents \qquad of a
whole.
\qquad triangle blocks cover $1 \frac{2}{3}$.
$1 \frac{2}{3} \div \frac{1}{6}=$ \qquad
So, the teacher can perform the experiment \qquad times.

Draw Conclusions

1. mathemaical (5) Communicate Tell how your model shows a related multiplication problem.
2. Маमिमझagical (1) Describe Relationships Suppose a mixed number is divided by a fraction between 0 and 1 . Is the quotient greater than or less than the dividend? Explain and give an example.

Make Connections

You can use a model to divide a mixed number by a whole number.
Naomi has $2 \frac{1}{4}$ quarts of lemonade. She wants to divide the lemonade equally between 2 pitchers. How many quarts of lemonade should she pour into each pitcher?

Divide $2 \frac{1}{4} \div 2$.

STEP 1 Draw a model that represents the total amount of lemonade.

Think: Divide 3 wholes into \qquad -.

STEP 2 Draw parts that represent the amount in each pitcher.

Think: What are you trying to find?
Shade \qquad .
\square

Think: In each of the two equal groups there is \qquad whole and \qquad of $\frac{1}{4}$.
$\frac{1}{2}$ of $\frac{1}{4}$ is \qquad .

So, $2 \frac{1}{4} \div 2=$ \qquad . Naomi should pour \qquad quarts of lemonade into each pitcher.
\qquad

Share and Show

MATH BOARD

Use the model to find the quotient.

1. $3 \frac{1}{3} \div \frac{1}{3}=$

2. $2 \frac{1}{2} \div \frac{1}{6}=$ \qquad

Use pattern blocks to find the quotient. Then draw the model.
3. $2 \frac{2}{3} \div \frac{1}{6}=$ \qquad
(6) $3 \frac{1}{2} \div \frac{1}{2}=$ \qquad

Draw a model to find the quotient.
5. $3 \frac{1}{2} \div 3=$ \qquad

6. $1 \frac{1}{4} \div 2=$ \qquad

| | 1 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

7. Маमझincilical (5) Use Appropriate Tools Explain how models can be used to divide mixed numbers by fractions or whole numbers.
\qquad
\qquad
\qquad
\qquad

Problem Solving • Applications (acald

Use a model to solve.

8.

Marinkaical (4) Use Models Eliza opens a box of bead kits. The box weighs $2 \frac{2}{3} \mathrm{lb}$. Each bead kit weighs $\frac{1}{6} \mathrm{lb}$. How many kits are in the box?
9. G■DEEPER Hassan has two boxes of trail mix. Each box holds $1 \frac{2}{3} \mathrm{lb}$ of trail mix. He eats $\frac{1}{3} \mathrm{lb}$ of trail mix each day. How many days can Hassan eat trail mix before he runs out?
10. THINKSMARTER Sense or Nonsense? Steve made this model to show $2 \frac{1}{3} \div \frac{1}{6}$. He says that the quotient is 7. Is his answer sense or nonsense? Explain your reasoning.

11. IHINKSMARTER Eva is making muffins to sell at a fundraiser. She has $2 \frac{1}{4}$ cups of flour, and the recipe calls for $\frac{3}{4}$ cup of flour for each batch of muffins. Explain how to use a model to find the number of batches of muffins Eva can make.
\qquad

Divide Mixed Numbers

Essential Question How do you divide mixed numbers?

Unlock the Problem

A box weighing $9 \frac{1}{3} \mathrm{lb}$ contains robot kits weighing $1 \frac{1}{6} \mathrm{lb}$ apiece. How many robot kits are in the box?
(1) Divide $9 \frac{1}{3} \div 1 \frac{1}{6}$.

Estimate the quotient. \qquad \div \qquad $=$ \qquad

Write the mixed numbers as fractions.

$$
9 \frac{1}{3} \div 1 \frac{1}{6}=\frac{}{3} \div \frac{}{6}
$$

Use the reciprocal of the divisor to write a multiplication problem.

$$
=\frac{28}{3} \times \square
$$

$$
=\frac{28}{3} \times \frac{6}{7}
$$

Simplify.

Multiply.

$$
=- \text { or }
$$

\qquad

Compare your estimate with the quotient. Since the estimate, \qquad , is close to \qquad , the answer is reasonable.

So, there are \qquad robot kits in the box.

Try This! Estimate. Then write the quotient in simplest form.

Think: Write the mixed numbers as fractions.
(A) $2 \frac{1}{3} \div \frac{1}{6}$
(B) $5 \frac{3}{4} \div \frac{3}{8}$

(f) Example four hikers shared $3 \frac{1}{3}$ qt of water

 equally. How much did each hiker receive?Divide $3 \frac{1}{3} \div 4$. Check.
Estimate. \qquad $\div 4=1$

Write the mixed number and the whole number as fractions.

Use the reciprocal of
the divisor to write a multiplication problem.

Simplify.

$$
\begin{aligned}
3 \frac{1}{3} \div 4 & =\frac{}{3} \div \square \\
& =\frac{10}{3} \times \square \\
& =\frac{10}{3} \times \frac{1}{4}
\end{aligned}
$$

Multiply. \qquad

Check your answer.

So, each hiker received \qquad qt.

1. Describe what you are trying to find in the Example above.
 to multiplying mixed numbers. How are they different?
\qquad
\qquad
\qquad
\qquad
2. THINKSMARTER The divisor in a division problem is between 0 and 1 and the dividend is greater than 0 . Will the quotient be greater than or less than the dividend? Explain.
\qquad
\qquad

Share and Show

Estimate. Then write the quotient in simplest form.

1. $4 \frac{1}{3} \div \frac{3}{4}=\frac{}{3} \div \frac{3}{4}$

$$
\begin{aligned}
& =\frac{13}{3} \times- \\
& =-\operatorname{sr} 5 \frac{}{9}
\end{aligned}
$$

3. $5 \frac{2}{3} \div 3$
\qquad

On Your Own

Estimate. Then write the quotient in simplest form.
5. How many $3 \frac{1}{3}$ yd pieces can Amanda get from a $13 \frac{1}{3}$ yd ribbon?
\qquad
7. $5 \frac{3}{4} \div 4 \frac{1}{2}$
8. $5 \div 1 \frac{1}{3}$
\qquad
9. $6 \frac{3}{4} \div 2$
10. $2 \frac{2}{9} \div 1 \frac{3}{7}$
6. Samantha cut $6 \frac{3}{4} y d$ of yarn into 3 equal pieces.

How long was each piece?
How
\qquad

Explain why you write a mixed number as a fraction before using it as a dividend or divisor.
4. $7 \frac{1}{2} \div 2 \frac{1}{2}$

\qquad
2. Six hikers shared $4 \frac{1}{2} \mathrm{lb}$ of trail mix. How much trail mix did each hiker receive?
\qquad

12. $1 \frac{2}{5} \div 1 \frac{13}{15}+\frac{5}{8}$
13. $3 \frac{1}{2}-1 \frac{5}{6} \div 1 \frac{2}{9}$
14. Matymaical (7) Look for a Pattern Find these quotients:
$20 \div 4 \frac{4}{5}, 10 \div 4 \frac{4}{5}, 5 \div 4 \frac{4}{5}$. Describe a pattern you see.

Unlock the Problem

15. EDDEEPER Dina hikes $\frac{1}{2}$ of the easy trail and stops for a break every $3 \frac{1}{4}$ miles. How many breaks will she take?
a. What problem are you asked to solve?
\qquad
\qquad

Hiking Trails			
Park	Trail	Length (mi)	Difficulty
Cuyahoga Valley National Park, Ohio	Ohio and Erie Canal Towpath	$19 \frac{1}{2}$	easy
	Brandywine Gorge	$1 \frac{1}{4}$	moderate
	Buckeye Trail (Jaite to Boston)	$5 \frac{3}{5}$	difficult

b. How will you use the information in the table to solve the problem?
\qquad
\qquad
c. How can you find the distance Dina hikes? How far does she hike?
\qquad
\qquad
d. What operation will you use to find how many breaks Dina takes?
e. How many breaks will Dina take?
\qquad
16. THINK SMARTER

Carlo packs $15 \frac{3}{4} \mathrm{lb}$ of books in 2 boxes. Each book weighs $1 \frac{1}{8} \mathrm{lb}$. There are 4 more books in Box A than in Box B. How many books are in Box A? Explain your work.

\qquad
17. THINKSMARTER Rex's goal is to run $13 \frac{3}{4}$ miles over 5 days. He wants to run the same distance each day. Jordan said that Rex would have to run $3 \frac{3}{4}$ miles each day to reach his goal. Do you agree with Jordan? Explain your answer using words and numbers.
\qquad
\qquad
\qquad

Name

Problem Solving • Fraction Operations

Essential Question How can you use the strategy use a model to help you solve a division problem?

Unlock the Problem

Sam had $\frac{3}{4} \mathrm{lb}$ of granola. Each day he took $\frac{1}{8} \mathrm{lb}$ to school for a snack. If he had $\frac{1}{4} \mathrm{lb}$ left over, how many days did Sam take granola to school?

Use the graphic organizer below to help you solve the problem.

Read the Problem

What do I need to find?
I need to find \qquad
\qquad
\qquad . each day. He had \qquad lb left over.

How will I use the information?

I will draw a bar model to find how much \qquad
\qquad
\qquad .

Try Another Problem

For a science experiment, Mr. Barrows divides $\frac{2}{3}$ cup of salt into small jars, each containing $\frac{1}{12}$ cup. If he has $\frac{1}{6}$ cup of salt left over, how many jars does he fill?

Read the Problem What do I need to find?What information do I need to use?		How will I use the information?

Solve the Problem

So, Mr. Barrows fills \qquad jars.

2. $\begin{aligned} & \text { mathenaical (6) Explain a Method Suppose that Mr. Barrows starts with } 1 \frac{2}{3} \text { cups }\end{aligned}$ of salt. Explain how you could find how many jars he fills.
\qquad
\qquad
\qquad

Name

Share and Show

MATH
BOARD

1. There is $\frac{4}{5} \mathrm{lb}$ of sand in the class science supplies. If one scoop of sand weighs $\frac{1}{20} \mathrm{lb}$, how many scoops of sand can Maria get from the class supplies and still leave $\frac{1}{2}$ lb in the supplies?

First, draw a bar model.

Next, find how much sand Maria gets.
Maria will get $\frac{}{10} \mathrm{lb}$ of sand.

Finally, find the number of scoops.
\qquad groups of $\frac{1}{20}$ are equivalent to $-\frac{}{10}$
so $\frac{-10}{10} \div \frac{1}{20}=$ \qquad .

So, Maria will get \qquad scoops of sand.
2. THINKSMARTER What if Maria leaves $\frac{2}{5} \mathrm{lb}$ of sand in the supplies? How many scoops of sand can she get?
3. There are 6 gallons of distilled water in the science supplies. If 10 students each use an equal amount of the distilled water and there is 1 gal left in the supplies, how much will each student get?

Unlock the Problem

- Underline the question.
- Circle important information.
- Check to make sure you answered the question.

WRITE Math •Show Your Work

On Your Own

4. THINKSMARTER The total weight of the fish in a tank of tropical fish at Fish ' n ' Fur was $\frac{7}{8} \mathrm{lb}$. Each fish weighed $\frac{1}{64} \mathrm{lb}$. After Eric bought some fish, the total weight of the fish remaining in the tank was $\frac{1}{2} \mathrm{lb}$. How many fish did Eric buy?

5. GПDEEPER Fish ' n ' Fur had a bin containing $2 \frac{1}{2} \mathrm{lb}$ of gerbil food. After selling bags of gerbil food that each held $\frac{3}{4} \mathrm{lb}, \frac{1}{4} \mathrm{lb}$ of food was left in the bin. If each bag of gerbil food sold for $\$ 3.25$, how much did the store earn?
 treats. He gave his $\operatorname{dog} \frac{3}{5} \mathrm{lb}$ of treats one week and $\frac{7}{10} \mathrm{lb}$ of treats the next week. Describe how Niko can find how much is left.

Personal Math Trainer
7. THINKSMARTER $\}$ There were $14 \frac{1}{4}$ cups of apple juice in a container. Each day, Elise drank $1 \frac{1}{2}$ cups of apple juice. Today, there is $\frac{3}{4}$ cup of apple juice left.

Derek said that Elise drank apple juice on nine days. Do you agree with Derek? Use words and numbers to explain your answer.

(V)Chapter 2 Review/Test

1. Write the values in order from least to greatest.

2. For numbers 2a-2d, compare. Choose $<,>$, or $=$.
2a. $\quad 0.75 \begin{aligned} & < \\ & > \\ & =\end{aligned}$
2c. $\begin{aligned} & 1 \frac{3}{5} \\ & \\ & \\ & \\ &= \\ &\end{aligned}$
2b. $\quad \frac{4}{5} \begin{aligned} & < \\ & > \\ & =\end{aligned}$
2d. $\quad \begin{aligned} & \\ & \\ & \\ & \\ & \\ & 7 \frac{2}{5}\end{aligned}$
3. The table lists the heights of 4 trees.

Type of Tree	Height (feet)
Sycamore	$15 \frac{2}{3}$
Oak	$14 \frac{3}{4}$
Maple	$15 \frac{3}{4}$
Birch	15.72

For numbers 3a-3d, select True or False for each statement.
3a. The oak tree is the shortest.True

False
3b. The birch tree is the tallest.True

False
36. Two of the trees are theTrue False same height.

3d. The sycamore tree is tallerTrue
False than the maple tree.
4. For numbers 4a-4d, choose Yes or No to indicate whether the statement is correct.

4a. Point A represents 1.0.
O Yes
O No
4b. Point B represents $\frac{3}{10}$.
O Yes
O No
4c. Point C represents 6.5.
O Yes
O No
4d. Point D represents $\frac{4}{5}$.
\bigcirc Yes
O No
5. Select the values that are equivalent to one twenty-fifth. Mark all that apply.
(A) $\frac{1}{25}$
(B) 25
(C) 0.04
(D) 0.025
6. The table shows Lily's homework assignment. Lily's teacher instructed the class to simplify each expression by dividing the numerator and denominator by the GCF. Complete the table by simplifying each expression and then finding the product.

Problem	Expression	Simplified Expression	Product
a	$\frac{2}{5} \times \frac{1}{4}$		
b	$\frac{4}{5} \times \frac{5}{8}$		
c	$\frac{3}{7} \times \frac{5}{8}$		
d	$\frac{4}{9} \times \frac{3}{16}$		

Name

7. Two-fifths of the fish in Gary's fish tank are guppies. One-fourth of the guppies are red. What fraction of the fish in Gary's tank are red guppies? Show your work.
\square
8. One-third of the students at Finley High School play sports. Two-fifths of the students who play sports are girls. What fraction of all students are girls who play sports? Use numbers and words to explain your answer.

9. Draw a model to find the quotient.

$$
\frac{3}{4} \div \frac{3}{8}=\square
$$

How are your models alike? How are they different?
\square
10. Explain how to use a model to find the quotient.
$2 \frac{1}{2} \div 2=\square$

Divide. Show your work.

11. $\frac{7}{8} \div \frac{3}{5}=\square$
12. $2 \frac{1}{10} \div 1 \frac{1}{5}=\square$
13. Sophie has $\frac{3}{4}$ quart of lemonade. If she divides the lemonade into glasses that hold $\frac{1}{16}$ quart, how many glasses can Sophie fill? Show your work.

14. Ink cartridges weigh $\frac{1}{8}$ pound. The total weight of the cartridges in a box is $4 \frac{1}{2}$ pounds. How many cartridges does the box contain? Show your work and explain why you chose the operation you did.

15. Beth had 1 yard of ribbon. She used $\frac{1}{3}$ yard for a project. She wants to divide the rest of the ribbon into pieces $\frac{1}{6}$ yard long. How many $\frac{1}{6}$ yard pieces of ribbon can she make? Explain your solution.

16. Complete the table by finding the products. Then answer the questions in Part A and Part B.

Division	Multiplication
$\frac{1}{5} \div \frac{3}{4}=\frac{4}{15}$	$\frac{1}{5} \times \frac{4}{3}=$
$\frac{2}{13} \div \frac{1}{5}=\frac{10}{13}$	$\frac{2}{13} \times \frac{5}{1}=$
$\frac{4}{5} \div \frac{3}{5}=\frac{4}{3}$	$\frac{4}{5} \times \frac{5}{3}=$

Part A

Explain how each pair of division and multiplication problems are the same, and how they are different.
\square

Part B

Explain how to use the pattern in the table to rewrite a division problem involving fractions as a multiplication problem.
\square
17. Margie hiked a $17 \frac{7}{8}$ mile trail. She stopped every $3 \frac{2}{5}$ miles to take a picture. Martin and Tina estimated how many times Margie stopped.

Martin's Estimate	
$17 \frac{7}{8} \div 3 \frac{2}{5}$ \downarrow \downarrow $16 \div 4=4$	$17 \frac{7}{8} \div 3 \frac{2}{5}$ \downarrow \downarrow $18 \div 3=6$

Who made the better estimate? Use numbers and words to explain your answer.
\square
18. Brad and Wes are building a tree house. They cut a $12 \frac{1}{2}$ foot piece of wood into 5 of the same length pieces. How long is each piece of wood? Show your work.
\square

Rational Numbers

Show What You Know

Check your understanding of important skills.
Name \qquad

Compare Fractions Compare. Write $<,>$, or $=$.

1. $\frac{3}{5} \bigcirc \frac{1}{3}$
2. $\frac{3}{7} \bigcirc \frac{1}{2}$
3. $\frac{3}{3} \bigcirc \frac{5}{5}$
4. $\frac{6}{8} \bigcirc \frac{2}{4}$

Equivalent Fractions Write an equivalent fraction.
5. $\frac{3}{8}$ \qquad 6. $\frac{2}{5}$ \qquad
7. $\frac{10}{12}$ \qquad 8. $\frac{6}{9}$ \qquad
Compare Decimals Compare. Write $<,>$, or $=$.
9. $0.3 \bigcirc 0.30$
11. 0.4
 0.51
10. $4 \bigcirc 3.8$
12. $\$ 2.61$
 $\$ 6.21$

Vocabulary Builder

Visualize It .

Use the checked words to complete the flow map.

Understand Vocabulary

Complete the sentences using the preview words.

1. The \qquad are the set of whole numbers and their opposites.
2. The distance of a number from 0 on a number line is the number's \qquad .
3. Two numbers that are the same distance from zero on the number line, but on different sides of zero, are called \qquad .
4. A \qquad is any number that can be written as $\frac{a}{b}$, where a and b are integers and $b \neq 0$.
5. The four regions of the coordinate plane that are separated by the x - and y-axes are called \qquad .

Lesson 3.1

Name

\qquad

Understand Positive and Negative Numbers

Essential Question How can you use positive and negative numbers to represent real-world quantities?

Integers are the set of all whole numbers and their opposites. Two numbers are opposites if they are the same distance from 0 on the number line, but on different sides of 0 . For example, the integers ${ }^{+} 3$ and ${ }^{-} 3$ are opposites. Zero is its own opposite.

Math Idea

You do not need to write the + symbol for positive integers, so ${ }^{+} 3$ can also be written as 3 .

Positive numbers are located to the right of 0 on the number line, and negative numbers are located to the left of 0 .

Unlock the Problem

The temperature at the start of a 2009 Major League Baseball playoff game between the Colorado Rockies and the Philadelphia Phillies was $2^{\circ} \mathrm{C}$. The temperature at the end of the game was ${ }^{-} 4^{\circ} \mathrm{C}$. What is the opposite of each temperature?

\square
Graph each integer and its opposite on a number line.

A 2

The integer 2 is on the \qquad side of 0 .

Graph the opposite of 2 at \qquad .

So, the opposite of $2^{\circ} \mathrm{C}$ is \qquad .
(B) ${ }^{-} 4$

The integer ${ }^{-} 4$ is on the \qquad side of 0 .

Graph the opposite of ${ }^{-} 4$ at \qquad .

So, the opposite of ${ }^{-} 4^{\circ} \mathrm{C}$ is \qquad -

1
 Example 1

Name the integer that represents the situation, and tell
what 0 represents in that situation.

Situation	Integer	What Does 0 Represent?
A team loses 10 yards on a football play.	-10	the team neither gains nor loses yardage
A point in Yuma, Arizona, is 70 feet above sea level.		
A temperature of 40 degrees below zero was recorded in Missouri.		
Larry withdraws $\$ 30$ from his bank account.		
Tricia's golf score was 7 strokes below par.		

(1) Example 2 Use a number line to find ${ }^{-}(-3)$, the
opposite of the opposite of 3 .
STEP 1
Graph 3 on the number line.

STEP 2
Use the number line to graph the opposite of 3.

STEP 3

Use the number line to graph the opposite of the number you graphed in Step 2.

So, ${ }^{-}\left({ }^{-} 3\right)$, or the opposite of the opposite of 3, equals \qquad .

Try This! Write the opposite of the opposite of the integer.

plane going up or down? Explain.
\qquad
\qquad
\qquad

Share and Show

Graph the integer and its opposite on a number line.

1. ${ }^{-7}$ opposite: \qquad

2. 9
opposite: \qquad

Name the integer that represents the situation, and tell what 0 represents in that situation.

Situation	Integer	What Does 0 Represent?
3. Kerri gained 24 points during a round of a game show.		
4. Ben lost 5 pounds during the summer.		
5. Marcy deposited $\$ 35$ in her savings account.		

Identify a real-world situation involving an integer and its opposite.

On Your Own

Write the opposite of the integer.
6. -98 \qquad 7. 0 \qquad 8. ${ }^{-53}$ \qquad

Name the integer that represents the situation, and tell what 0 represents in that situation.

Situation	Integer	
9. Desmond made $\$ 850$ at his summer job.		
10. Miguel withdraws $\$ 300$ from his checking account.		
11. Renee lost 18 points during her turn in the board game.		

Write the opposite of the opposite of the integer.
12. ${ }^{-23}$ \qquad 13. 17 \qquad 14. ${ }^{-125}$
15.

6
Explain Suppose you know a certain number's distance from zero on the number line. Explain how you could find the number's distance from its opposite.

Problem Solving • Applications

Wind makes the air temperature seem colder. The chart gives the wind chill temperature (what the temperature seems like) at several air temperatures and wind speeds. Use the chart for 16-18.
16. At 6 A.m., the air temperature was $20^{\circ} \mathrm{F}$ and the wind speed was $55 \mathrm{mi} / \mathrm{hr}$. What was the wind chill temperature at 6 А.м.?
17. GПDEEPER At noon, the air temperature was

Wind Chill Chart					
Air Temperature (${ }^{\circ} \mathrm{F}$)					
		$\mathbf{3 0}$	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{1 5}$
	$\mathbf{2 5}$	16	9	3	-4
	$\mathbf{3 5}$	14	7	0	-7
	$\mathbf{4 5}$	12	5	-2	-9
	$\mathbf{5 5}$	11	3	-4	-11

18. THINKSMARIER The wind was blowing $35 \mathrm{mi} / \mathrm{hr}$ in both Ashton and Fenton. The wind chill temperatures in the two towns were opposites. If the air temperature in Ashton was $25^{\circ} \mathrm{F}$, what was the air temperature in Fenton?

19. Sense or Nonsense? Claudia states that the opposite of any integer is always a different number than the integer. Is Claudia's statement sense or nonsense? Explain.
20. THINKSMARTER For numbers 20a-20d, choose Yes or No to indicate whether the situation can be represented by a negative number.

20a. Death Valley is located 282 feet below sea level.
OYes ONo
20b. Austin's golf score was 3 strokes below par.
\bigcirc Yes
ONo
20 c . The average temperature in Santa Monica in August is $75^{\circ} \mathrm{F}$.
O Yes
O No
20d. Janai withdraws $\$ 20$ from her bank account.
O Yes
O No

You can use a number line to compare integers.

STEP 2 Note the locations of the numbers.
${ }^{-} 7$ is to the \qquad of ${ }^{-} 4$ on the number
line, so ${ }^{-7}$ is \qquad -4.

Math Idea

As you move to the right on a horizontal number line, the values become greater. As you move to the left, values become less.

Try This! Use the number line to compare the numbers.

(A) 5 and -9

5 is to the \qquad of ${ }^{-} 9$ on the number line, so 5 is \qquad -9.

B - 2 and 0

\qquad is to the left of \qquad on the number line, so ${ }^{-} 2$ is \qquad 0.

You can also use a vertical number line to order integers.

Example the table gives the coldest temperatures
recorded in seven cities in 2007.

Record Coldest Temperatures for 2007 (${ }^{\circ} \mathrm{F}$)						
Anchorage, AK -17	Boise, ID 7	Duluth, MN -25	Los Angeles, CA 35	Memphis, TN 18	Pittsburgh, PA -5	

Order the temperatures from least to greatest.
STEP 1 Draw a dot on the number line to represent the record temperature of each city. Write the first letter of the city beside the dot.

STEP 2 Write the record temperatures in order from least to greatest. Explain how you determined the order.

B Use the table and the number line to answer each question.

- Which city had the colder record temperature, Memphis or Pittsburgh? How do you know?

Record Coldest Temperatures (${ }^{\circ}$ F) for 2007

\qquad

- Which city had the warmest record temperature? How do you know?
\qquad
\qquad
- What are the record temperatures for Boise, Memphis, and Pittsburgh in order from least to greatest?
\qquad $<$ \qquad $<$
- What are the record temperatures for Anchorage, Duluth, and Los Angeles in order from greatest to least?

Remember

The symbol < means less than. The symbol > means greater than.
\qquad $>$ \qquad $>$ \qquad

Share and Show

```
MATH
BOARD
```

Compare the numbers. Write $<$ or $>$.

1. ${ }^{-} 8 \bigcirc 6$ Think: -8 is to the \qquad of 6 on the number line, so -8 is \qquad 6.
2.

3.

4.

Order the numbers from least to greatest.
5. $4,{ }^{-} 3,-7$
\qquad $<$ \qquad $<$
6. $0,{ }^{-1} 1,3$
\qquad $<$ \qquad $<$
7. $-5,-3,-9$
\qquad $<$ \qquad $<$ \qquad

Order the numbers from greatest to least.
8. ${ }^{-} 1,-4,2$
\qquad $>$ \qquad $>$
9. $5,0,10$
\qquad $>$ \qquad $>$ \qquad
10. ${ }^{-} 5,{ }^{-} 4,{ }^{-} 3$
$>$ \qquad $>$
\qquad

Explain how you can use a number line to compare numbers.
13. $15,{ }^{-} 9,-20$
\qquad $<$ \qquad $<$ \qquad
\qquad $<$ \qquad $<$ \qquad
12. ${ }^{-} 6,{ }^{-} 12,30$

Order the numbers from greatest to least.
14. ${ }^{-} 13,14,{ }^{-} 14$
\qquad $>$ \qquad $>$ \qquad
16. $9,-37,0$
\qquad $>$ \qquad $>$ \qquad
17. GIDEEPER Saturday's low temperature was $^{-} 6^{\circ}$ F. Sunday's low temperature was $3^{\circ} \mathrm{F}$. Monday's low temperature was ${ }^{-} 2^{\circ} \mathrm{F}$. Tuesday's low temperature was $5^{\circ} \mathrm{F}$. Which day's low temperature was closest to $0^{\circ} \mathrm{F}$?
18. Martinatical (4) Use Symbols Write a comparison using $<$ or $>$ to show that South America's Valdes Peninsula (elevation ${ }^{-} 131 \mathrm{ft}$) is lower than Europe's Caspian Sea (elevation ${ }^{-} 92 \mathrm{ft}$).

THINKSMARIER What's the Error?

19. In the game of golf, the player with the lowest score wins. Raheem, Erin, and Blake played a game of miniature golf. The table shows their scores compared to par.

Raheem	Erin	Blake
0	-5	-1

At the end of the game, they wanted to know who had won.

Look at how they solved the problem. Find their error.

STEP 1: 0 is greater than both ${ }^{-1}$ and ${ }^{-}$5. Since Raheem had the highest score, he did not win.

STEP 2: ${ }^{-1}$ is less than ${ }^{-}$5, so Blake's score was less than Erin's score. Since Blake had the lowest score, he won the game.

Correct the error by ordering the scores from least to greatest.

So, \qquad won. \qquad came in second. \qquad came in third.

- Describe the error that the players made.

20. THINKSMARIER Jasmine recorded the low temperatures for 3 cities.

City	Temperature $\left({ }^{\circ} \mathrm{F}\right)$
A	6
B	-4
C	2

Draw a dot on the number line to represent the low temperature of each city. Write the letter of the city above the dot.
\qquad

Rational Numbers and the Number Line

Essential Question How can you plot rational numbers on a number line?
CONNECT A rational number is any number that can be written as $\frac{a}{b}$, where a and b are integers and $b \neq 0$. Decimals, fractions, and integers are all rational numbers.

Unlock the Problem

The freezing point of a liquid is the temperature at which the liquid turns into a solid when it is cooled. The table shows the approximate freezing points of various liquids. Graph each temperature on a number line.

0
Graph the values in the table.

Liquid Freezing Points	
Liquid	Freezing Point (${ }^{\circ}$)
Carbonated water	-0.3
Fizzy lemonade	-0.5
Hydrazine	1.4

STEP 1 Locate each number in relation to the nearest integers.

Think: -0.3 is the opposite of \qquad .
0.3 is between the integers \qquad and \qquad -
So, -0.3 is between the opposites of these integers.
0.3 is between \qquad and \qquad .
0.5 is between \qquad and \qquad .
1.4 is between \qquad and \qquad .

STEP 2 Graph each temperature.

The Number System-6.NS.6a, 6.NS.6c

mathematical practices MP.2, MP.4, MP. 7

(1) Example

City Hall is located at point 0 on a map of Maple Avenue. Other points of interest on Maple Avenue are indicated by their distances, in miles, to the right of City Hall (positive numbers) or to the left of City Hall (negative numbers). Graph each location on a number line.

STEP 1 Locate the numbers in relation to the nearest integers.

Points of Interest	
Name	Location
City Park	$-\frac{3}{8}$
Fountain	$-1 \frac{1}{2}$
Library	$1 \frac{1}{4}$
Mall	$\frac{3}{4}$

$-1 \frac{1}{2}$ is between \qquad and \qquad .
$1 \frac{1}{4}$ is between \qquad and \qquad . $\quad \frac{3}{4}$ is between \qquad and \qquad -

STEP 2 Graph each location on the number line.
City Park: $-\frac{3}{8} \quad$ Think: $-\frac{3}{8}$ is three eighths to the left of 0 on the number line.

> City Hall

Fountain: ${ }^{-1} \frac{1}{2}$

Library: $1 \frac{1}{4}$
City Hall

Mall: $\frac{3}{4}$

Mathematical Practices
Explain how you can use a horizontal or vertical number line to graph a
1.

Reason Quantitatively How did you identify the two rational number.
pracicice that ${ }^{-1} 1$ is between? integers that ${ }^{-} 1 \frac{1}{2}$ is between?
\qquad
\qquad
2. Marincaical (7) Identify Relationships How do you know from looking at the table that City Hall is between the city park and the mall?
\qquad
\qquad
\qquad

Share and Show

```
MATH
BOARD
```

Graph the number on the horizontal number line.

1. $-2 \frac{1}{4}$

The number is between the integers \qquad and \qquad .

It is closer to the integer \qquad .
2. ${ }^{-} 1 \frac{5}{8}$

3. $\frac{1}{2}$

On Your Own

Mathematical Practices
Two numbers are opposites. Zero is not one of the numbers. Are the numbers on the same side or opposite sides of zero on a number line? Explain.

Practice: Copy and Solve Graph the number on a vertical number line.
4. 0.6
5. ${ }^{-1} 1.25$
6. ${ }^{-} 1.5$
7. 0.3
8. ${ }^{-} 0.7$
9. 1.4
10. ${ }^{-} 0.5$
11. ${ }^{-} 0.25$

State whether the numbers are on the same or opposite sides of zero.
12. ${ }^{-} 1.38$ and 2.9
\qquad
15. FПDEEPER The roots of 6 corn plants had depths of ${ }^{-} 3.54$ feet, $-2 \frac{4}{5}$ feet, ${ }^{-} 3.86$ feet, ${ }^{-} 4 \frac{1}{8}$ feet, ${ }^{-} 4.25$ feet, and ${ }^{-} 3 \frac{2}{5}$ feet. How many corn plants had roots between 3 and 4 feet deep?
\qquad

Problem Solving • Applications

A star's magnitude is a number that measures the star's brightness. Use the table of star magnitudes for 16-18.
16. Between what two integers is the magnitude of Canopus?
17. Majpinailcal (4) Model Mathematics Graph the magnitude of Betelgeuse on the number line.

18. THINKSMARTER What's the Error? Jacob graphed the magnitude of Sirius on the number line. Explain his error. Then graph the magnitude correctly.

Magnitudes of Stars	
Star	
Arcturus	Magnitude
Betelgeuse	-0.04
Canopus	-0.7
Deneb	1.25
Rigel Kentaurus A	-0.01
Sirius	-1.46

\qquad
\qquad
\qquad
Personal Math Trainer
19. THINKSMARTER The flag pole is located at point 0 on a map of Orange Avenue. Other points of interest on Orange Avenue are indicated by their distances, in miles to the right of the flag pole (positive numbers) or to the left of the flag pole (negative numbers). Graph and label each location on the number line.

Name	Location
School	0.4
Post Office	1.8
Library	${ }^{-1}$
Fire Station	-1.3

CONNECT You have used a number line to compare and order
integers. You can also use a number line to compare other rational numbers, including decimals and fractions.

Compare and Order Rational Numbers

Essential Question How can you compare and order rational numbers?

Unlock the Problem

The table shows the average December temperatures in five U.S. cities. Which city has the greater average December temperature, Indianapolis or Boise?

I) One Way Use a number line.

Graph the temperatures for Indianapolis and Boise.

Average December Temperatures	
City	Temperature $\left({ }^{\circ} \mathrm{C}\right)$
Boise, ID	-1
Boston, MA	0.9
Indianapolis, IN	-0.6
Philadelphia, PA	2.1
Syracuse, NY	-2

Think: As you move to the \qquad on a horizontal
number line, the numbers become greater.
${ }^{-} 0.6$ is to the \qquad of ${ }^{-} 1$.

So, the city whose temperature is farther to the right is \qquad .

(1) Another Way Use place value to compare the decimals.

STEP 1 Write the temperatures with their decimal points lined up.

Indianapolis: \qquad
Boise: \qquad
STEP 2 Compare the digits in the ones place. If the number is negative, include a negative sign with the digit.
${ }^{-} 0.6^{\circ} \mathrm{C}$ is \qquad than ${ }^{-} 1^{\circ} \mathrm{C}$, so \qquad has a
greater average December temperature than \qquad .

(1) Example 1

The elevations of objects found at a dig site are recorded in the table. Which object was found at a lower elevation, the fossil of the shell or the fossil of the fish?

(1) One Way Use a number line.

Graph the elevations for the fossil of the shell and the fossil of the fish.

Think: As you move \qquad on a vertical number line, the numbers become less.
${ }^{-} 3 \frac{1}{2}$ is \qquad $-3 \frac{1}{4}$ on the number line.

(9) Another Way Use common denominators to compare fractions.

STEP 1 Write the elevations with a common denominator.

$$
-3 \frac{1}{2}=-3
$$

$$
-3 \frac{1}{4}=-3
$$

STEP 2 Since the whole numbers are the same, you only need to compare the fractions. If the number is negative, include a

$$
-\frac{2}{4} \text { is ___ than } \frac{1}{4} \text {, so }
$$ negative sign with the fraction.

So, the fossil of the \qquad was found at a lower
elevation than the fossil of the \qquad .

(1) Example 2 compare -0.1 and $-\frac{4}{5}$.

Convert to all fractions or all decimals.

-8 is \qquad than ${ }^{-} 1$, so ${ }^{-\frac{4}{5}}$ is less than ${ }^{-} 0.1$.
decimals $\quad{ }^{-} 0.1={ }^{-} 0.1 \quad-\frac{4}{5}={ }^{-} 0$.
${ }^{-} 0.8$ is \qquad than ${ }^{-} 0.1$, so $-\frac{4}{5}$ is less than ${ }^{-} 0.1$.

Use a number line to check your answer.

Share and Show

```
MATH
BOARD
```

Compare the numbers. Write $<$ or $>$.

1. ${ }^{-} 0.3$
 0.2

Think: ${ }^{-} 0.3$ is to the \qquad of 0.2 on the number line, so -0.3 is \qquad than 0.2.
2.
 $-\frac{2}{5}$
3.
 0.5
© 4.

Order the numbers from least to greatest.
5. $3.6,{ }^{-} 7.1,{ }^{-} 5.9$
\qquad
\qquad $<$
6. $-\frac{6}{7}, \frac{1}{9},-\frac{2}{3}$
©7. $-5 \frac{1}{4},-6.5,{ }^{-} 5.3$
\qquad $<$ \qquad $<$ \qquad
\qquad $<$ \qquad $<$ \qquad

Tell what the statement $-\frac{1}{3}>-\frac{1}{2}$ means. Explain how you know that the statement is true.

Compare the numbers. Write $<$ or $>$.
8. $-\frac{1}{2} \bigcirc-\frac{3}{7}$
9. ${ }^{-} 23.7 \bigcirc-18.8$

Order the numbers from greatest to least.
11. ${ }^{-} 2.4,1.9,{ }^{-} 7.6$
\qquad $>$ \qquad $>$ \qquad
12. $-\frac{2}{5},-\frac{3}{4},-\frac{1}{2}$
\qquad $>$ \qquad $>$ \qquad
13. $3,-6 \frac{4}{5},-3 \frac{2}{3}$
\qquad $>$ \qquad $>$ \qquad
14. G■DEEPER Last week, Wednesday's low temperature was ${ }^{-} 4.5^{\circ} \mathrm{F}$, Thursday's low temperature was ${ }^{-} 1.2^{\circ} \mathrm{F}$, Friday's low temperature was ${ }^{-} 2.7^{\circ} \mathrm{F}$, and Saturday's low temperature was $0.5^{\circ} \mathrm{F}$. The average low temperature for the week was ${ }^{-} 1.5^{\circ}$. How many of these days had low temperatures less than the average low temperature for the week?
\qquad
15. Matifnatical (4) Use Symbols Write a comparison using $<$ or $>$ to show the relationship between an elevation of ${ }^{-} 12 \frac{1}{2} \mathrm{ft}$ and an elevation of ${ }^{-} 16 \frac{5}{8} \mathrm{ft}$.

Problem Solving • Applications

Elevations, in miles, are given for the lowest points below sea level for 4 bodies of water. Use the table for 16-19.
16. The lowest point of which has the greater elevation, the Arctic Ocean or Lake Tanganyika?
17. Which has a lower elevation, the lowest point of Lake Superior or a point at an elevation of $-\frac{2}{5} \mathrm{mi}$?
\qquad
18. List the elevations in order from least to greatest.
\qquad

19. THINKSMARIER

A shipwreck is found at an elevation of ${ }^{-} 0.75$ mile. In which bodies of water could the shipwreck have been found?
20. THINKSMARTER Circle $<,>$, or $=$.

20a. $-\frac{3}{5}$

20b. $-\frac{2}{5}$

20c. ${ }^{-6.5}$

${ }^{-} 4.2$

20d. $-2.4 \begin{aligned} & \quad \\ & > \\ & > \\ & =\end{aligned}-3.7$
\qquad

(V) Mid-Chapter Checkpoint

Vogabulary

Choose the best term from the box to complete the sentence.

1. Any number that can be written as $\frac{a}{b}$, where a and b are integers and $b \neq 0$ is called a(n) \qquad . (p. 109)

Vocabulary
2. The set of whole numbers and their opposites is the set of
\qquad . (p. 101)

Goncepts and Skills

Write the opposite of the integer. (6.Ns.6a)
3. ${ }^{-} 72$
4. 0
$-\quad \mid$
5. ${ }^{-} 31$

Name the integer that represents the situation, and tell what 0 represents in that situation. (6.Ns.5)

Situation	Integer	
7. Greg scored 278 points during his turn in the video game.		
8. The temperature was 8 degrees below zero.		

Compare the numbers. Write $<$ or $>$. (6.Ns.7a)
9. 3

12. $\frac{1}{3} \bigcirc-\frac{1}{2}$
10.

13. ${ }^{-} 3.1$

4.3
11.
 -6
14. $1 \frac{3}{4} \bigcirc-2 \frac{1}{2}$

16. $0,{ }^{-} 3,1$
\qquad $<$ \qquad $<$ \qquad
19. $\frac{2}{3}, \frac{-1}{4}, \frac{5}{12}$
\qquad $<$ \qquad $<$
\qquad

Order the numbers. (6.Ns.7a)
15. $5,{ }^{-} 2,-8$
\qquad $<$ \qquad $<$ \qquad
18. $2.5,{ }^{-} 1.7,{ }^{-} 4.3$
\qquad $<$ \qquad $<$ \qquad
$<$ -
17. ${ }^{-} 7,{ }^{-} 6,{ }^{-} 11$
\qquad $>$ \qquad $>$ \qquad
20. ${ }^{-} 5.2,{ }^{-} 3.8,{ }^{-} 9.4$
\qquad $>$ \qquad $>$ \qquad
21. Judy is scuba diving at ${ }^{-} 7$ meters, Nelda is scuba diving at ${ }^{-} 9$ meters, and Rod is scuba diving at ${ }^{-} 3$ meters. List the divers in order from the deepest diver to the diver who is closest to the surface. (6.Ns.7b)
22. A football team gains 8 yards on their first play. They lose 12 yards on the next play. What two integers represent the two plays? (6.Ns.5)
23. The player who scores the closest to 0 points wins the game. The scores of four players are given in the table. Who won the game? (6.Ns.7b)

Game Scores	
Player	Points
Myra	-1.93
Amari	$-1 \frac{2}{3}$
Justine	-1.8
Donovan	${ }^{-1} \frac{1}{2}$

24. Which point on the graph represents ${ }^{-} 3_{\frac{3}{4}}$? (6.Ns.6c)

Name

\qquad

Absolute Value

Essential Question How can you find and interpret the absolute value of rational numbers?

The absolute value of a number is the number's distance from 0 on a number line. The absolute value of ${ }^{-} 3$ is 3 .

The absolute value of ${ }^{-} 3$ is written symbolically as $\left.\right|^{-} 3 \mid$.

Unlock the Problem

In 1934, a cargo ship called the Mohican sank off the coast of Florida. Divers today can visit the ship at an elevation of ${ }^{-} 32$ feet. Use a number line to find |- $32 \mid$.

0
Graph ${ }^{-}$32. Then find its absolute value.
Graph -32 on the number line.
Think: The distance from 0 to the point I graphed
is \qquad units.

So, $\left.\right|^{-} 32 \mid=$ \qquad .

The Number System6.NS.7c MATHEMATICAL PRACTICES MP.2, MP.3, MP.4, MP. 8

Math Idea

Since distance can never be negative, the absolute value of a number can never be negative.

Mathematical Practices

Compare the absolute values of two numbers that are opposites. Explain your reasoning.

1. The depth of a diver is her distance below sea level.

Because depth represents a distance, it is never negative.
Find the depth of a diver visiting the Mohican, and explain how her depth is related to the ship's elevation of ${ }^{-} 32 \mathrm{ft}$.
\qquad
\qquad
2. Explain how the expression $\left.\right|^{-} 32 \mid$ relates to the diver's depth.

You can find the absolute values of decimals, fractions, and other rational numbers just as you found the absolute values of integers.

(1) Example 1

A food scientist tested a new dog food on five dogs. Each dog's weight was monitored during the course of the test. The results are shown in the table. Positive values indicate weight gains in pounds. Negative values indicate weight losses in pounds.

Graph the weight changes on the number line. Then find their absolute values.

Think: The distance from 0 to the point I graphed is $\frac{3}{4} . \quad\left|\frac{3}{4}\right|=\frac{3}{4}$

$$
\left|-\frac{5}{8}\right|=\ldots \quad\left|-1 \frac{7}{16}\right|=\ldots \quad\left|2 \frac{1}{8}\right|=\quad\left|-\frac{3}{8}\right|=
$$

Food Test Results	
Name	Weight Change (lb)
Buck	$\frac{3}{4}$
Goldie	$-\frac{5}{8}$
Mackerel	$-1 \frac{7}{16}$
Paloma	$2 \frac{1}{8}$
Spike	$-\frac{3}{8}$

3. Mafinwical (4) Interpret a Result Explain how the absolute values of the positive and negative weight changes relate to the starting weights of the dogs.
\qquad
\qquad
\qquad
(1) Example 2 Find all integers with an absolute value of 7 .

Think: The distance from 0 to integers with an absolute value of 7 is \qquad units. Graph integers located 7 units from 0 on the number line.
\qquad $\mid=7$ and \mid \qquad $\mid=7$

So, both \qquad and \qquad have an absolute value of 7 .
4.

Use Counterexamples Paula says that there are always two numbers that have a given absolute value. Is she correct? Explain.
\qquad

Share and Show

Find the absolute value.

1. $\left.\right|^{-} 2 \mid \quad$ Graph $^{-} 2$ on the number line.
${ }^{-} 2$ is __ units from 0 .

$\left.\right|^{-} 2 \mid=$ \qquad
2. $|6|$

3. $\left.\right|^{-} 11 \mid$

4. $|9|$
5. $\left.\right|^{-} 15 \mid$

On Your Own

Find the absolute value.
9. $\left|-\frac{2}{3}\right|$
9.
10. $\left.\right|^{-6} 69 \mid$
11. $\left|-5 \frac{7}{8}\right|$
12. 13

13. $\frac{5}{6}$
$\xrightarrow{ }$
14. 14.03
15. 0.59
16. $3 \frac{1}{7}$

7. $|-37|$
8. $|1.8|$
Find all numbers with the given absolute value.
8. $|1.8|$
\qquad

MATHEMATCAL 2 Use Reasoning Algebra Find the missing number or numbers to
PRACICE make the statement true.
17. $|\square|=10$
18.
$|\square|=1.78$
19. $\square \mid=0$
20. $|\square|=\frac{15}{16}$
21. GПDEEPER Find all of the integers whose absolute value is less than $\left.\right|^{-} 4 \mid$.

Unlock the Problem

22. The Blue Ridge Trail starts at Park Headquarters in Big Bear Park and goes up the mountain. The Green Creek Trail starts at Park Headquarters and goes down the mountain. The table gives elevations of various points of interest in relation to Park Headquarters. How many points of interest are less than 1 kilometer above or below Park Headquarters?

Point of Interest	Elevation Compared to Park Headquarters (km)
A	1.9
B	1.1
C	0.7
D	0.3
E	-0.2
F	-0.5
G	-0.9
H	-1.6

a. How can you find how far above or below Park Headquarters a given point of interest is located?
\qquad
\qquad
b. How can you find the number of points of interest that are less than 1 km above or below Park Headquarters?
\qquad
\qquad
\qquad
23.

Use Reasoning Name a rational number that can replace \square to make both statements true.

$|\square|<\left.\right|^{-} 3 \mid$
c. Find how far above or below Park Headquarters each point of interest is located.
\qquad
\qquad
\qquad
\qquad
d. How many points of interest are less than 1 kilometer above or below Park Headquarters?
24. THINKSMARTER Laila said $|4|$ equals | ${ }^{-} 4 \mid$. Is Laila correct? Use the number line and words to support your answer.

Lesson 3.6

Name

\qquad

Compare Absolute Values

Essential Question How can you interpret comparisons involving absolute values?

The Number System6.NS.7d

MATHEMATICAL PRACTICES MP.1, MP. 2

Unlock the Problem

(1) Activity

Carmen is taking a one-day scuba diving class. Completion of the class will allow her to explore the ocean at elevations that are less than ${ }^{-} 25$ feet. Use absolute value to describe the depths to which Carmen will be able to dive after taking the class.

- Graph an elevation of ${ }^{-} 25$ feet on the number line.
- List three elevations less than ${ }^{-} 25$ feet. Then graph these elevations.
- Elevations less than ${ }^{-} 25$ feet are found \qquad ${ }^{-} 25$ feet.
- Because depth represents a distance below sea level, it is never negative. In this situation, $\left.\right|^{-} 25 \mid \mathrm{ft}$ represents a depth of \qquad feet.
- Write each elevation as a depth.

Elevation (ft)	Depth (ft)
-30	
-35	
-40	

Elevation (feet)
\qquad

1. Compare a ${ }^{-} 175$-foot elevation and a 175 -foot depth. Explain your reasoning.

(1) Example cole has an online account for buying video games.

His account balance has always been greater than - $\$ 16$. Use absolute value to describe Cole's account balance as a debt.

STEP 1 Graph an account balance of ${ }^{-} \$ 16$ on the number line.
Account balance (\$)

STEP 2 List three account balances greater than ${ }^{-} \$ 16$. Then graph these account balances on the number line above.
\qquad
Balances greater than ${ }^{-} \$ 16$ are found to the \qquad of ${ }^{-} \$ 16$.

STEP 3 Express an account balance of ${ }^{-} \$ 16$ as a debt.

In this situation | ${ }^{-} \$ 16 \mid$ represents a debt of \qquad .

STEP 4 Complete the table.

Balances Greater Than $\$ 16$	Debt
$-\$ 15$	
$-\$ 14$	
	$\$ 13$

Each debt in the table is \qquad than \$16.

Cole's account balance is always greater than ${ }^{-} \$ 16$, so his debt
\qquad than \$16.

The temperature at the North Pole was ${ }^{-} 35^{\circ} \mathrm{F}$ at noon. Explain how you can use absolute value to express a temperature of ${ }^{-3} 5^{\circ}$.
2. Explain how you can describe a debt as an absolute value.
3. Matingical (1) Describe List three numbers greater than $\left.\right|^{-} 28 \mid$. Describe how you determined your answer.
\qquad
\qquad

Share and Show

1. On Monday, Allie's bank account balance was -\$24. On Tuesday, her account balance was less than it was on Monday. Use absolute value to describe Allie's balance on Tuesday as a debt.

In this situation $\left.\right|^{-} \$ 24 \mid$ represents a debt
of \qquad .

On Tuesday, Allie had a debt of \qquad than $\$ 24$.

On Your Own

3. GDDEEPER One of the cats shown in the table is a tabby. The tabby had a decrease in weight of more than 3.3 ounces. Which cat is the tabby?
\qquad
Compare. Write $<,>$, or $=$.
4. ${ }^{-} 8 \bigcirc|-8|$
5. 15

${ }^{-} 14 \mid$
6. 13

7. 34

8. THINKSMARTER Write the values in order from least to greatest.

$$
|1|
$$

Connect rol Reading

Compare and Contrast

When you compare and contrast, you look for ways that two or more subjects are alike (compare) and ways they are different (contrast). This helps you to discover information about each subject that you might not have known otherwise. As you read the following passage, think about how the main topics are alike and how they are different.

Trevor mows lawns after school to raise money for a new mountain bike. Last week, it rained every day, and he couldn't work. While waiting for better weather, he spent some of his savings on lawnmower repairs. As a result, his savings balance changed by ${ }^{-} \$ 45$. This week, the weather was better, and Trevor returned to work. His savings balance changed by ${ }^{+} \$ 45$ this week.
11. The passage has two main parts. Describe them.
\qquad
\qquad
\qquad
12. Describe the two changes in Trevor's savings balance.
\qquad
\qquad
13. Marizwaical (2) Reason Quantitatively Compare the two changes in Trevor's savings balance. How are they alike?
\qquad
\qquad
14. THINKSMARIER Contrast the two changes in Trevor's savings balance. How are they different?
\qquad
\qquad
\qquad

The Number System6.NS.6c MATHEMATICAL PRACTICES MP.6, MP. 8

7 Unlock the Problem

A screen in a video game shows a coordinate plane. The points P, Q, R, and S represent treasure chests. Write the ordered pair for each treasure chest's

- If a point is to the left of the y-axis, is its x-coordinate positive or negative? location.
(Find the coordinates of each point.
To find the coordinates of point P, start at the origin.
To find the x-coordinate, move right Move 2 units to the \qquad . (positive) or left (negative).

To find the y-coordinate, move up
Move \qquad units up. (positive) or down (negative).

Point P is located at (${ }^{-} 2$, \qquad).

Point Q is located at (\qquad , \qquad).

Point R is located at (\qquad , \qquad).

Point S is located at (\qquad , \qquad).

Rational Numbers and the Coordinate Plane

Essential Question How do you plot ordered pairs of rational numbers on a coordinate plane?

A coordinate plane is a plane formed by a horizontal number line called the x-axis that intersects a vertical number line called the y-axis. The axes intersect at 0 on both number lines. The point where the axes intersect is the origin.

An ordered pair is a pair of numbers, such as (3,2), that can be used to locate a point on the coordinate plane. The first number is the \boldsymbol{x}-coordinate; it tells the distance to move left or right from the origin. The second number is the \boldsymbol{y}-coordinate; it tells the distance to move up or down from the origin. The ordered pair for the origin is $(0,0)$.
1.

8 Draw Conclusions Make a conjecture about the x-coordinate of any point that lies on the y-axis.

2. Explain why $(2,4)$ represents a different location than $(4,2)$.

1. Example Graph and label the point on the coordinate plane.

(A) A(2, $\left.-\frac{1}{2}\right)$

Start at the origin.

The x-coordinate is positive.
Move \qquad units to the right.

The y-coordinate is negative. Move $\frac{1}{2}$ unit \qquad .

Plot the point and label it A.
(B) $B(-0.5,0)$

Start at the origin.

The x-coordinate is \qquad . Move \qquad unit to the \qquad .

The y-coordinate is 0 .
The point lies on the \qquad -axis.

Plot the point and label it B.

C $c\left(22_{2}^{1}, \frac{3}{4}\right)$

Start at the origin.

Move \qquad units to the \qquad .

Move \qquad unit \qquad .

Plot the point and label it C.

(D) $D\left({ }^{-1.25},{ }^{-1.75}\right)$

Start at the origin.
Move \qquad units to the \qquad .

Move \qquad units

Share and Show

1. Write the ordered pair for point J.

Start at the origin. Move \qquad units to the \qquad and \qquad units \qquad .

The ordered pair is \qquad .

Write the ordered pair for the point.

2. K
3. L

4. M

Describe the location of a point that has a positive x-coordinate and a negative y-coordinate.
\qquad
Graph and label the point on the coordinate plane.
5. $P(-2.5,2)$
6. $Q\left(-2, \frac{1}{4}\right)$
7. $R(0,1.5)$
8. $S\left(-1, \frac{-1}{2}\right)$
9. $T\left(1 \frac{1}{2},-2\right)$
10. $U(0.75,1.25)$
11. $V(-0.5,0)$
12. $W(2,0)$
13. $X(0,-2)$

On Your Own

Write the ordered pair for the point. Give approximate coordinates when necessary.
14. A
15. B
\qquad
17. D
18. E
20. G
21. H

16. C

Explain how graphing $(3,2)$ is similar to and different from graphing ($3,{ }^{-} 2$).
19. F
22. J
\qquad

Graph and label the point on the coordinate plane.
23. $M\left({ }^{-} 4,0\right)$
24. $N(2,2)$
25. $P(-3,3)$
26. $Q\left(0,2 \frac{1}{2}\right)$
27. $R(0.5,0.5)$
28. $S\left(-5, \frac{1}{2}\right)$
29. $T(0,0)$
30. $U\left(3 \frac{1}{2}, 0\right)$
31. $V(-2,-4)$
 and below the x-axis. What can you conclude about the coordinates of the point?

Problem Solving • Applications

Many of the streets in downtown Philadelphia can be modeled by a coordinate plane, as shown on the map. Each unit on the map represents one block.
Use the map for 33 and 34.
33. G■DEEPER Anita works at the Historical Society. She leaves the building and walks 3 blocks north to a restaurant. What ordered pair represents the restaurant?

34. IHINKSMARTER Pose a Problem Write and solve
a new problem that uses a location on the map.
\qquad
\qquad
\qquad
35. THINKSMARTER The points A, B, C, and D on a coordinate plane can be connected to form a rectangle. Point A is located at $(2,0)$, point B is located at $(6,0)$, and point C is located at $(6,2.5)$. Write the ordered pair for point D.
36. Mapin waical (7) Identify Relationships Explain how you can tell that the line segment connecting two points is vertical without graphing the points.

Name

The Number System 6.NS.6b mathematical practices MP.4, MP. 7

Unlock the Problem

The point $(-3,4)$ represents the location of a bookstore on a map of a shopping mall. Identify the quadrant where the point is located.

Find the quadrant that contains (${ }^{-} 3,4$).

- What is the x-coordinate of the point?
- What is the y-coordinate of the point? \qquad
\qquad -

STEP 1 Examine the x-coordinate.
Think: The x-coordinate is \qquad , so the point is \qquad units to the \qquad of the origin.

Since the point is to the left of the origin, it must be located in either Quadrant \qquad or Quadrant \qquad .

STEP 2 Examine the y-coordinate.
Think: The y-coordinate is \qquad , so the point is \qquad units \qquad from the origin.

Since the point is above the origin, it must be located in Quadrant \qquad .

Check by graphing the point ($-3,4$) on the coordinate plane.
So, the point representing the bookstore is located in
 Quadrant \qquad .

- Mapificilcal (7) Look for Structure Look at the signs of the coordinates of points in Quadrants I and II. What do they have in common? How are they different?
\qquad

A figure has line symmetry if it can be folded about a line so that its two parts match exactly. If you cut out the isosceles triangle at the right and fold it along the dashed line, the two parts would match. A line that divides a figure into two halves that are reflections of each other is called a line of symmetry.

You can use the idea of line symmetry to analyze the relationship
 between points such as $\left(5,{ }^{-} 1\right)$ and $\left({ }^{-} 5,{ }^{-} 1\right)$ whose coordinates differ only in their signs.

(1) Activity

- Identify the lines of symmetry in the rectangle.

The \qquad -axis is a horizontal line of symmetry, and the \qquad -axis is a vertical line of symmetry.

- Look at points A and B. What do you notice about the x-coordinates? What do you notice about the y-coordinates?
\qquad
\qquad

- Point B is a reflection of point A across which axis? How do you know?
\qquad
\qquad
- Look at points A and D. What do you notice about the x-coordinates? What do you notice about the y-coordinates?
\qquad
- Point D is a reflection of point A across which axis? How do you know?
\qquad
\qquad
- Which point is a reflection of point B across the x-axis and then the y-axis?
\qquad
- Compare the coordinates of point B with the coordinates of point D.
\qquad
\qquad

Share and Show

Identify the quadrant where the point is located.

1. $\left(2,{ }^{-} 5\right)$

To graph the point, first move to the \qquad from the origin.

Then move \qquad .

Quadrant: \qquad
3. $(-6,-2)$

Quadrant: \qquad
4. $\left({ }^{-} 7,3\right)$

Quadrant: \qquad
5. $(8,8)$

Quadrant: \qquad
2. $(4,1)$

Quadrant: \qquad
6. $\left(1,{ }^{-} 1\right)$

Quadrant: \qquad

The two points are reflections of each other across the \boldsymbol{x} - or \boldsymbol{y}-axis. Identify the axis.
8. $(4,4)$ and $(4,-4)$
axis: \qquad

On Your Own

Identify the quadrant where the point is located.
11. $(-8,-9)$

Quadrant:
\square 12. $(12,1)$

Quadrant:
\qquad
13. $\left({ }^{-} 13,10\right)$

Quadrant: \qquad
10. $(8,1)$ and $(-8,1)$
axis: \qquad

Mathematical Practices
Explain how you can identify the quadrant where a given point is located.
14. $(5,-20)$

Quadrant: \qquad

The two points are reflections of each other across the \boldsymbol{x} - or \boldsymbol{y}-axis. Identify the axis.
15. $(-9,-10)$ and ($-9,10)$
axis: \qquad
16. $\left(21,{ }^{-} 31\right)$ and $(21,31)$
axis: \qquad axis: \qquad

Give the reflection of the point across the given axis.
18. $\left({ }^{-} 7,{ }^{-} 7\right), y$-axis
19. $\left({ }^{-} 15,18\right), x$-axis
${ }^{1}$
20. (11,9), x-axis

Problem Solving • Applications (acd

Use the map of Gridville for 21-23.

21. GDDEEPER The library's location has the same y-coordinate as City Hall but the opposite x-coordinate. Across which street could you reflect City Hall's location to find the library's location?
22. THINKSMARTER Each unit on the map represents 1 mile. Gregory leaves his house at (${ }^{-} 5,4$), cycles 4 miles east, 6 miles south, and 1 mile west. In which quadrant of the city is he now?

23. The bus station has the same x-coordinate as City Hall but the opposite y-coordinate. In which quadrant of the city is the bus station located?
24. Маमझincice (1) Describe Relationships Describe the relationship
between the locations of the points $(2,5)$ and $(2,-5)$ on the coordinate plane.
\qquad
\qquad
25. IHINKSMARTER Identify the quadrant where each point is located. Write each point in the correct box.
$\left({ }^{-} 1,3\right)$
$\left(4,{ }^{-} 2\right)$
$\left({ }^{-} 3,{ }^{-} 2\right)$
$\left(1,{ }^{-} 3\right)$
$\left({ }^{-} 1,2\right)$
$(3,4)$

Quadrant I	Quadrant II	Quadrant III	Quadrant IV

\qquad

Distance on the Coordinate Plane

Essential Question How can you find the distance between two points that lie on a horizontal or vertical line on a coordinate plane?

Unlock the Problem

The map of Foggy Mountain Park is marked on a coordinate plane in units of 1 mile. There are two campgrounds in the park. Camp 1 is located at $\left({ }^{-} 4,3\right)$. Camp 2 is located at $(5,3)$. How far is it from Camp 1 to Camp 2?

Find the distance from Camp 1 to Camp 2.
STEP 1 Graph the points.

Think: The points have the same \qquad -coordinate, so they are located on a horizontal line.

STEP 2 Find the horizontal distance from Camp 1 to the y-axis.

Find the distance between the x-coordinates of the point (\qquad $3)$ and the point (0,3).

The distance of a number from 0 is the \qquad of the number.

The distance from $(-4,3)$ to $(0,3)$ is $\left.\right|^{-} 4 \mid=$ \qquad miles.

STEP 3 Find the horizontal distance from Camp 2 to the y-axis.

ERROR Alert

Remember that distance is never negative. You can find the distance between a negative number and 0 by using absolute value.

So, the distance from Camp 1 to Camp 2 is \qquad miles.

1. Matinnaical (6) Explain how you could use absolute value to find the distance from Camp 2 to the Eagle Nest. What is the distance?

In the problem on the previous page, you used absolute value to find the distance between points in different quadrants. You can also use absolute value to find the distance between points in the same quadrant.

(1. Example Find the distance between the pair of

 points on the coordinate plane.
(A) points A and B

STEP 1 Look at the coordinates of the points.
The \qquad -coordinates of the points are the same, so the points lie on a horizontal line.

Think of the horizontal line passing through A and B as a number line.

STEP 2 Find the distances of A and B from 0 .
Distance of A from 0 :

$|-9|=$ \qquad units Distance of B from 0 :
\qquad |= \qquad units

STEP 3 Subtract to find the distance from A to B : \qquad - \qquad $=$ \qquad units.

So, the distance from A to B is \qquad units.
(B) points C and D

STEP 1 Look at the coordinates of the points.
The \qquad -coordinates of the points are the same, so the points lie on a vertical line.

Think of the vertical line passing through C and D as a number line.
STEP 2 Find the distances of C and D from 0 on the vertical number line. Distance of C from 0: 10 |= \qquad units

Distance of D from 0 : | \qquad | = \qquad units

STEP 3 Subtract to find the distance from C to D :
\qquad - \qquad $=$ \qquad units.

So, the distance between C and D is \qquad units.
\qquad

Share and Show

MATH
 BOARD

Find the distance between the pair of points.

1. $\left({ }^{-} 3,1\right)$ and $(2,1)$

Horizontal distance from $(-3,1)$ to y-axis:
\qquad
\qquad
Horizontal distance from $(2,1)$ to y-axis: \qquad | = \qquad

2. $(2,1)$ and $(2,-4)$
3. $(2,-4)$ and $(4,-4)$
4. $(-3,3)$ and $(-3,1)$

On Your Own

Practice: Copy and Solve Graph the pair of points. Then find the distance between them.
5. $(0,5)$ and $(0,-5)$
\qquad
© Houghton Mifflin Harcourt Publishing Company
8. $(-7,3)$ and $(5,3)$
\qquad
6. $(1,1)$ and $(1,-3)$
\qquad
9. $(3,-6)$ and $(3,-10)$
\qquad
7. $\left({ }^{-} 2,-5\right)$ and $\left(-2,{ }^{-} 1\right)$
10. $(8,0)$ and $(8,-8)$
\qquad

Mastimagical (2) Use Reasoning Algebra Write the coordinates of a point that is the given distance from the given point.

11. 4 units from $(3,5)$
$(3$,
12. 6 units from $(2,1)$
$(, 1)$
13. 7 units from $(-4,-1)$
$(-4$,
Chapter 3 - Lesson 9

Problem Solving • Applications

An archaeologist is digging at an ancient city. The map shows the locations of several important finds. Each unit represents 1 kilometer. Use the map for 14-18.
14. How far is it from the stadium to the statue?
15. GロDEEPER The archaeologist drives 3 km south from the palace. How far is he from the market?
\qquad
16. The archaeologist's campsite is located at $\left({ }^{-} 9,-3\right)$. How far is it from the campsite to the market?
\qquad
17. IHINKSMARTER The archaeologist rode east on a donkey from the Great Gate, at (${ }^{-} 11,4$), to the Royal Road. Then he rode south to the palace. How far did the archaeologist ride?

\qquad
18. Marifmaical 8 Generalize Explain how you could find the distance from the palace to any point on the Imperial Highway.

Archaeological Site

19. THINKSMARTER Select the pairs of points that have a distance of 10 between them. Mark all that apply.

O $(3,-6)$ and $(3,4)$
O $\left({ }^{-} 3,8\right)$ and $(7,8)$
O $(4,5)$ and $(6,5)$
O $(4,1)$ and $(4,11)$
\qquad

Problem Solving• The Coordinate Plane

Essential Question How can you use the strategy draw a diagram to help you solve a problem on the coordinate plane?

The Number System 6.NS. 8

MATHEMATICAL PRACTICES MP.1, MP.5, MP. 6

Unlock the Problem

An artist is using an illustration program. The program uses a coordinate plane, with the origin $(0,0)$ located at the center of the computer screen. The artist draws a dinosaur centered on the point $(4,6)$. Then she moves it 10 units to the left and 12 units down. What ordered pair represents the dinosaur's new location?

Use the graphic organizer to help you solve the problem.

Read the Problem

What do I need to find?

I need to find the
\qquad for the dinosaur's new location.

What information do I need to use?

The dinosaur started at the point \qquad . Then the artist moved it \qquad to
the left and \qquad down.

How will I use the information?

I can draw a diagram to graph the information on a
\qquad .

Solve the Problem

- Start by graphing and labeling the point \qquad .
- From this point, count \qquad to the left.
- Then count \qquad down.
- Graph and label the point at this location, and write its coordinates: \qquad .

So, the dinosaur's new location is \qquad .

(1) Try Another Problem

Tyrone and Kyra both walk home from school. Kyra walks 4 blocks east and 3 blocks south to get home. Tyrone lives 3 blocks west and 3 blocks south of the school. How far apart are Tyrone's and Kyra's homes?

Use the graphic organizer to help you solve the problem.

So, it is \qquad blocks from Tyrone's house to Kyra's house.
MATHEMATCAL (5) Use Appropriate Tools Describe the advantages of
using a coordinate plane to solve a problem like the one above.

Mathematical Practices

Explain how you know that your answer is reasonable.

Name

Share and Show

MATH BOARD

1. GПDEEPER

Busby County is rectangular. A map of the county on a coordinate plane shows the vertices of the county at $(-5,8),(8,8),\left(8,{ }^{-} 10\right)$, and $\left({ }^{-} 5,{ }^{-} 10\right)$. Each unit on the map represents 1 mile. What is the county's perimeter?
3. On a coordinate map of Melville, a restaurant is located at ($-9,-5$). A laundry business is located 3 units to the left of the restaurant on the map. What are the map coordinates of the laundry business?

Problem Solving • Applications

5.

Martimgical (1) Make Sense of Problems Diana left her campsite at $(2,6)$ on a map of Big Trees Park, hiked to Redwood Grove at $\left({ }^{-} 5,6\right)$, and continued on to Bass Lake at $\left({ }^{-} 5,{ }^{-} 3\right)$. Each unit on the map represents 1 kilometer. How far did Diana hike?
6. THINKSMARTER Hector left his house at $(-6,13)$ on a map of Coleville and walked to the zoo at ($-6,2$). From there he walked east to his friend's house. He walked a total distance of 25 blocks. If each unit on the map represents one block, what are the coordinates of Hector's friend's house?

7. G■DEEPER In November, the price of a cell phone was double the price in March. In December, the price was $\$ 57$, which was $\$ 29$ less than the price in November. What was the price of the cell phone in March?
\qquad
Personal Math Trainer
8. THINKSMARIER A map of the city holding the Olympics is placed on a coordinate plane. Olympic Stadium is located at the origin of the map. Each unit on the map represents 2 miles.

Graph the locations of four other Olympic buildings.
Max said the distance between the Aquatics Center and the Olympic Village is greater than the distance between the Media Center and the Basketball Arena. Do you agree with Max? Use words and numbers to support your answer.

Building	Location
Olympic Village	$(-8,4)$
Aquatics Center	$(8,4)$
Media Center	$\left(4,{ }^{-} 5\right)$
Basketball Arena	$\left({ }^{-} 8,{ }^{-} 5\right)$

\qquad
\qquad
\qquad

\qquad

(V) Chapter 3 Review/Test

1. For numbers la-1d, choose Yes or No to indicate whether the situation can be represented by a negative number.

1a. Sherri lost 100 points answeringO No a question wrong.

1b. The peak of a mountain is
Yes 2,000 feet above sea level.

1c. Yong paid $\$ 25$ for a parking
O Yes
○ No ticket.

1d. A puppy gained 3 pounds.O No
2. The low weekday temperatures for a city are shown.

Low Temperatures	
Day	Low Temperature (${ }^{\circ} \mathrm{F}$)
Monday	-5
Tuesday	-3
Wednesday	2
Thursday	-7
Friday	3

Part A

Using the information in the table, order the temperatures from lowest to highest.

Part B

Explain how to use a vertical number line to determine the order.
\square
3. For numbers 3a-3e, choose Yes or No to indicate whether the number is between ${ }^{-} 1$ and ${ }^{-} 2$.

3a. $-\frac{4}{5}$
\bigcirc Yes
\bigcirc No
3b. $1 \frac{2}{3}$
\bigcirc Yes
No

3c. ${ }^{-} 1.3$
\bigcirc Yes
3d. $\quad-1 \frac{1}{4}$
\bigcirc Yes
3e. $-2 \frac{1}{10}$
\bigcirc Yes
4. Compare $\frac{-1}{5}$ and ${ }^{-} 0.9$. Use numbers and words to explain your answer.
\square
5. Jeandre said $|3|$ equals $\left.\right|^{-} 3 \mid$. Is Jeandre correct? Use a number line and words to support your answer.
\square
6. Write the values in order from least to greatest.

|2|
| $12 \mid$
|8|
7. For numbers 7a-7d, select True or False for each statement.
7a. The x-coordinate of any pointTrue
O False on the y-axis is 0 .
7b. Point $D\left({ }^{-} 2,1\right)$ is to the left of
True
\bigcirc False the y-axis and below the x-axis.
7c. The point where the axesTrueFalse intersect is the origin.
7 d . If both the x - and y-coordinatesTrueFalse are positive, the point is to the right of the y-axis and below the x-axis.

Name
8. Mia's house is located at point $(3,4)$ on a coordinate plane. The location of Keisha's house is the reflection of the location of Mia's house across the y-axis. In what quadrant is Keisha's house in?
\qquad
9. Points $A(3,8)$ and $B(-4,8)$ are located on a coordinate plane.

Graph the pair of points. Then find the distance between them. Use numbers and words to explain your answer.

10. The map shows the location J of Jose's house and the location F of the football field. Jose is going to go to Tyrell's house and then the two of them are going to go to the football field for practice.

Part A

Tyrell's house is located at point T, the reflection of point J across the y-axis. What are the coordinates of points T, J, and F ?

Part B

If each unit on the map represents 1 block, what was the distance Tyrell traveled to the football field and what was the distance Jose traveled to the football field? Use numbers and words to explain your answer.
\square
11. For numbers 11a-11d, choose Yes or No to indicate whether the situation could be represented by the integer ${ }^{+} 3$.

11a. A football team gains
O Yes
O No 3 yards on a play.

11b. A golfer's score is
Yes
O No 3 over par.

11c. A student answers a
Yes
○ No 3-point question correctly.

11d. A cat loses 3 pounds.
Yes
O No

Name
12. Jason used a map to record the elevations of five locations.

Elevations	
Location	Elevation (feet)
Nob Hill	5
Bear Creek	-18
Po Valley	-20
Fox Hill	8
Jax River	-3

Jason wrote the elevations in order from lowest to highest. Is Jason correct? Use words and numbers to explain why or why not. If Jason is incorrect, what is the correct order?

$$
{ }^{-} 3,5,8,{ }^{-18},{ }^{-} 20
$$

13. For numbers 13a-13d, select True or False for each statement.

13a. $\frac{1}{5}$ is between 0 and 1 .
O True
○ False
13b. $-2 \frac{2}{3}$ is between ${ }^{-} 1$ and $^{-} 2$.
O True
○ False
○ TrueFalse
13c. $-3 \frac{5}{8}$ is between ${ }^{-} 3$ and $^{-} 4$.
13d. $4 \frac{3}{4}$ is between 3 and 4 .
O TrueFalse
14. Choose $<,>$, or $=$.

14a. $0.25 \begin{aligned} & < \\ & > \\ & =\end{aligned}$
14c. $2 \frac{7}{8} \begin{aligned} & < \\ & > \\ & =\end{aligned}$
14b. $\begin{aligned} \frac{1}{3} & < \\ & > \\ & =\end{aligned}$
14d. $\begin{aligned} &-\frac{3}{4}< \\ &> \\ &= \\ &\end{aligned}$
15. Graph 4 and ${ }^{-} 4$ on the number line.

Tyler says both 4 and ${ }^{-} 4$ have an absolute value of 4 . Is Tyler correct? Use the number line and words to explain why or why not.
\square
16. Lindsay and Will have online accounts for buying music. Lindsay's account balance is ${ }^{-} \$ 20$ and Will's account balance is ${ }^{-} \$ 15$. Express each account balance as a debt and explain whose debt is greater.
\square
17. Explain how to graph points $A(-3,0), B(0,0)$, and $C(0,-3)$ on the coordinate plane. Then, explain how to graph point D, so that $A B C D$ is a square.

18. Point $A\left(2,{ }^{-} 3\right)$ is reflected across the x-axis to point B. Point B is reflected across the y-axis to point C. What are the coordinates of point C ? Use words and numbers to explain your answer.
\square

Grificalarea Rotios and Rotes

CRIIICAL AREA Connecting ratio and rate to whole number multiplication and division and using concepts of ratio and rate to solve problems

Project

Meet Me in St. Louis

Baseball teams, like the St. Louis Cardinals, record information about each player on the team. These statistics are used to describe a player's performance.

Get Started

A batting average is calculated from the ratio of a player's hits to the number of at bats. Batting averages are usually recorded as a decimal to the thousandths place. The table shows the batting results of three baseball players who received the Most Valuable Player award while playing for the St. Louis Cardinals. Write each batting ratio as a fraction. Then write the fraction as a decimal to the thousandths place and as a percent.

Important Facts

Player Name	Batting Results
Albert Pujols (2008)	187 hits in 524 at bats
Stan Musial (1948)	230 hits in 611 at bats
Rogers Hornsby (1925)	203 hits in 504 at bats

The players on a baseball team take their turns batting in the same order or sequence throughout a game. The manager sets the batting order. Suppose you are the manager of a team that includes Pujols, Musial, and Hornsby. What batting order would you use for those three players? Explain your answer.

\qquad
\qquad
\qquad
\qquad

Completed by

Show What You Know

Check your understanding of important skills.
Name \qquad

Multiply or Divide to Find Equivalent Fractions Multiply or divide to find two equivalent fractions for the given fraction.

1. $\frac{1}{2}$
2. $\frac{5}{6}$
3. $\frac{12}{18}$
$>$ Extend Patterns Write a description of the pattern. Then find the missing numbers.
4. 3, \qquad , 48, 192, 768, \qquad 5. $625,575,525$, \qquad , \qquad , 375

Multiply by 2-Digit Numbers Find the product.
6. 52
7. 14
$\begin{array}{r}\times 88 \\ \hline\end{array}$
8. 37
$\begin{array}{r} \\ \times 21 \\ \hline\end{array}$
9. 45
$\times 62$

The student council should have 1 representative for every 25 students. Be a Math Detective and determine which of these situations fits the description. Explain your answer.
a. 5 representatives for 100 students
b. 10 representatives for $\mathbf{2 5 0}$ students
c. 15 representatives for 300 students

Visualize It

Complete the bubble map with review words that are related to fractions.

Understand Vocabulary

Complete the sentences using the checked words.

1. A comparison of one number to another by division is a
2. \qquad are ratios that name the same comparison.
3. \qquad are fractions that name the same amount or part.
4. A ratio that compares quantities with different units is a
\qquad .
5. A \qquad is a rate that compares a quantity to 1 unit.
6. In an \qquad the first number is the x-coordinate and the second number is the y-coordinate.

Name

\qquad

Model Ratios

Essential Question How can you model ratios?

The drawing shows 5 blue squares and 1 red square. You can

Ratios and Proportional Relationships-6.RP. 1 mathematical practices MP.5, MP.7, MP. 8 compare the number of blue squares to the number of red squares by using a ratio. A ratio is a comparison of two quantities by division.

The ratio that compares blue squares to red squares is 5 to 1 .
The ratio 5 to 1 can also be written as 5:1.

Investigate

Materials \quad two-color counters
Julie makes 3 bracelets for every 1 bracelet Beth makes. Use ratios to compare the number of bracelets Julie makes to the number Beth makes.
A. Use red and yellow counters to model the ratio that compares the number of bracelets Julie makes to the number of bracelets Beth makes.

Think: Julie makes \qquad bracelets when Beth makes 1 bracelet.

The ratio is \qquad :1.
B. Model the ratio that shows the number of bracelets Julie makes when Beth makes 2 bracelets. Write the ratio and explain how you modeled it.
\qquad
\qquad
C. How could you change the model from Part B to show the number of bracelets Julie makes when Beth makes 3 bracelets? Write the ratio.

Draw Conclusions

1. Explain how you used counters to compare the number of
bracelets Julie makes to the number of bracelets Beth makes.
2. Мапमincircil 8 Generalize Describe a rule that you can use to find the
number of bracelets Julie makes when you know the number of bracelets
Beth makes.
3. THINKSMARIER How can you use counters to find how many bracelets

Beth makes if you know the number Julie makes? Explain and give an example.

Make Connections

You can use a table to compare quantities and write ratios.
A bakery uses 1 packing box for every 4 muffins. Draw a model and make a table to show the ratio of boxes to muffins.

STEP 1 Draw a model to show the ratio that
compares boxes to muffins.
Think: There is \qquad box for every \qquad muffins.

The ratio is \qquad : \qquad .

STEP 2 Complete the table to show the ratio of boxes to muffins.

Think: Each time the number of boxes increases by 1 , the number of muffins increases by \qquad .

What is the ratio of boxes to muffins when there are 2 boxes? \qquad

Write another ratio shown by the table. Explain what the ratio represents.

Describe the pattern you see in the table comparing the number of boxes to the number of muffins.

Name

Share and Show

MATH
BOARD

Write the ratio of yellow counters to red counters.
1.

2.

3. $3: 2$

Draw a model of the ratio.

4. $1: 5$
5. On the sixth-grade field trip, there are 8 students for every 1 adult. Complete the table to show the ratio of students to adults.

Students	8		24	
Adults	1	2		4

7. THINKSMARIER Zena adds 4 cups flour for every 3 cups of sugar in her recipe. Draw a model that compares cups of flour to cups of sugar.

Connect to Reading

Draw Conclusions

The reading skill draw conclusions can help you analyze and make sense of information.

Hikers take trail mix as a snack on long hikes because it is tasty, nutritious, and easy to carry. There are many different recipes for trail mix, but it is usually made from different combinations of dried fruit, raisins, seeds, and nuts. Tanner and his dad make trail mix that has 1 cup of raisins for every 3 cups of sunflower seeds.

8. Mapinanical (4) Model Mathematics Explain how you could model the ratio that compares cups of raisins to cups of sunflower seeds when Tanner uses 2 cups of raisins.
\qquad
\qquad
\qquad
\qquad
The table shows the ratio of cups of raisins to cups of sunflower seeds for different amounts of trail mix. Model each ratio as you complete the table.

Trail Mix					
Raisins (cups)	1	2	3	4	5
Sunflower Seeds (cups)	3				

9. IHINKSMARTER Describe the pattern you see in the table.

10. Martinaical 8 Draw Conclusions What conclusion can Tanner draw from this pattern?
11. F■DEEPER What is the ratio of cups of sunflower seeds to cups of trail mix when Tanner uses 4 cups of raisins?

Ratios and Rates

Essential Question How do you write ratios and rates?

Unlock the Problem

A bird rescue group is caring for 3 eagles, 2 hawks, and 5 owls in their rescue center.

You can compare the numbers of different types of birds using ratios. There are three ways to write the ratio of owls to eagles in the rescue center.

Using words As a fraction With a colon

5 to 3
$\frac{5}{3}$
5:3

Ratios can be written to compare a part to a part, a part to a whole, or a whole to a part.

Write each ratio using words, as a fraction, and with a colon.

A Owls to hawks
\qquad to \qquad

\square	:___ Part to part

B Eagles to total birds in the rescue center

C Total birds in the rescue center to hawks

Whole to part

1. The ratio of owls to total number of birds is $5: 10$. Explain what this ratio means.

@) Example A restaurant sells veggie burgers at the rate of \$4

for 1 burger. What rate gives the cost of 5 veggie burgers? Write the rate for 5 burgers using words, as a fraction, and with a colon.

A rate is a ratio that compares two quantities that have different units of measure.

A unit rate is a rate that makes a comparison to 1 unit. The unit rate for cost per veggie burger is $\$ 4$ to 1 burger or $\frac{\$ 4}{1 \text { burger }}$.

Complete the table to find the rate that gives the cost of 5 veggie burgers.

Think: 1 veggie burger costs $\$ 4$, so 2 veggie burgers cost $\$ 4+$ \qquad , or $2 \times$ \qquad .

	Unit Rate	$2 \cdot \$ 4$	$3 \cdot \$ 4$	- \$4	- \$4		
			\downarrow	\downarrow			
Cost	\$4	\$8					
Veggie Burgers	1	2	3	4			
\uparrow \uparrow \uparrow \uparrow $2 \cdot 1$ $\cdot 1$ $4 \cdot 1$ $\cdot 1$							

The table shows that 5 veggie burgers cost \qquad .

So, the rate that gives the cost for 5 veggie burgers is
\$ \qquad to \qquad burgers, $\xlongequal[\text { burgers }]{\$}$, or $\$$ \qquad : \qquad burgers.

Describe two other ways to say "\$4 per burger".

Try This! Write the rate in three different ways.

(A) The rate that gives the cost of 3 veggie burgers
\qquad
2. Explain why the ratio $\frac{\$ 4}{1 \text { burger }}$ is a unit rate.
3. Mantimaical (5) Use Patterns Explain the pattern you see in the table in the Example.
\qquad
\qquad

Name

Share and Show

MATH

MOARD

1. Write the ratio of the number of red bars to blue stars.

Write the ratio in two different ways.

2. 8 to 16
3. $\frac{4}{24}$
4. $1: 3$
5. 7 to 9
6. Marilyn saves $\$ 15$ per week. Complete the table to find the rate that gives the amount saved in 4 weeks. Write the rate in three different ways.

Savings		$\$ 30$	$\$ 45$		$\$ 75$
Weeks	1	2	3	4	5

\qquad

On Your Own

Write the ratio in two different ways.
7. $\frac{16}{40}$
8. $8: 12$
9. 4 to 11
10. $2: 13$
11. There are 24 baseball cards in 4 packs. Complete the table to find the rate that gives the number of cards in 2 packs. Write this rate in three different ways.

Cards			18	24
Packs	1	2	3	4

\qquad
12.
(Maninkgical (6) Make Connections Explain how the statement "There are 6 apples per bag" represents a rate.

Problem Solving • Applications

Use the diagram of a birdhouse for 13-15.

13. Write the ratio of $A B$ to $B C$ in three different ways.
14. G■DEEPER Write the ratio of the shortest side length of triangle $^{\text {a }}$ $A B C$ to the perimeter of the triangle in three different ways.
\qquad
15. Marincaicical (2) Represent a Problem Write the ratio of the perimeter of triangle $A B C$ to the longest side length of the triangle in three different ways.
\qquad
16. Leandra places 6 photos on each page in a photo album. Find the rate that gives the number of photos on 2 pages. Write the rate in three different ways.
\qquad
17. THINKSMARIER What's the Question? The ratio of total students in Ms. Murray's class to students in the class who have an older brother is 3 to 1 . The answer is $1: 2$. What is the question?
\qquad
\qquad
18. WRITE Math What do all unit rates have in common?
\qquad
\qquad
19. THINKSMARTER Julia has 2 green reusable shopping bags and 5 purple reusable shopping bags. Select the ratios that compare the number of purple reusable shopping bags to the total number of reusable shopping bags. Mark all that apply.5 to 75:2
$5: 7$
$\frac{2}{5}$2 to 7$\frac{5}{7}$
\qquad

Ratios and Proportional Relationships-6.RP.3a MATHEMATICAL PRACTICES MP.1, MP.4, MP. 6

You can use a multiplication table to find equivalent ratios.

Unlock the Problem

The ratio of adults to students on a field trip is $\frac{3}{8}$.
Write two ratios that are equivalent to $\frac{3}{8}$.

0
Use the multiplication table.

STEP 1 Shade the rows that show the original ratio.

Think: The original ratio is Shade the row for \qquad and
the row for \qquad on the multiplication table.

STEP 2 Circle the column that shows the original ratio.

X	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$	$\mathbf{1}$	2	3	3	4	5	6	7	8

Think: There is one group of 3 adults for every group of 8 students.
STEP 3 Circle two columns that show equivalent ratios.
The column for 2 shows there are $2 \cdot 3$, or \qquad adults when
there are $2 \cdot 8$, or \qquad students.

The column for 3 shows there are $3 \cdot 3$, or \qquad adults when
there are $3 \cdot 8$, or \qquad students.

So, \qquad and \qquad are equivalent to $\frac{3}{8}$.

Explain whether the multiplication table shown represents all of the ratios that are equivalent to 3:8.

CONNECT You can find equivalent ratios by using a table or by multiplying or dividing by a form of one.

P One Way use a table.

Jessa made fruit punch by mixing 2 pints of orange juice with 5 pints of pineapple juice. To make more punch, she needs to mix orange juice and pineapple juice in the same ratio. Write three equivalent ratios for $\frac{2}{5}$.

Think: Use rows from the multiplication table to help you complete a table of equivalent ratios.

X	$\mathbf{1}$	2	3	4	5
$\mathbf{1}$					
2	1 2 3 4 5 2 4 6 8 10 3 3 6 9 12 4 15 4 8 12 16 20 5 10 15 20 25				

So, $\frac{2}{5}$, \qquad , \qquad , and \qquad are equivalent ratios.

(A) Mother May Multiply or divide by a form of one.

Write two equivalent ratios for $\frac{6}{8}$.
(A) Multiply by a form of one.

Multiply the numerator and denominator by the same number.

$$
\frac{6 \cdot}{8}=
$$

ERROR Alert

Be sure to multiply or divide the numerator and the denominator by the same number.

B Divide by a form of one.

Divide the numerator and denominator by the same number.

$$
\frac{6 \div}{8 \div}=
$$

So, $\frac{6}{8}$, \qquad and \qquad are equivalent ratios.

- Mafingaical (6) Compare Explain how ratios are similar to fractions.

Explain how they are different.
\qquad

Name

Share and Show

MATH BOARD

Write two equivalent ratios.

1. Use a multiplication table to write two ratios that are equivalent to $\frac{4}{7}$.

Find the rows that show $\frac{4}{7}$.

$$
\text { Find columns that show equivalent ratios. } \quad \frac{4}{7}=
$$

2.

3		
7		

5. $\frac{4}{5}$
\qquad
6.

4.

	2	
	10	

On Your Dwn

Write two equivalent ratios.

8.

9		
8		

9.

5		
4		

10.

	6	
	9	

11. $\frac{8}{7}$
$\frac{8}{7}$

Determine whether the ratios are equivalent.
14. $\frac{2}{3}$ and $\frac{8}{12}$
15. $\frac{8}{10}$ and $\frac{6}{10}$
16. $\frac{16}{60}$ and $\frac{4}{15}$
13. $\frac{4}{11}$

Problem Solving • Applications (agold

Use the multiplication table for 18 and 19.
18. In Keith's baseball games this year, the ratio of times he has gotten on base to the times he has been at bat is $\frac{4}{14}$. Write two ratios that are equivalent to $\frac{4}{14}$.
19. \square Pose a Problem Use the multiplication table to write a new problem involving equivalent ratios. Then solve the problem.

X	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{1}$									
$\mathbf{2}$	$\mathbf{1}$	2	2	3	4	5	6	7	8
$\mathbf{2}$	4	6	8	10	12	14	16	18	
$\mathbf{3}$	3	6	9	12	15	18	21	24	27
$\mathbf{4}$	4	8	12	16	20	24	28	32	36
$\mathbf{5}$	5	10	15	20	25	30	35	40	45
$\mathbf{6}$	6	12	18	24	30	36	42	48	54
$\mathbf{7}$	7	14	21	28	35	42	49	56	63
$\mathbf{8}$	8	16	24	32	40	48	56	64	72
$\mathbf{9}$	9	18	27	36	45	54	63	72	81

20. सantinaical (1) Describe how to write an equivalent ratio for $\frac{9}{27}$ without using a multiplication table.
\qquad
\qquad
\qquad
21. G■DEEPER Write a ratio that is equivalent to $\frac{6}{9}$ and $\frac{16}{24}$.
22. THINKSMARTER Determine whether each ratio is equivalent to $\frac{1}{3}, \frac{5}{10}$, or $\frac{3}{5}$. Write the ratio in the correct box.

$$
\begin{aligned}
& \frac{2}{4} \begin{array}{ll|l|l|}
\frac{3}{9} & \frac{18}{30} & \frac{10}{30} & \frac{6}{10} \\
\hline \frac{1}{3} & \frac{5}{10} & \frac{3}{5} \\
\hline & & & \\
\hline & & \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|}
\hline & & \\
\hline
\end{array}
\end{aligned}
$$

Problem Solving •

Use Tables to Compare Ratios

Essential Question How can you use the strategy find a pattern to help you compare ratios?

Ratios and Proportional Relationships-6.RP.3a
MATHEMATICAL PRACTICES MP.1, MP.5, MP. 7

Unlock the Problem

A paint store makes rose-pink paint by mixing 3 parts red paint to 8 parts white paint. A clerk mixes 4 parts red paint to 7 parts white paint. Did the clerk mix the paint correctly to make rose-pink paint? Use tables of equivalent ratios to support your answer.

Use the graphic organizer to help you solve the problem.

Read the Problem

What do I need to find?

I need to find whether the ratio used by the clerk is
\qquad to the ratio for rose-pink paint.

What information do I need to use?

I need to use the rose-pink paint ratio and the ratio used by the clerk.

How will I use the information?

I will make tables of equivalent ratios to compare the ratios
\qquad to \qquad and \qquad
to \qquad .

Solve the Problem

Rose-Pink Paint					
Parts Red	3	6	9	12	
Parts White	8				

Clerk's Paint Mixture				
Parts Red	4			
Parts White	7	14	21	28

Look for a pattern to determine whether the ratios in the first table are equivalent to the ratios in the second table.

Think: The number 12 appears in the first row of both tables.

$$
\frac{12}{} \text { is/is not equivalent to } \frac{12}{}
$$

The ratios have the same numerator and \qquad denominators.

So, the clerk \qquad mix the paint correctly.

(1) Try Another Problem

In Amy's art class, the ratio of brushes to students is 6 to 4 . In Traci's art class, the ratio of brushes to students is 9 to 6 . Is the ratio of brushes to students in Amy's class equivalent to the ratio of brushes to students in Traci's class? Use tables of equivalent ratios to support your answer.

What do I need to find?	Read the Problem What information do I need to use?	How will I use the information?
	Solve the Problem	

So, the ratio of brushes to students in Amy's class is/is not equivalent to the ratio of brushes to students in Traci's class.

1. Mafingaical (5) Use Patterns Explain how you used a pattern to determine whether the ratios in the two tables are equivalent.
\qquad
\qquad
\qquad
2. Tell how writing the ratios in simplest form can help you justify your answer.

Name

Share and Show

MATH BOARD

1. In Jawan's school, 4 out of 10 students chose basketball as a sport they like to watch, and 3 out of 5 students chose football. Is the ratio of students who chose basketball (4 to 10) equivalent to the ratio of students who chose football (3 to 5)?

First, make tables to show the ratios.

Next, compare the ratios in the tables. Find a ratio in the first table that has the same numerator as a ratio in the second table.
12 \qquad equivalent to 12 .

So, the ratios \qquad equivalent.
2. THINKSMARTER What if 20 out of 50 students chose baseball as a sport they like to watch? Is this ratio equivalent to the ratio for either basketball or football? Explain.
\qquad
\qquad
$\bigcirc 3$
 quizzes Hannah took in one week. Did Hannah get the same score on her math and science quizzes? Explain.
\qquad
\qquad

Hannah's Quiz Results	
Subject	Questions Correct
Social Studies	4 out of 5
Math	8 out of 10
Science	3 out of 4
English	10 out of 12

4. Did Hannah get the same score on the quizzes in any of her classes? Explain.
\qquad

On Your Own

5. FIDEEPER For every $\$ 10$ that Julie makes, she saves $\$ 3$. For every $\$ 15$ Liam makes, he saves $\$ 6$. Is Julie's ratio of money saved to money earned equivalent to Liam's ratio of money saved to money earned?
6. THINKSMARTER A florist offers three different bouquets of tulips and irises. The list shows the ratios of tulips to irises in each bouquet. Determine the bouquets that have equivalent ratios.

7. The ratio of boys to girls in a school's soccer club is 3 to 5 . The ratio of boys to girls in the school's chess club is 13 to 15 . Is the ratio of boys to girls in the soccer club equivalent to the ratio of boys to girls in the chess club? Explain.
\qquad
\qquad
8.

Analyze Thad, Joey, and Mia ran in a race. The finishing times were 4.56 minutes, 3.33 minutes, and 4.75 minutes. Thad did not finish last. Mia had the fastest time. What was each runner's time?
9. THINKSMARIER Fernando donates $\$ 2$ to a local charity organization for every $\$ 15$ he earns. Cleo donates $\$ 4$ for every $\$ 17$ she earns. Is Fernando's ratio of money donated to money earned equivalent to Cleo's ratio of money donated to money earned? Explain.

Use Equivalent Ratios

Essential Question How can you use tables to solve problems involving equivalent ratios?

Unlock the Problem

In warm weather, the Anderson family likes to spend time on the family's boat. The boat uses 2 gallons of gas to travel 12 miles on the lake. How much gas would the boat use to travel 48 miles?
What are you asked to find?

Solve by finding equivalent ratios.
Let represent the unknown number of gallons.

$$
\frac{\text { gallons }}{\text { miles }} \rightarrow \frac{2}{12}=\frac{\square}{48} \leftarrow \frac{\text { gallons }}{\text { miles }}
$$

Make a table of equivalent ratios.

| | $\begin{array}{c}\text { Original } \\ \text { ratio }\end{array}$ | $2 \cdot 2$ | \downarrow | \downarrow |
| :--- | :---: | :---: | :---: | :---: |$) \cdot 2$

The ratios $\frac{2}{12}$ and \qquad are equivalent ratios,
so $\frac{2}{12}=\frac{}{48}$.
So, the boat will use \qquad gallons of gas to travel 48 miles.

- What if the boat uses 14 gallons of gas? Explain how you can use equivalent ratios to find the number of miles the boat travels when it uses 14 gallons of gas.

(1. Example use equivalent ratios to find the unknown value.

(A) $\frac{3}{4}=\frac{}{20}$

Use common denominators to write equivalent ratios.
\qquad is a multiple of 4 , so \qquad is a common denominator.

Multiply the \qquad and denominator by \qquad to
write the ratios using a common denominator.

$$
\frac{3}{4}=\frac{\square}{20}
$$

The \qquad are the same, so the \qquad are equal to each other.
-
\qquad and $\frac{3}{4}=\frac{}{20}$.

Check your answer by making a table of equivalent ratios.

3	6			
4	8			
	$\uparrow .4$	$\uparrow .4$.4	$\uparrow .4$

(B) $\frac{56}{42}=\frac{8}{\square}$

Write an equivalent ratio with 8 in the numerator.
$\frac{56}{42}=\frac{8}{\square}$
Think: Divide 56 by \qquad to get 8 .

So, divide the denominator by \qquad as well.
$\frac{56 \div}{42 \div}=\frac{8}{-}$
The \qquad are the same, so the \qquad
are equal to each other.
$\underline{8}=\frac{8}{\square}$
So, the unknown value is \qquad and $\frac{56}{42}=\stackrel{8}{ }$.

Check your answer by making a table of equivalent ratios.
Original ratio

8
6

\square $\downarrow^{8} \quad \downarrow^{8}$
- 8

Give an example of two equivalent ratios. Explain how you know that they are equivalent.

Share and Show

Use equivalent ratios to find the unknown value.

1. $\frac{\square}{10}=\frac{4}{5}$
$\frac{\square}{10}=\frac{4 \cdot}{5 \cdot}$

$$
\frac{\square}{10}=\frac{}{10}
$$

So, the unknown value is \qquad .
3. $\frac{3}{6}=\frac{15}{\square}$
4. $\frac{\square}{5}=\frac{8}{10}$

On Your Own

2. $\frac{18}{24}=\frac{6}{\square}$

$$
\begin{aligned}
& \frac{18 \div}{24 \div}=\frac{6}{\square} \\
& \frac{6}{\square}=\frac{6}{\square}
\end{aligned}
$$

So, the unknown value is \qquad .
5. $\frac{7}{4}=\frac{\square}{12}$ an equivalent ratio by subtracting the same number from the numerator and denominator. Give an example to support your answer.

Use equivalent ratios to find the unknown value.
7. $\frac{2}{6}=\frac{-}{30}$
8. $\frac{5}{-}=\frac{55}{110}$

\qquad
11. Maphinaical (2) Use Reasoning Is the unknown value in $\frac{2}{3}=\frac{\square}{18}$ the same as the unknown value in $\frac{3}{2}=\frac{18}{}$? Explain.
9. $\frac{3}{9}=\frac{9}{\square}$
10. $\frac{\square}{6}=\frac{16}{24}$
\qquad
\qquad

Problem Solving • Applications (ear

Solve by finding an equivalent ratio.

12. It takes 8 minutes for Sue to make 2 laps around the go-kart track. How many laps can Sue complete in 24 minutes?
13. 4 IDDEPER The width of Jay's original photo is 8 inches. The length of the original photo is 10 inches. He prints a smaller version that has an equivalent ratio of width to length. The width of the smaller version is 4 inches less than the width of the original. What is the length of the smaller version?
14. Ariel bought 3 raffle tickets for $\$ 5$. How many tickets could Ariel buy for $\$ 15$?
15. THINKSMARTER What's the Error? Greg used the steps shown to find the unknown value. Describe his error and give the correct solution.

$$
\begin{aligned}
\frac{2}{6} & =\frac{\square}{12} \\
\frac{2+6}{6+6} & =\frac{\square}{12} \\
\frac{8}{12} & =\frac{\square}{12}
\end{aligned}
$$

The unknown value is 8 .
\qquad
\qquad
\qquad
16. THINKSMARTER Courtney bought 3 maps for $\$ 10$. Use the table of equivalent ratios to find how many maps she can buy for $\$ 30$.

3	6	
10	20	30

\qquad

(V)Mid-Chapter Checkpoint

Vocabulary

Choose the best term from the box to complete the sentence.

1. A \qquad is a rate that makes a comparison
to 1 unit. (p. 158)
2. Two ratios that name the same comparison are

Vocabulary

equivalent ratios

rate

ratio
unit rate

\square

Goncepts and Skills

3. Write the ratio of red circles to blue squares. (6.RP.1)

Write the ratio in two different ways. (6.RP.1)
4. 8 to 12
5. $7: 2$
\qquad
6. $\frac{5}{9}$
10. $\frac{9}{12}$
9. $\frac{6}{5}$
8. $\frac{2}{7}$
\qquad
Find the unknown value. . (6.RP.3a)
12. $\frac{15}{\square}=\frac{5}{10}$
13. $\frac{\square}{9}=\frac{12}{3}$
14. $\frac{48}{16}=\frac{\square}{8}$
15. $\frac{9}{36}=\frac{3}{\square}$
16. There are 36 students in the chess club, 40 students in the drama club, and 24 students in the film club. What is the ratio of students in the drama club to students in the film club? (6.RP.3a)
17. A trail mix has 4 cups of raisins, 3 cups of dates, 6 cups of peanuts, and 2 cups of cashews. Which ingredients are in the same ratio as cashews to raisins? (6.RP.3a)
18. There are 32 adults and 20 children at a school play. What is the ratio of children to people at the school play? (6.RP.3a)
19. Sonya got 8 out of 10 questions right on a quiz. She got the same score on a quiz that had 20 questions. How many questions did Sonya get right on the second quiz? (6.RP.3a)

Unlock the Problem

The star fruit, or carambola, is the fruit of a tree that is native to Indonesia, India, and Sri Lanka. Slices of the fruit are in the shape of a five-pointed star. Lara paid $\$ 9.60$ for 16 ounces of star fruit. Find the price of 1 ounce of star fruit.

Recall that a unit rate makes a comparison to l unit. You can find a unit rate by dividing the numerator and denominator by the number in the denominator. Write the unit rate for the price of star fruit.

- Underline the sentence that tells you what you are trying to find.
- Circle the numbers you need to use to solve the problem.

Ω

```
Divide the numerator and denominator by
```

the number in the \qquad .
$\frac{\$ 9.60 \div}{1602 \div}$

So, the unit rate is \qquad .The price is \qquad per ounce.

Explain the difference between a ratio and a rate.
1.

\qquad
2.

Make Arguments Explain a way to convince others that you
found the unit rate correctly.

1. Example

A During migration, a hummingbird can fly 210 miles in 7 hours, and a goose can fly 165 miles in 3 hours. Which bird flies at a faster rate?
Write the rate for each bird. Hummingbird: $\frac{\text { miles }}{7 \text { hours }} \quad$ Goose: $\frac{165 \text { miles }}{\text { hours }}$

Write the unit rates.

$$
\begin{array}{ll}
\frac{210 \mathrm{mi} \div}{7 \mathrm{hr} \div} & \frac{165 \mathrm{mi} \div}{3 \mathrm{hr} \div} \\
\frac{\mathrm{mi}}{1 \mathrm{hr}} & \frac{\mathrm{mi}}{1 \mathrm{hr}}
\end{array}
$$

Compare the unit rates. \qquad miles per hour is faster than \qquad miles per hour.

So, the \qquad flies at a faster rate.

B A 64 -ounce bottle of apple juice costs $\$ 5.76$. A 15 -ounce bottle of apple juice costs $\$ 1.80$. Which item costs less per ounce?

Write the rate for each bottle.

Write the unit rates.

Compare the unit rates.

64-ounce bottle: $\overline{64 \text { ounces }}$

per ounce is less expensive than \qquad per ounce.

So, the \qquad -ounce bottle costs less per ounce.

Try This! At one grocery store, a dozen eggs cost \$1.20. At another store, $1 \frac{1}{2}$ dozen eggs cost $\$ 2.16$. Which is the better buy?

Store 1:
Store 2:

The unit price is lower at Store \qquad , so a dozen eggs for \qquad is the better buy.

Share and Show

Write the rate as a fraction. Then find the unit rate.

1. Sara drove 72 miles on 4 gallons of gas.

$$
\frac{}{4 \mathrm{gal}}=\frac{\div}{4 \mathrm{gal} \div}=\frac{}{1 \mathrm{gal}}
$$

3. Amy and Mai have to read Bud, Not Buddy for a class. Amy reads 20 pages in 2 days. Mai reads 35 pages in 3 days. Who reads at a faster rate?
\qquad

On Your Own

Write the rate as a fraction. Then find the unit rate.
5. A company packed 108 items in 12 boxes.
7. FDDEEPER Geoff charges $\$ 27$ for 3 hours of swimming lessons. Anne charges $\$ 31$ for 4 hours. How much more does Geoff charge per hour than Anne?

Tell which rate is faster by comparing unit rates.
9. $\frac{160 \mathrm{mi}}{2 \mathrm{hr}}$ and $\frac{210 \mathrm{mi}}{3 \mathrm{hr}}$
10. $\frac{270 \mathrm{ft}}{9 \mathrm{~min}}$ and $\frac{180 \mathrm{ft}}{9 \mathrm{~min}}$
2. Dean paid $\$ 27.00$ for 4 movie tickets.
4. An online music store offers 5 downloads for $\$ 6.25$. Another online music store offers 12 downloads for $\$ 17.40$. Which store offers the better deal?

Mathematical Practices
Explain how to find a unit rate.
6. There are 112 students for 14 teachers.
 16 bouquets in 5 hours. A second florist made 40 bouquets in 12 hours. Which florist makes bouquets at a faster rate?

Unlock the Problem

12. IHINKSMARTER Ryan wants to buy treats for his puppy. If Ryan wants to buy the treats that cost the least per pack, which treat should he buy? Explain.
a. What do you need to find?

\qquad
\qquad
b. Find the price per pack for each treat.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 information do you need to consider in order to decide whether one product is a better deal than another? When might the lower unit rate not be the best choice? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
13. THINKSMARTER Select the cars that get a higher mileage per gallon of gas than a car that gets 25 miles per gallon. Mark all that apply.

- Car A: 22 miles per 1 gallon
- Car B: 56 miles per 2 gallons
- Car C: 81 miles per 3 gallons
- Car D: 51 miles per 3 gallons
\qquad

Use Unit Rates

Ratios and Proportional Relationships-6.RP.3b
MATHEMATICAL PRACTICES MP1, MP.3, MP. 5

Unlock the Problem

The Champie family is traveling from Arizona to Texas. On the first part of the trip, they drove 500 miles in 10 hours. If they continue driving at the same rate, how many hours will it take them to drive 750 miles?

You can use equivalent ratios to find the number of hours it will take the Champie family to drive 750 miles. You may need to find a unit rate before you can write equivalent ratios.

0
Find equivalent ratios by using a unit rate.

Write ratios that compare miles to hours.
750 is not a multiple of 500 .

Write the known ratio as a unit rate.

Write an equivalent rate by multiplying the
\qquad and \qquad by the
same value.

Think: Multiply 50 by \qquad to get 750 .

So, multiply the denominator by \qquad also.

The \qquad are the same, so the
\qquad are equal to each other.

The unknown value is \qquad .
So, it will take the family \qquad hours to drive 750 miles.

$$
\begin{gathered}
\frac{\text { miles }}{\text { hours }} \rightarrow \frac{500}{10}=\frac{750}{\square} \leftarrow \frac{\text { miles }}{\text { hours }} \\
\frac{500 \div \frac{75}{10 \div 10}}{}=\frac{750}{\square} \\
\frac{\square}{1}=\frac{750}{\square} \\
\frac{50 \cdot}{1 \cdot}=\frac{750}{\square}
\end{gathered}
$$

1) Example

Kenyon earns $\$ 105$ for mowing 3 lawns. How much would Kenyon earn for mowing 10 lawns?

STEP 1 Draw a bar model to represent the situation:

\$?
STEP 2 Solve the problem.
The model shows that 3 units represent $\$ 105$.
You need to find the value represented by \qquad units.

Write a unit rate:

1 unit represents \$ \qquad

10 units are equal to 10 times 1 unit,
so 10 units $=10 \times \$$ \qquad .
$10 \times \$$ \qquad = \$ \qquad

So, Kenyon will earn \$ \qquad for mowing 10 lawns.

Try This!

Last summer, Kenyon earned $\$ 210$ for mowing 7 lawns. How much did he earn for mowing 5 lawns last summer?

STEP 1 Draw a bar model to represent the situation.
STEP 2 Solve the problem.

Share and Show

Use a unit rate to find the unknown value.

1. $\frac{10}{\square}=\frac{6}{3}$
$\frac{10}{\square}=\frac{6 \div}{3 \div 3}$
$\frac{10}{\square}=\frac{}{1}$
$\frac{10}{\square}=\frac{2 \cdot}{1 \cdot}$
$\frac{10}{\square}=\frac{10}{}$
$\square=$ \qquad

On Your Own

Use a unit rate to find the unknown value.
3. $\frac{40}{8}=\frac{45}{\square}$
4. $\frac{42}{14}=\frac{\square}{5}$
\qquad

Practice: Copy and Solve Draw a bar model to find the unknown value.
7. $\frac{4}{32}=\frac{9}{\square}$
8. $\frac{9}{3}=\frac{-}{4}$
9. $\frac{}{14}=\frac{9}{7}$
10. $\frac{3}{\square}=\frac{2}{1.25}$
 in a ratio by using a unit rate.
\qquad
\qquad
\qquad
12. FПDEEPER Savannah is tiling her kitchen floor. She bought 8 cases of tile for $\$ 192$. She realizes she bought too much tile and returns 2 unopened cases to the store. What was her final cost for tile?

Problem Solving • Applications

Pose a Problem

13.

THINK SMARTER Josie runs a T-shirt printing company. The table shows the length and width of four sizes of T-shirts. The measurements of each size T-shirt form equivalent ratios.

What is the length of an extra-large T-shirt?

Adult T-Shirt Sizes		
Size	Length (inches)	Width (inches)
Small	27	18
Medium	30	20
Large	$?$	22
X-large	$?$	24

Write two equivalent ratios and find the unknown value:
$\frac{\text { Length of medium }}{\text { Width of medium }} \rightarrow \frac{30}{20}=\frac{\square}{24} \leftarrow \frac{\text { Length of X-large }}{\text { Width of X-large }}$
$\frac{30 \div 20}{20 \div 20}=\frac{\square}{24} \rightarrow \frac{1.5}{1}=\frac{\square}{24} \rightarrow \frac{1.5 \cdot 24}{1 \cdot 24}=\frac{\square}{24} \rightarrow \frac{36}{24}=\frac{\square}{24}$
The length of an extra-large T-shirt is 36 inches.
Write a problem that can be solved by using the information in the table and could be solved by using equivalent ratios.

Pose a Problem

Solve Your Problem

Personal Math Trainer
14. IHINKSMARTER Peri earned $\$ 27$ for walking her neighbor's dog 3 times. If Peri earned $\$ 36$, how many times did she walk her neighbor's dog? Use a unit rate to find the unknown value.

Equivalent Ratios and Graphs

Essential Question How can you use a graph to represent equivalent ratios?

Ratios and Proportional Relationships-6.RP.3a MATHEMATICAL PRACTICES MP.4, MP.5, MP. 7

Unlock the Problem

A car travels at a rate of 50 miles per hour. Use equivalent ratios to graph the distance the car travels over time. Graph time on the x-axis and distance on the y-axis.

- What words in the problem tell the unit rate?

(1)
 Write and graph equivalent ratios.

STEP 1 Use the unit rate to write equivalent ratios.
Write the unit rate. $\frac{\text { miles }}{1 \text { hour }}$
Write an equivalent ratio. $\frac{\mathrm{mi} \times 2}{1 \mathrm{hr} \times 2}$
$=\frac{\mathrm{mi}}{\mathrm{hr}}$

Complete the table of equivalent ratios.

Distance (mi)			150	200	
Time (hr)	1	2			5

STEP 2 Use an ordered pair to represent each ratio in the table.

Let the x-coordinate represent time in hours and the y-coordinate represent distance in miles.

$$
\frac{50 \mathrm{mi}}{1 \mathrm{hr}} \rightarrow(1,50)
$$

(1, \qquad)
(2, \qquad)
\qquad 150)
\qquad 200)
(5, \qquad

Remember

The first number in an ordered pair is the x-coordinate, and the second number is the y-coordinate.

STEP 3 Use the ordered pairs to graph the car's distance over time.

Think: The graph represents the same relationship as the unit rate.

For every 1 hour the car travels, the distance increases by
\qquad miles.

Mathematical Practices

Car Travel

Identify a pattern in the graph.

- Example
 During a heavy rainstorm, the waters of the

Blue River rose at a steady rate for 8 hours. The graph shows the river's increase in height over time. Use the graph to complete the table of equivalent ratios. How many inches did the river rise in 8 hours?

Think: On the graph, x-coordinates represent
time in \qquad and y-coordinates represent
the river's increase in height in \qquad .

The ordered pair (1, \qquad) means that after \qquad
hour, the river rose \qquad inches.

Increase in height (in.)	3				
Time (hr)	1	2	4	6	8

So, the river rose \qquad inches in 8 hours.

Increase in Blue River Height

1. Marimaical (7) Look for a Pattern Describe the pattern you see in the graph and the table.
\qquad
\qquad
2. Explain how you know that the ratios in the table are equivalent.
3. Mathematcal (5RACtice Use Appropriate Tools Matt earns $\$ 12$ per hour.

Explain how you could use equivalent ratios to draw a graph of his earnings over time.
\qquad
\qquad
\qquad
\qquad
\qquad

Share and Show

MATH BOARD

A redwood tree grew at a rate of 4 feet per year. Use this information for 1-3.

1. Complete the table of equivalent ratios for the first 5 years.

Height (ft)					
Time (yr)	1	2			

2. Write ordered pairs, letting the x-coordinate represent time in years and the y-coordinate represent height in feet.
(1, \qquad), (2, \qquad), (\qquad , \qquad (\qquad , \qquad), \qquad , \qquad)

On Your Own

The graph shows the rate at which Luis's car uses gas, in miles per gallon. Use the graph for 4-8.
4. Complete the table of equivalent ratios.

Distance (mi)	30				
Gas (gal)	1	2	3	4	5

5. Find the car's unit rate of gas usage. $\frac{\text { miles }}{\text { gallon }}$
6. How far can the car go on 5 gallons of gas? \qquad
7. Estimate the amount of gas needed to travel 50 miles.
8. $\begin{aligned} & \text { FПDEEPER Ellen's car averages } 35 \text { miles per gallon of gas. If you } \\ & \text { used equivalent ratios to graph her car's gas usage, how would the }\end{aligned}$

EПDEEPER Ellen's car averages 35 miles per gallon of gas. If you
used equivalent ratios to graph her car's gas usage, how would the
graph differ from the graph of Luis's car's gas usage? graph differ from the graph of Luis's car's gas usage?

3. Use the ordered pairs to graph
the tree's growth over time.

Redwood Tree Growth

Mathematical Practices
Explain what the point $(1,4)$ represents on the graph of the redwood tree's growth.

Problem Solving • Applications (acild

9.

Look for Structure The graph shows the depth of a submarine over time. Use equivalent ratios to find the number of minutes it will take the submarine to descend 1,600 feet.

10. The graph shows the distance that a plane flying at a steady rate travels over time. Use equivalent ratios to find how far the plane travels in 13 minutes.
11. THINK SMARTER

Sense or Nonsense?
Emilio types at a rate of 84 words per minute.
He claims that he can type a 500 -word essay in 5 minutes. Is Emilio's claim sense or nonsense? Use a graph to help explain your answer.

\qquad
\qquad
\qquad
\qquad
\qquad

Personal Math Trainer
12. THINKSMARTER The Tuckers drive at a rate of 20 miles per hour through the mountains. Use the ordered pairs to graph the distance traveled over time.

Distance (miles)	20	40	60	80	100
Time (hours)	1	2	3	4	5

(V) Chapter 4 Review/Test

1. Kendra has 4 necklaces, 7 bracelets, and 5 rings. Draw a model to show the ratio that compares rings to bracelets.
\square
2. There are 3 girls and 2 boys taking swimming lessons. Write the ratio that compares the girls taking swimming lessons to the total number of students taking swimming lessons.
\qquad
3. Luis adds 3 strawberries for every 2 blueberries in his fruit smoothie. Draw a model to show the ratio that compares strawberries to blueberries.
\square
4. Write the ratio 3 to 10 in two different ways.
5. Alex takes 3 steps every 5 feet he walks. As Alex continues walking, he takes more steps and walks a longer distance. Complete the table by writing two equivalent ratios.

Steps	3		
Distance (feet)	5		

6. Sam has 3 green apples and 4 red apples. Select the ratios that compare the number of red apples to the total number of apples. Mark all that apply.

○ 4 to 7
○ 3 to 7
○ $4: 7$
○ 4:3
○ $\frac{3}{7}$
○ $\frac{4}{7}$
7. Jeff ran 2 miles in 12 minutes. Ju Chan ran 3 miles in 18 minutes. Did Jeff and Ju Chan run the same number of miles per minute? Complete the tables of equivalent ratios to support your answer.

Jeff				
Distance (miles)	2			
Time (minutes)	12			

Ju Chan				
Distance (miles)	3			
Time (minutes)	18			

\square
8. Jen bought 2 notebooks for $\$ 10$. Write the rate as a fraction. Then find the unit rate.

Name
9. Determine whether each ratio is equivalent to $\frac{1}{2}, \frac{2}{3}$, or $\frac{4}{7}$. Write the ratio in the correct box.

$\frac{6}{9}$	$\frac{4}{8}$	$\frac{7}{14}$	$\frac{20}{35}$	$\frac{40}{80}$	$\frac{8}{14}$	$\frac{4}{6}$
$\frac{1}{2}$	$\frac{2}{3}$	$\frac{8}{12}$				
		$\frac{4}{7}$				

10. Amos bought 5 cantaloupes for $\$ 8$. How many cantaloupes can he buy for $\$ 24$? Show your work.
\square
11. Camille said $\frac{4}{5}$ is equivalent to $\frac{24}{30}$. Check her work by making a table of equivalent ratios.

4					
5					

12. A box of oat cereal costs $\$ 3.90$ for 15 ounces. A box of rice cereal costs $\$ 3.30$ for 11 ounces. Which box of cereal costs less per ounce? Use numbers and words to explain your answer.

13. Scotty earns $\$ 35$ for babysitting for 5 hours. If Scotty charges the same rate, how many hours will it take him to earn $\$ 42$?
\qquad hours
14. Use a unit rate to find the unknown value.
```
4 2
```

 9
 14

15. Jenna saves $\$ 3$ for every $\$ 13$ she earns. Vanessa saves $\$ 6$ for every $\$ 16$ she earns. Is Jenna's ratio of money saved to money earned equivalent to Vanessa's ratio of money saved to money earned?
16. The Hendersons are on their way to a national park. They are traveling at a rate of 40 miles per hour. Use the ordered pairs to graph the distance traveled over time.

Distance (miles)	40	80	120	160	200
Time (minutes)	1	2	3	4	5

17. Abby goes to the pool to swim laps. The graph shows how far Abby swam over time. Use equivalent ratios to find how far Abby swam in 7 minutes.

\qquad meters
18. A rabbit runs 35 miles per hour. Select the animals who run at a faster unit rate per hour than the rabbit. Mark all that apply.Reindeer: 100 miles in 2 hoursOstrich: 80 miles in 2 hoursZebra: 90 miles in 3 hoursSquirrel: 36 miles in 3 hours
19. Caleb bought 6 packs of pencils for $\$ 12$.

Part A

How much will he pay for 9 packs of pencils? Use numbers and words to explain your answer.
\square

Part B

Describe how to use a bar model to solve the problem.

20. Water is filling a bathtub at a rate of 3 gallons per minute.

Part A

Complete the table of equivalent ratios for the first five minutes of the bathtub filling up.

Amount of Water (gallons)	3				
Time (minutes)	1				

Part B

Emily said there will be 36 gallons of water in the bathtub after 12 minutes. Explain how Emily could have found her answer.
\square

Show What You Know

Check your understanding of important skills.
Name \qquad

Decimal Models Shade the model to show the decimal.

1. 0.31

2. 0.7

3. 1.7

Division Find the quotient.

4. $2,002 \div 91$
5. $9 8 \longdiv { 3 , 0 3 8 }$
6. $24,487 \div 47$
7. $2 2 \longdiv { 2 , 3 3 2 }$

Multiply Whole Numbers by Decimals Find the product.
8. $\begin{array}{r}2.38 \\ \times \quad 4 \\ \hline\end{array}$

10. 4.60

11. 7.04
$\begin{array}{r} \\ \times \quad 32 \\ \hline\end{array}$

Esmeralda likes to listen to music while she works out. She had a playlist on her MP3 player that lasted 40 minutes, but she accidentally deleted 25% of the music. Be a Math Detective and figure out if Esmeralda has enough music left on her playlist for a 30-minute workout. Explain your answer.

Vocabulary Builder

Visualize It

Complete the bubble map with review and preview words that are related to ratios.

Review Words

decimal
equivalent ratios
factor
quotient
rate
ratio
simplify

Preview Word

percent

Understand Vocabulary

Complete the sentences using review and preview words.

1. A comparison of one number to another by division is a
\qquad .
2. \qquad name the same comparison.
3. A ratio that compares quantities with different units is a
\qquad .
4. A \qquad is a ratio, or rate, that compares a number to 100 .
5. \qquad a fraction or a ratio by dividing the numerator and denominator by a common factor.
\qquad

Model Percents

Essential Question How can you use a model to show a percent?

Investigate

Materials $■ 10$-by- 10 grids
Not many people drive electric cars today. But one expert estimates that by 2025,35 percent of all cars will be powered by electricity.

A percent is a ratio, or rate, that compares a number to 100 . Percent means "per hundred." The symbol for percent is \%.
A. Model 35% on the 10 -by- 10 grid. Then tell what the percent represents.

The large square represents the whole, or 100%.
Each small square represents 1%.

- Shade the grid to show $\mathbf{3 5 \%}$.

Think: 35% is \qquad out of 100 .

- Write 35% as a ratio comparing 35 to 100 .

Think: 35 out of 100 squares is $\frac{}{100}$.

- $35 \%=$ \qquad

So, by 2025, \qquad out of \qquad cars may be powered by electricity.
B. Model 52% on a 10 -by- 10 grid.

- \qquad out of \qquad squares is $\overline{100}$.
- $52 \%=\frac{}{100}$
C. Model 18% on a 10 -by- 10 grid.
- \qquad out of \qquad squares is $\overline{100}$.
- $18 \%=\frac{}{100}$

Draw Conclusions

1. Explain how you would use a 10 -by- 10 grid to model 7%.
2. Model $\frac{1}{4}$ on a 10 -by- 10 grid. What percent is shaded? Explain.
3.

Use a Concrete Model Explain how you could model 0.5% on a 10 -by- 10 grid.
\qquad
\qquad
4. IHINKSMARTER How would you model 181% using 10 -by-10 grids?

Make Connections

The table shows the types of meteorites in Meg's collection. Shade a grid to show the ratio comparing the number of each type to the total number. Then write the ratio as a percent.

Think: A percent is a ratio that compares a number to \qquad .

Meg's Meteorite Collection	
Type	Number
Iron	21
Stone	76
Stony-iron	3

\qquad

Share and Show

MATH
 BOARD

Write a ratio and a percent to represent the shaded part.
© 1.

ratio: \qquad percent: \qquad
2.

ratio: \qquad percent: \qquad
3.

ratio: \qquad percent: \qquad

Model the percent and write it as a ratio.

4. 30%

ratio: \qquad
5. 5%

ratio:
6. 75%

ratio: \qquad

Problem Solving • Applications (aydy

7.

Mary fincical (5) Use a Concrete Model Explain how to model 32% on a 10-by-10 grid.
How does the model represent the ratio of 32 to 100 ?
\qquad
\qquad
\qquad
8. $G \square D E E P E R$ A floor has 100 tiles. There are 24 black tiles and 35 brown tiles.

The rest of the tiles are white. What percent of the tiles are white?

Pose a Problem

9. THINKSMARTER Javier designed a mosaic wall mural using 100 tiles in 3 different colors: yellow, blue, and red. If 64 of the tiles are yellow, what percent of the tiles are either red or blue?

To find the number of tiles that are either red or blue, count the red and blue squares. Or subtract the number of yellow squares, 64 , from the total number of squares, 100 .

36 out of 100 tiles are red or blue.
The ratio of red or blue tiles to all tiles is $\frac{36}{100}$.
So, the percent of the tiles that are either red or blue is 36%.
Write another problem involving a percent that can be solved by using
 the mosaic wall mural.

Pose a Problem

Solve Your Problem
\qquad
10. THINK SMARTER Select the 10 -by- 10 grids that model 45%. Mark all that apply.
\bigcirc

\bigcirc

\bigcirc

		-			

\bigcirc

\qquad

Write Percents as Fractions and Decimals

Essential Question How can you write percents as fractions and decimals?

Ratios and Proportional Relationships-6.RP.3c mathematical practices MP.2, MP.5, MP.7, MP. 8

To write a percent as a fraction or a decimal, first write the percent as a ratio that compares a number to 100 . For example, $37 \%=\frac{37}{100}$.

Unlock the Problem

Carlos eats a banana, an orange, and a blueberry muffin for breakfast. What fraction of the daily value of vitamin C does each item contain?

Write each percent as a fraction.
(A) Write 15% as a fraction.

$$
15 \%=\frac{}{100}=\square
$$

15% is 15 out of 100 .
Write the fraction in simplest form.
So, $15 \%=$ \qquad .

B Write 113% as a fraction.

$$
\begin{array}{rll}
113 \% & =\frac{13}{100}+\frac{13}{100} & \begin{array}{l}
113 \% \text { is } 100 \text { out of } 100 \text { plus } \\
13 \text { out of } 100 .
\end{array} \\
& = & +\frac{13}{100}
\end{array} \quad \frac{100}{100}=1 .
$$

So, $113 \%=$ \qquad .

Write the sum as a mixed number.
C Write 0.5% as a fraction.
$0.5 \%=\overline{100}$
$=\frac{0.5 \cdot 10}{100 \cdot 10}=\frac{}{1,000}$
Multiply the numerator and denominator by 10 to get a whole number in the numerator.
$=-1$
Write the fraction in simplest form.

Vitamin C Content	
Item	Percent of Daily Value
Banana	15%
Orange	113%
Blueberry Muffin	0.5%

(1) Example

Write 72% as a decimal.

$$
\begin{aligned}
72 \% & =\frac{72 \% \text { is } 72 \text { out of } 100 .}{100} \\
= & \begin{array}{l}
\text { Use place value to write } 72 \\
\text { hundredths as a decimal. }
\end{array}
\end{aligned}
$$

So, $72 \%=$ \qquad .

B Write 4% as a decimal.

$4 \%=\frac{}{100}$

So, $4 \%=$ \qquad .

Write $\mathbf{2 5 . 8 1 \%}$ as a decimal.

$$
\begin{aligned}
25.81 \% & =\frac{100}{} \\
& =
\end{aligned}
$$

To divide by 100 , move the decimal point 2 places to the left: 0.2581

4% is 4 out of 100 .
Use division to write 4\% as a decimal.
Divide the ones. Since 4 ones cannot be shared among 100 groups, write a zero in the quotient.

Place a decimal point after the ones place in the quotient.

Remember
When you divide decimal numbers by powers of 10 , you move the decimal point one place to the left for each factor of 10 .

So, $25.81 \%=$ \qquad .

Share and Show

MATH
BOARD
Write the percent as a fraction.

1. 80%

$$
80 \%=\frac{}{100}=
$$

Write the percent as a decimal.

4. 58%
\qquad
5. 9%
6. 150%
\qquad
7. 0.2%

Explain how to use estimation to check that your answer is reasonable when you write a percent as a fraction or decimal.

Name

On Your Own

Write the percent as a fraction or mixed number.
6. 17%
\qquad
9. 355%

Write the percent as a decimal.

12. 89%
89
13. 122%
122%
14. 20%
15. 0.1%
16. 30%
17. 3.5%
\qquad
18. 125%
19. 2.5%
20. 2%
21. 6.33%
\qquad
22. Maryimatical (2) Use Reasoning Write $<,>$, or $=$. $21.6 \% \bigcirc \frac{1}{5}$
23. HIDEEPER Georgianne completed 60% of her 2 homework assignment. Write the portion of her homework that she still needs to complete as a fraction.

Problem Solving • Applications Werld

Use the table for 20 and 21.

20. What fraction of computer and video game players are 50 years old or more?
21. What fraction of computer and video game players are 18 years old or more?
22. THINKSMARTER Box A and Box B each contain black tiles and white tiles. They have the same total number of tiles. In Box A, 45% of the tiles are black. In Box B, $\frac{11}{20}$ of the tiles are white. Compare the number of black tiles in the boxes. Explain your reasoning.
\qquad
\qquad
\qquad

\qquad
23. THINKSMARTER Mr. Truong is organizing a summer program for 6 th grade students. He surveyed students to find the percent of students interested in each activity. Complete the table by writing each percent as a fraction or decimal.

Activity	Percent	Fraction	Decimal
Sports	48%	$\frac{12}{25}$	
Cooking	23%		0.23
Music	20%		0.2
Art	9%	$\frac{9}{100}$	

7 Unlock the Problem
During the 2008-2009 season of the National Basketball Association (NBA), the Phoenix Suns won about $\frac{11}{20}$ of their games. The Miami Heat won about 0.524 of their games. Which

- Underline the sentence that tells you what you are trying to find.
- Circle the numbers you need to use. team was more successful during the season?

To compare the season performances of the Suns and the Heat, it is helpful to write the fraction and the decimal as a percent.

0
Write the fraction or decimal as a percent.
(A) $\frac{11}{20}$

Write Fractions and Decimals as Percents

Essential Question How can you write fractions and decimals as percents?
Multiply the \qquad and $\frac{11}{20}=\frac{11 x}{20 x}$ by the same value
to write an equivalent fraction with a denominator of 100.

A percent is a ratio comparing a number
to \qquad Write the ratio

$$
=\frac{}{100}
$$

\qquad
as a \qquad —.

So, the percent of games won by the Phoenix Suns is \qquad .

(B) 0.524

To write a percent as a decimal, divide by \qquad .
To write a decimal as a percent,
\qquad by 100.

$$
0.524 \times 100=52.4
$$

To multiply by 100 , move the decimal
point 2 places to the \qquad -.
$0.524=$ \qquad \%

So, the percent of games won by the Miami Heat is \qquad .

Because they won a greater percentage of their games, the \qquad were more successful during the 2008-2009 season.
connect You can use what you know about fractions, decimals, and percents to write numbers in different forms.

(1) Example

(A) Write 0.7 as a fraction and as a percent.
0.7 means 7 \qquad . Write
0.7 as a fraction.
$0.7=-7$

ERROR Alert

If you want to write 0.7 as a percent without first writing it as a fraction, be sure to place a zero in the hundredths place when you move the decimal
point 2 places to the right. when you move the decima
point 2 places to the right.
Write the ratio of \qquad to

$$
=\frac{7 x}{10 x}
$$

of \qquad .
To write as a percent, first write
an equivalent fraction with a denominator

$$
0.7=0.70=70 \%
$$

$$
\begin{aligned}
& =\overline{100} \\
& =
\end{aligned}
$$

So, 0.7 written as a fraction is \qquad , and
0.7 written as a percent is \qquad .

B Write $\frac{3}{40}$ as a decimal and as a percent.
Since 40 is not a factor of 100, it is more difficult to find an equivalent fraction with a denominator of 100 .

Use division to write $\frac{3}{40}$ as a decimal.
Divide 3 by 40 .

To write a decimal as a percent,
\qquad by 100 .

$$
\frac{3}{40}=0.075
$$

Move the decimal point 2 places to the
\qquad .

So, $\frac{3}{40}$ written as a decimal is \qquad , and
$\frac{3}{40}$ written as a percent is \qquad .

$$
\underset{61}{0.075}=
$$

\qquad .

Math

 -Explain why it makes sense that $\frac{3}{40}$ is less than 10%.
\qquad

Share and Show

MATH BOARD

Write the fraction or decimal as a percent.

1. $\frac{3}{25}$
$\frac{3 x}{25 x}=\frac{}{100}$
2. $\frac{3}{10}$
3. 0.717
4. 0.02

On Your Own

Write the number in two other forms (fraction, decimal, or percent).
5. 0.01
6. $\frac{13}{40}$
7. $\frac{6}{5}$
8. 0.008

The table shows the portion of Kim's class that participates in each sport. Use the table for 9-10.
9. FIDEEPER Do more students take part in soccer or in swimming? Explain your reasoning.

Participation in Sports	
Sport	Part of Class
Baseball	23%
Soccer	$\frac{1}{5}$
Swimming	0.09

10. Mathenaical (6) Explain What percent of Kim's class participates in one of the sports listed? Explain how you found your answer.
\qquad
\qquad
11. THINKSMARTER For their reading project, students chose to either complete a character study, or write a book review. $\frac{1}{5}$ of the students completed a character study, and 0.8 of the students wrote a book review. Joia said that more students wrote a book review than completed a character study. Do you agree with Joia? Use numbers and words to support your answer.

Connect to Art

Sand Sculptures

Every year, dozens of teams compete in the U.S. Open Sandcastle Competition. Recent winners have included complex sculptures in the shape of flowers, elephants, and racing cars.

Teams that participate in the contest build their sculptures using a mixture of sand and water. Finding the correct ratios of these ingredients is essential for creating a stable sculpture.

The table shows the recipes that three teams used. Which team used the greatest percent of sand in their recipe?

Convert to percents. Then order from least to greatest.

Team A	$\frac{30}{30+10}=\frac{30}{40}=0.75=\square \%$
Team B	$\frac{19}{20}=\frac{19 \times}{20 \times}=\frac{}{100}=\square \%$
Team C	$0.84=\square \%$

From least to greatest, the percents are \qquad .

So, Team \qquad used the greatest percent of sand.

Solve.

12. Which team used the greatest percent of water in their recipe?
\qquad
13. Some people say that the ideal recipe for sand sculptures contains 88.9% sand. Which team's recipe is closest to the ideal recipe?
\qquad
14. THINKSMARTER Team D used a recipe that consists of 20 cups of sand, 2 cups of flour, and 3 cups of water. How does the percent of sand in Team D's recipe compare to that of the other teams?

\qquad

Mid-Chapter Checkpoint

Vocabulary

Choose the best term from the box to complete the sentence.

1. A \qquad is a ratio that compares a quantity to 100 . (p. 195)

Concepts and Skills

Write a ratio and a percent to represent the shaded part. (6.RP.3c)
2.

3.

\qquad
6.

5.

\qquad

Write the number in two other forms (fraction, decimal, or percent). (6.RP.3c)
8. 0.04

12. 0.9
0.9
9. $\frac{3}{10}$
\qquad
13. 0.5%
14. $\frac{7}{8}$
10. 1%
\qquad

\square

11. $1 \frac{1}{5}$
12. 355%
13. About $\frac{9}{10}$ of the avocados grown in the United States are grown in California. About what percent of the avocados grown in the United States are grown in California? (6.RP.3c)
14. Morton made 36 out of 48 free throws last season. What percent of his free throws did Morton make? (6.RP.3c)
15. Sarah answered 85% of the trivia questions correctly. What fraction describes this percent? (6.RP.3c)
16. About $\frac{4}{5}$ of all the orange juice in the world is produced in Brazil. About what percent of all the orange juice in the world is produced in Brazil? (6.RP.3c)
17. If you eat 4 medium strawberries, you get 48% of your daily recommended amount of vitamin C. What fraction of your daily amount of vitamin C do you still need? (6.RP.3c)

Percent of a Quantity

Essential Question How do you find a percent of a quantity?

Unlock the Problem

A typical family of four uses about 400 gallons of water each day, and 30% of this water is for outdoor activities, such as gardening. How many gallons of water does a typical family of four use each day for outdoor activities?

(1)One Way Use ratio reasoning.

Draw a bar model.

The model shows that 100% represents 400 gallons.
Think: 30% is 3 groups of 10%, so divide the model into 10 equal groups.
Find the value of 10% of 400 .

Find the value of 30% of 400 .
10% of $400=\frac{1}{10} \times 400=\underline{400}=$ \qquad

(1) Another Way mutipy,

You can find 30% of 400 by multiplying.
Write the percent as a rate per 100.

$$
30 \%=\frac{30}{100}
$$

Multiply to find $\frac{30}{100}$ of 400.

$$
\frac{30}{100} \times 400=
$$

\qquad
So, 30% of 400 gallons is \qquad gallons.

Try This! Find 65\% of 300.

How can you find the number of gallons of water used for indoor activities?
$65 \%=$ \qquad
\qquad $\times 300=$ \qquad

(1) Example

Charla earns $\$ 4,000$ per month. She spends 40% of her salary on rent and 15% of her salary on groceries. How much money does Charla have left for other expenses?

STEP 1 Add to find the total percent of Charla's salary that is used for rent and groceries.
$40 \%+$ \qquad $\%=$ \qquad \%

STEP 2 Subtract the total percent from 100% to find the percent that is left for other expenses.

100\% - \qquad $\%=45 \%$

STEP 3 Write the percent from Step 2 as a rate per 100 and multiply.
$45 \%=$ \qquad
\qquad $\times 4,000=$ \qquad Math
Talk

Mathematical Practices
Explain how you could solve the problem a different way.

Share and Show

MATH
 BOARD

Find the percent of the quantity.

1. 25% of 320
$25 \%=\frac{1}{4}$, so use \qquad equal groups.
$\frac{1}{4} \times 320=320=$ \qquad left for other expenses.
So, Charla has \$ \qquad

2. 80% of 50
\qquad
3. 175% of 24
4. 60% of 210
5. A jar contains 125 marbles. Given that 4% of the marbles are green, 60% of the marbles are blue, and the rest are red, how many red marbles are in the jar?
6. There are 32 students in Mr. Moreno's class and 62.5% of the students are girls. How many boys are in the class?

Name

On Your Own

Find the percent of the quantity.
7. 60% of 90
8. 25% of 32.4
11. A baker made 60 muffins for a cafe. By noon, 45% of the muffins were sold. How many muffins were sold by noon?
\qquad
13. A school library has 260 DVDs in its collection. Given that 45% of the DVDs are about science and 40% are about history, how many of the DVDs are about other subjects?
\qquad
9. 110% of 300
10. 0.2% of 6,500
12. There are 30 treasures hidden in a castle in a video game. LaToya found 80% of them. How many of the treasures did LaToya find?
14. H■DEEPER Mitch planted cabbage, squash, and carrots on his 150-acre farm. He planted half the farm with squash and 22% with carrots. How many acres did he plant with cabbage?
\qquad

Compare. Write $<,>$, or $=$.
15. 45% of 60

16. 10% of 90

90% of 100
17. 75% of 8
 8% of 7.5
18. THINKSMARIER Sarah had 12 free throw attempts during a game and made at least 75% of the free throws. What is the greatest number of free throws Sarah could have missed during the game?

19.

Marifmaical 3. Chrissie likes to tip a server in a restaurant a minimum of 20%. She and her friend have a lunch bill that is $\$ 18.34$. Chrissie says the tip will be $\$ 3.30$. Her friend says that is not a minimum of 20%. Who is correct? Explain.
\qquad
\qquad
20. One-third of the juniors in the Linwood High School Marching Band play the trumpet. The band has 50 members and the table shows what percent of the band members are freshmen, sophomores, juniors, and seniors. How many juniors play the trumpet?
a. What do you need to find?
\qquad
\qquad
b. How can you use the table to help you solve the problem?

Linwood High School Marching Band

Freshmen	26%
Sophomores	30%
Juniors	24%
Seniors	20%

c. What operation can you use to find the number of juniors in the band?
\qquad
d. Show the steps you use to solve the problem.
e. Complete the sentences.

The band has \qquad members. There
are \qquad juniors in the band. The number of juniors who play the trumpet is \qquad .
21. THINKSMARTER Compare. Circle $<,>$, or $=$.

21a. 25% of $44 \begin{aligned} & < \\ & > \\ & >\end{aligned} 20 \%$ of $50 \quad$ 21b. 10% of $30 \begin{aligned} & < \\ & > \\ & =\end{aligned} 30 \%$ of 100
21c. 35% of $60 \begin{aligned} & < \\ & >60 \% \text { of } 35 \\ & =\end{aligned}$

Problem Solving • Percents

Essential Question How can you use the strategy use a model to help you solve a percent problem?

Unlock the Problem

The recommended daily amount of protein is about 50 grams. One Super Protein Cereal Bar contains 16% of that amount of protein. If Stefon eats one Super Protein Cereal Bar per day, how much protein will he need to get from other sources to meet the recommended daily amount?

Use the graphic organizer to help you solve the problem.

Read the Problem

What do I need to find?
Write what you need to find.
\qquad
\qquad
\qquad
\qquad

What information do I need to use?

Write the important information.

How will I use the information?

What strategy can you use?
\qquad
\qquad
\qquad
\qquad

Solve the Problem

Draw a bar model.

(1) Try Another Problem

Lee has saved 65% of the money she needs to buy a pair of jeans that cost $\$ 24$. How much money does Lee have, and how much more money does she need to buy the jeans?

Read the Problem

What do I need to find?	What information do I need to use?

Solve the Problem

How will I use the information?

1. Does your answer make sense? Explain how you know.
\qquad
\qquad
 in a different way.

Name

Share and Show

MATH BOARD

1. A geologist visits 40 volcanoes in Alaska and California. 15% of the volcanoes are in California. How many volcanoes does the geologist visit in California and how many in Alaska?
First, draw a bar model.

Next, find 1%.
$100 \%=40$, so 1% of $40=\frac{40}{100}=$ \qquad
Then, find 15%, the number of volcanoes in California.
15% of $40=15 \times$ \qquad $=$ \qquad
Finally, subtract to find the number of volcanoes in Alaska.
So, the geologist visited \qquad volcanoes in California and \qquad volcanoes in Alaska.
2. IHINKSMARTER What if 30% of the volcanoes were in California? How many volcanoes would the geologist have visited in California and how many in Alaska?
3. Ricardo has $\$ 25$ to spend on school supplies. He spends 72% of the money on a backpack and the rest on a large binder. How much does he spend on the backpack? How much does he spend on the binder?
\qquad
4. Kevin is hiking on a trail that is 4.2 miles long. So far, he has hiked 80% of the total distance. How many more miles does Kevin have to hike in order to complete the trail?
\qquad
\qquad

On Your Own

5. HロDEEPER Jordan takes 50% of the cherries from a bowl. Then Mei takes 50% of the remaining cherries. Finally, Greg takes 50% of the remaining cherries. There are 3 cherries left. How many cherries were in the bowl before Jordan arrived?
6. THINKSMARTER Each week, Tasha saves 65% of the money she earns babysitting and spends the rest. This week she earned $\$ 40$. How much more money did she save than spend this week?

7. THINKSMARTER An employee at a state park has 53 photos of animals found at the park. She wants to arrange the photos in rows so that every row except the bottom row has the same number of photos. She also wants there to be at least 5 rows. Describe two different ways she can arrange the photos.
\qquad
\qquad
8. Marinarical (6) Explain a Method Maya wants to mark a length of 7 inches on a sheet of paper, but she does not have a ruler. She has pieces of wood that are 4 inches, 5 inches, and 6 inches long. Explain how she can use these pieces to mark a length of 7 inches.
\qquad
\qquad
\qquad
\qquad
Personal Math Trainer
9. THINKSMARTER Pierre's family is driving 380 miles from San Francisco to Los Angeles. On the first day, they drive 30% of the distance. On the second day, they drive 50% of the distance. On the third day, they drive the remaining distance and arrive in Los Angeles. How many miles did Pierre's family drive each day? Write the number of miles in the correct box.

\qquad

Find the Whole From a Percent

Essential Question How can you find the whole given a part and the percent?

A percent is equivalent to the ratio of a part to a whole. Suppose there are 20 marbles in a bag and 5 of them are blue. The whole is the total number of marbles, 20 . The part is the number of blue marbles, 5 . The ratio of the part to the whole, $\frac{5}{20}$, is equal to the percent of marbles that are blue, 25%.

$$
\underset{\text { whole }}{\text { part }} \rightarrow \frac{5}{20}=\frac{5 \times 5}{20 \times 5}=\frac{25}{100}=25 \% \leftarrow \text { percent }
$$

You can use the relationship among the part, the whole, and the

Ratios and Proportional Relationships-6.RP.3c MATHEMATICAL PRACTICES MP.1, MP. 4
 percent to solve problems.

1 Unlock the Problem

Emily has sent 28 text messages so far this week. That is 20% of the total number of text messages she is allowed in one week. What is the total number of text messages Emily can send in one week?

Q) One Way Use a double number line.

Think: The whole is the total number of messages Emily can send.
The part is the number of messages Emily has sent so far.
The double number line shows that 20\% represents 28 messages.
Find the number of messages represented by 100%.

So, 28 is 20% of \qquad Emily can send
\qquad messages in one week.

Mathematical Practices

Explain the relationship among the part, the whole, and the percent using the information in this problem.

(1) Another Way use equivalent ratios.

STEP 1 Write the relationship among the percent, part, and whole.

$$
\text { percent }=\frac{\text { part }}{\text { whole }}
$$

Think: The percent is \qquad \%. The part is \qquad messages. The
\qquad is unknown.

$$
20 \%=\square
$$

STEP 2 Write the percent as a ratio.

$$
20=\frac{28}{}
$$

STEP 3 Simplify the known ratio.

$$
\frac{20 \div 20}{100 \div}=\frac{1}{\square}=\frac{28}{\square}
$$

STEP 4 Write an equivalent ratio.
Think: The numerator should be \qquad

$$
\begin{aligned}
\frac{1 \times 28}{5 \times 28} & =\frac{28}{} \\
\boxed{28} & =28
\end{aligned}
$$

So, 28 is 20% of \qquad . Emily can send \qquad messages in one week.

1
 Example
 24 is 5% of what number?

STEP 1 Write the relationship among the percent, part, and whole.

$$
\text { percent }=\frac{\text { part }}{\text { whole }}
$$

Think: The percent is \qquad \%. The part
is \qquad . The \qquad is unknown.

$$
5 \%=
$$

\qquad

STEP 2 Write the percent as a ratio.

$$
5=\frac{24}{}
$$

STEP 3 Simplify the known ratio.

$$
\frac{5 \div}{100 \div}=\frac{1}{\square}=\frac{24}{}
$$

STEP 4 Write an equivalent ratio.

Think: The numerator should be \qquad .

So, 24 is 5% of \qquad .
\qquad

Share and Show

MATH

BOARD

Find the unknown value.

1. 9 is 25% of \qquad

2. 14 is 10% of \qquad 3. 3 is 5% of \qquad 4. 12 is 60% of \qquad

Explain how to solve a problem involving a part, a whole, and a percent.

On Your Own

Find the unknown value.

5. 16 is 20% of \qquad

6. 42 is 50% of \qquad
7. 28 is 40% of \qquad
8. 60 is 75% of \qquad
9. 27 is 30% of \qquad 10. 21 is 60% of \qquad 11. 12 is 15% of \qquad

Solve.
13. There were 170 people at the concert.
12. 40% of the students in the sixth grade at Andrew's school participate in sports. If 52 students participate in sports, how many sixth graders are there at Andrew's school?

If 85% of the seats were filled, how many seats are in the auditorium?
\qquad

aidematica

2) Use Reasoning
14. $40 \%=\underline{32}$
15. $65 \%=\underline{91}$
16. $45 \%=\underline{54}$

Problem Solving • Applications (near $\begin{gathered}\text { world }\end{gathered}$

Use the advertisement for 17 and 18.

17. Corey spent 20% of his savings on a printer at Louie's Electronics. How much did Corey have in his savings account before he bought the printer?
\qquad
18. IHINKSMARTER Kai spent 90% of his money on a laptop that cost $\$ 423$. Does he have enough money left to buy a scanner? Explain.
19. Maurice has completed 17 pages of the research paper he is writing. That is 85% of the required length of the paper. What is the required
 length of the paper?
20. $5 \square D E E P E R$ Of 250 seventh-grade students, 175 walk to school. What percent of seventh-graders do not walk to school?
21. What's the Error? Kate has made 20 free throws in basketball games this year. That is 80% of the free throws she has attempted. To find the total number of free throws she attempted, Kate wrote the equation $\frac{80}{100}=\frac{}{20}$. What error did Kate make?
\qquad
\qquad

Personal Math Trainer

22. IHINK SMARTER Maria spent 36% of her savings to buy a smart phone. The phone cost $\$ 90$. How much money was in Maria's savings account before she purchased the phone? Find the unknown value.

\qquad

(V)Chapter 5 Review/Test

1. What percent is represented by the shaded part?

(A) 46%
(B) 60%
(C) 64%
(D) 640%
2. Write a percent to represent the shaded part.

3. Rosa made a mosaic wall mural using 42 black tiles, 35 blue tiles and 23 red tiles. Write a percent to represent the number of red tiles in the mural.
4. Model 39\%.

5. For 5a-5d, choose Yes or No to indicate whether the percent and the fraction represent the same amount.
5a. 50% and $\frac{1}{2}$O No
5b. 45% and $\frac{4}{5}$O No
5c. $\frac{3}{8}$ and 37.5%
○ YesNo
5d. $\frac{2}{10}$ and 210%
O YesNo
6. The school orchestra has 25 woodwind instruments, 15 percussion instruments, 31 string instruments, and 30 brass instruments. Select the portion of the instruments that are percussion. Mark all that apply.

○ 15%
○ 1.5

- $\frac{3}{20}$
$\bigcirc 0.15$

7. For a science project, $\frac{3}{4}$ of the students chose to make a poster and 0.25 of the students wrote a report. Rosa said that more students made a poster than wrote a report. Do you agree with Rosa? Use numbers and words to support your answer.
\square
8. Select other ways to write 0.875 . Mark all that apply.875%
○ 87.5%

- $\frac{7}{8}$
$\frac{875}{100}$

Name

9. There are 88 marbles in a bin and 25% of the marbles are red.

10. Harrison has 30 CDs in his music collection. If 40% of the CDs are country music and 30% are pop music, how many CDs are other types of music?
\qquad CDs
11. For numbers 11a-11b, choose $<,>$, or $=$.

12. There were 200 people who voted at the town council meeting. Of these people, 40% voted for building a new basketball court in the park. How many people voted against building the new basketball court? Use numbers and words to explain your answer.

13. James and Sarah went out to lunch. The price of lunch for both of them was $\$ 20$. They tipped their server 20% of that amount. How much did each person pay if they shared the price of lunch and the tip equally?
14. A sandwich shop has 30 stores and 60% of the stores are in California. The rest of the stores are in Nevada.

Part A

How many stores are in California and how many are in Nevada?

Part B

The shop opens 10 new stores. Some are in California, and some are in Nevada. Complete the table.

Locations of Sandwich Shops

	Percent of Stores	Number of Stores
California		
Nevada	45%	

15. Juanita has saved 35% of the money that she needs to buy a new bicycle. If she has saved $\$ 63$, how much money does the bicycle cost? Use numbers and words to explain your answer.

Name

16. For 16a-16d, choose Yes or No to indicate whether the statement is correct.
16a. 12 is 20% of 60 .
Yes
O No
16b. 24 is 50% of 48 .
Yes
No
16c. $\quad 14$ is 75% of 20 .
Yes
O No
16d. 9 is 30% of 30 .
Yes
17. Heather and her family are going to the grand opening of a new amusement park. There is a special price on tickets this weekend. Tickets cost $\$ 56$ each. This is 70% of the cost of a regular price ticket.

Part A

What is the cost of a regular price ticket? Show your work.
\square

Part B

Heather's mom says that they would save more than $\$ 100$ if they buy 4 tickets for their family on opening weekend. Do you agree or disagree with Heather's mom? Use numbers and words to support your answer. If her statement is incorrect, explain the correct way to solve it.
\square
18. Elise said that 0.2 equals 2%. Use words and numbers to explain her mistake.

19. Write 18% as a fraction.
20. Noah wants to put a variety of fish in his new fish tank. His tank is large enough to hold a maximum of 70 fish.

Part A

Complete the table.

Type of Fish	Percent of Maximum Number	Number of Fish in Tank
Rainbow fish	20%	
Swordtail	40%	
Molly	30%	

Part B

Has Noah put the maximum number of fish in his tank? Use number and words to explain how you know. If he has not put the maximum number of fish in the tank, how many more fish could he put in the tank?
\square

Units of Measure

Show What You Know

Check your understanding of important skills.
Name \qquad
$>$ Choose the Appropriate Unit Circle the more reasonable unit to measure the object.

1. the length of a car inches or feet
2. the length of a soccer field meters or kilometers

Multiply and Divide by 10, 100, and 1,000 Use mental math.
3. 2.51×10
4. 5.3×100
6. $3.25 \div 10$
\qquad -

Convert Units Complete.

9. $12 \mathrm{lb}=\square \mathrm{oz}$

Think: $1 \mathrm{lb}=16 \mathrm{oz}$
7. $8.65 \div 100$
\qquad
10. $8 \mathrm{c}=\square \mathrm{pt}$

Think: $2 \mathrm{c}=1 \mathrm{pt}$
\qquad

PD Datective

A cheetah can run at a rate of 105,600 yards per hour. Be a math detective and find the number of miles the cheetah could run at this rate in 5 minutes.
5. $0.71 \times 1,000$
8. $56.2 \div 1,000$
\qquad
11. $84 \mathrm{in} .=\square \mathrm{ft}$

Think: $12 \mathrm{in} .=1 \mathrm{ft}$

Vocabulary Builder

Visualize It

Sort the review words into the Venn diagram. One preview word has been filled in for you.

Understand Vocabulary

Complete the sentences by using the checked words.

Review Words

\checkmark gallon
gram
\checkmark length
liter
\checkmark mass
meter
ounce
pint
pound
\checkmark quart
ton
\checkmark weight

Preview Words
\checkmark capacity
\checkmark conversion factor

1. A rate in which the two quantities are equal but use different units is called a \qquad .
2. \qquad is the the amount of matter in an object.
3. \qquad is the amount a container can hold.
4. The \qquad of an object tells how heavy the object is.
5. Inches, feet, and yards are all customary units used to measure
\qquad .
6. A \qquad is a larger unit of capacity than a quart.

Ratios and Proportional Relationships-6.RP.3d mathematical practices MP.1, MP.2, MP. 6

Customary Units of Length

1 foot (ft) = 12 inches (in.) 1 yard $(\mathrm{yd})=36$ inches 1 yard $=3$ feet 1 mile (mi) $=5,280$ feet 1 mile $=1,760$ yards

Convert Units of Length

Essential Question How can you use ratio reasoning to convert from one unit of length to another?

1
In the customary measurement system, some of the common units of length are inches, feet, yards, and miles. You can multiply by an appropriate conversion factor to convert between units. A conversion factor is a rate in which the two quantities are equal, but use different units.

Math Idea

When the same unit appears in a numerator and a denominator, you can divide out the common unit before multiplying as you would with a common factor.

Unlock the Problem

In a soccer game, Kyle scored a goal. Kyle was 33 feet from the goal. How many yards from the goal was he?

\square
Convert 33 feet to yards.

Choose a conversion factor. Think: I'm converting to yards from feet.

Multiply 33 feet by the conversion factor. Units of feet appear in a numerator and a denominator, so you can divide out these units before multiplying.

So, Kyle was \qquad yards from the goal.

\square
How many inches from the goal was Kyle?
Choose a conversion factor. Think: I'm converting to inches from feet.

Multiply 33 ft by the conversion factor.
1 yard $=3$ feet, so use the rate $\frac{1 \mathrm{yd}}{3 \mathrm{ft}}$.
$33 \mathrm{ft} \times \frac{1 \mathrm{yd}}{3 \mathrm{ft}}=\frac{33 \mathrm{ft}}{1} \times \frac{1 \mathrm{yd}}{3 \mathrm{ft}}=$ \qquad yd

So, Kyle was \qquad inches from the goal.

12 inches $=1$ foot, so use the rate $\frac{12 \mathrm{in}}{1 \mathrm{ft}}$.
$33 \mathrm{ft} \times \frac{12 \mathrm{in} .}{1 \mathrm{ft}}=\frac{33 \mathrm{ft}}{1} \times \frac{12 \mathrm{in} .}{1 \mathrm{ft}}=$ \qquad in.

Explain how you know which unit to use in the numerator and which unit to use in the denominator of a conversion factor.

Metric Units You can use a similar process to convert metric units. Metric units are used throughout most of the world. One advantage of using the metric system is that the units are related by powers of 10 .

Metric Units of Length

1,000 millimeters $(\mathrm{mm})=1$ meter (m)
100 centimeters $(\mathrm{cm})=1$ meter
10 decimeters $(\mathrm{dm})=1$ meter
1 dekameter $(\mathrm{dam})=10$ meters
1 hectometer $(\mathrm{hm})=100$ meters 1 kilometer $(\mathrm{km})=1,000$ meters

18Example ${ }_{A}$ Boeing 777 -300 passenger airplane is 73.9 meters long. What is the length of the airplane in centimeters? What is the length in kilometers?

() One Way use a conversion factor.

ERROR Alert

Be sure to use the correct conversion factor. The units you are converting from should divide out, leaving only the units you are converting to.

Multiply 73.9 meters by the conversion factor. Divide out the common units before $\frac{73.9 \mathrm{nt}}{1} \times \frac{\mathrm{cm}}{\mathrm{xt}}=$ \qquad CM multiplying.

So, 73.9 meters is equal to \qquad centimeters.

(1) Another Way use powers of 10 .

Metric units are related to each other by factors of 10.

73.9 meters $=\square$ kilometers

Use the chart.
Kilometers are 3 places to the left of meters in the chart. Move the decimal point 3 places to the left. This is the
same as dividing by 1,000 .

Math

Talk

Mathematical Practices

If you convert 285 centimeters to decimeters, will the number of decimeters be greater or less than the number of centimeters? Explain.

Share and Show

Convert to the given unit.

1. 3 miles $=$ yards
conversion factor: $\frac{\mathrm{yd}}{\mathrm{mi}}$
3 miles $=\frac{3 \mathrm{mi}}{1} \times \frac{1,760 \mathrm{yd}}{1 \mathrm{mi}}=$ \qquad yd
2. $9 \mathrm{yd}=$ \qquad in.
3. $72 \mathrm{ft}=$ \qquad yd
4. $43 \mathrm{dm}=$ \qquad hm

Mathematical Practices
Explain how to convert from inches to yards and yards to inches.

On Your Own

6. Rohan used 9 yards of ribbon to wrap gifts. How many inches of ribbon did he use?
\qquad
7. The height of the Empire State Building measured to the top of the lightning rod is approximately 443.1 meters. What is this height in hectometers?
8. One species of frog can grow to a maximum length of 12.4 millimeters. What is the maximum length of this frog species in centimeters?
9. GПDEEPER A snail moves at a speed of 2.5 feet per minute. How many yards will the snail have moved in half of an hour?

Practice: Copy and Solve Compare. Write $<,>$, or $=$.
10. 32 feet
 11 yards
11. 537 cm
 5.37 m
12. 75 inches
 6 feet

Problem Solving • Applications eraid

What's the Error?

13. THINK SMARTER

The Redwood National Park is home to some of the largest trees in the world. Hyperion is the tallest tree in the park, with a height of approximately 379 feet. Tom wants to find the height of the tree in yards.

Tom converted the height this way:

$$
\begin{gathered}
\quad 3 \mathrm{feet}=1 \text { yard } \\
\text { conversion factor: } \frac{3 \mathrm{ft}}{1 \mathrm{yd}} \\
\frac{379 \mathrm{ft}}{1} \times \frac{3 \mathrm{ft}}{1 \mathrm{yd}}=1,137 \mathrm{yd}
\end{gathered}
$$

Find and describe Tom's error.

So, 379 feet = \qquad yards.
$\left.\begin{array}{c}\text { MATHEMATICAL } \\ \text { PRACICE } \\ 6\end{array}\right)$ Explain how you knew Tom's answer was incorrect.
\qquad
\qquad
14. THINKSMARTER Choose $<,>$, or $=$.

\qquad

Convert Units of Capacity

Essential Question How can you use ratio reasoning to convert from one unit of capacity to another?

Ratios and Proportional Relationships-6.RP.3d
MATHEMATICAL PRACTICES
MP.2, MP.4, MP.6, MP. 8

Customary Units of Capacity

8 fluid ounces (fl oz) $=1$ cup (c)
2 cups $=1$ pint (pt)
2 pints $=1$ quart (qt)
4 cups $=1$ quart
4 quarts $=1$ gallon (gal)

Unlock the Problem

A dairy cow produces about 25 quarts of milk each day. How many gallons of milk does the cow produce each day?

- How are quarts and gallons related?
- Why can you multiply a quantity by $\frac{1 \text { gal }}{4 \text { qt }}$ without changing the value of the quantity?

(1) Convert 25 quarts to gallons.

Choose a conversion factor. Think: I'm converting to gallons from quarts.

Multiply 25 qt by the conversion factor.

The fractional part of the answer can be renamed using the smaller unit.

1 gallon $=4$ quarts, so use the rate $\frac{1 \text { gal }}{4 q t}$.
$25 q t \times \frac{1 \mathrm{gal}}{4 g t}=\frac{25 g^{t}}{1} \times \frac{1 \mathrm{gal}}{4 g t}=6 \frac{}{4} \mathrm{gal}$
$6 \frac{}{4}$ gal x \qquad gallons, \qquad quart

So, the cow produces \qquad gallons, \qquad quart of milk each day.

\square
How many pints of milk does a cow produce each day?
Choose a conversion factor. Think: I'm converting to pints from quarts.

Multiply 25 qt by the conversion factor.

$$
25 q t \times \frac{p t}{q t}=\frac{25 g t}{1} \times \frac{p t}{g t}=
$$

\qquad

So, the cow produces \qquad pints of milk each day.

Metric Units You can use a similar process to convert metric units of capacity. Just like metric units of length, metric units of capacity are related by powers of 10 .

Metric Units of Capacity

1,000 milliliters $(\mathrm{mL})=1$ liter (L) 100 centiliters (cL) $=1$ liter 10 deciliters $(\mathrm{dL})=1$ liter 1 dekaliter (daL) $=10$ liters 1 hectoliter (hL) = 100 liters 1 kiloliter $(\mathrm{KL})=1,000$ liters

\squareExample Apiece of Native American potery has a capacity of 1.7 liters. What is the capacity of the pot in dekaliters? What is the capacity in milliliters?

1) One Way use a conversion factor.

	1.7 liters $=\square$ dekaliters
Choose a conversion factor.	1 dekaliter $=10$ liters, so use the rate
	$\frac{\text { daL }}{\mathrm{L}}$.

Multiply 1.7 L by the conversion $\frac{1.7 \not \subset}{1} \times \frac{d a \mathrm{~L}}{\nvdash}=\square$ daL
factor.
So, 1.7 liters is equivalent to \qquad dekaliter.

(1) Another Way use powers of 10 .

1.7 liters $=\square$ milliliters

Use the chart.
Milliliters are 3 places to the right of liters. So, $1.7 \quad 1700$. move the decimal point 3 places to the right.

So, 1.7 liters is equal to \qquad milliliters.

Math
Talk
Explain why you cannot convert between units in the customary system by moving the decimal point left or right.

- Manipmanical (6) Describe a Method Describe how you would convert kiloliters to milliliters.

Share and Show

Convert to the given unit.

1. 5 quarts $=\square$ cups
conversion factor: $\frac{\mathrm{c}}{\mathrm{qt}}$

5 quarts $=\frac{5 \mathrm{qt}}{1} \times \frac{4 \mathrm{c}}{1 \mathrm{qt}}=$ \qquad c
\qquad L
4. $36 \mathrm{qt}=$ \qquad gal
2. 6.7 liters $=$ \qquad hectoliters
3. $5.3 \mathrm{~kL}=$

5. $5,000 \mathrm{~mL}=$ \qquad cL

On Your Own

6. It takes 41 gallons of water for a washing machine to wash a load of laundry. How many quarts of water does it take to wash one load?
7. Mandinaical 2 Reason Quantitatively A bottle contains 3.78 liters of water. Without calculating, determine whether there are more or less than 3.78 deciliters of water in the bottle. Explain your reasoning.
8. Sam squeezed 237 milliliters of juice from 4 oranges. How many liters of juice did Sam squeeze?
9. HDDEEPER Tonya has a 1-quart, a 2-quart, and a 3 -quart bowl. A recipe asks for 16 ounces of milk. If Tonya is going to triple the recipe, what is the smallest bowl that will hold the milk?
\qquad
\qquad
Practice: Copy and Solve Compare. Write $<,>$, or $=$.
10. $700,000 \mathrm{~L} \circlearrowleft 70 \mathrm{~kL}$
11. $10 \mathrm{pt} \bigcirc 5 \mathrm{qt}$

12. $6 \mathrm{gal} \bigcirc 30 \mathrm{qt}$
13. 500 mL
 50 L
14. 54 kL
 $540,000 \mathrm{dL}$

Unlock the Problem

16. THINKSMARIER Jeffrey is loading cases of bottled water onto a freight elevator. There are 24 one-pint bottles in each case. The maximum weight that the elevator can
 carry is 1,000 pounds. If 1 gallon of water weighs 8.35 pounds, what is the maximum number of full cases Jeffrey can load onto the elevator?
a. What do you need to find?
\qquad
\qquad
\qquad
b. How can you find the weight of 1 case of bottled water? What is the weight?
\qquad
\qquad
\qquad
\qquad
\qquad
17. FDDEEPER Monica put 1 liter, 1 deciliter, 1 centiliter, and 1 milliliter of water into a bowl. How many milliliters of water did she put in the bowl?
18. THINKSMARTER Select the conversions that are equivalent to 235 liters. Mark all that apply.
(A) 235,000 milliliters
(B) 0.235 milliliters
(C) 235,000 kiloliters
(D) 0.235 kiloliters

Convert Units of Weight and Mass

Essential Question How can you use ratio reasoning to convert from one unit of weight or mass to another?

The weight of an object is a measure of how heavy it is. Units of weight in the customary measurement system include ounces, pounds, and tons.

Ratios and Proportional Relationships-6.RP.3d
 Ratios and Proportional Relationships-6.RP.3d
 MATHEMATICAL PRACTICES
 MP.1, MP.2, MP.3, MP. 4
 Customary Units of Weight
 $\begin{aligned} 1 \text { pound }(\mathrm{lb}) & =16 \text { ounces }(o z) \\ 1 \text { ton }(T) & =2,000 \text { pounds }\end{aligned}$
 $\begin{aligned} 1 \text { pound }(\mathrm{Ib}) & =16 \text { ounces }(o z) \\ 1 \text { ton }(T) & =2,000 \text { pounds }\end{aligned}$

Metric Units The amount of matter in an object is called the mass. Metric units of mass are related by powers of 10 .

Metric Units of Mass

1,000 milligrams $(\mathrm{mg})=1$ gram (g)
100 centigrams $(\mathrm{cg})=1$ gram
10 decigrams $(\mathrm{dg})=1$ gram
1 dekagram $($ dag $)=10$ grams
1 hectogram (hg) = 100 grams
1 kilogram $(\mathrm{kg})=1,000$ grams
(1) Example corinne caught a trout with a mass of 2,570 grams. What was the mass of the trout in centigrams? What was the mass in kilograms?

1. One Way use a conversion factor.

2,570 grams to centigrams

Choose a conversion factor. $\quad 100 \mathrm{cg}=1 \mathrm{~g}$, so use the rate $\frac{\mathrm{cg}}{\mathrm{g}}$.

[^1]$\frac{2,570 \not \mathscr{1}}{1} \times \frac{100 \mathrm{cg}}{1 \not \varnothing}=$ \qquad cg

So, the trout's mass was \qquad centigrams.

(1) Another Way use powers of 10 .

Recall that metric units are related to each other by factors of 10 .

2,570 grams to kilograms

Use the chart.
Kilograms are 3 places to the left of grams.
Move the decimal point 3 places to the left.
2570. 2.570

So, 2,570 grams = \qquad kilograms.
2.

Describe Relationships Suppose hoots and goots are units of weight, and 2 hoots $=4$ goots. Which is heavier, a hoot or a goot? Explain.

Compare objects with masses of 1 dg and 1 dag. Which has a greater mass? Explain.

Share and Show

MATH BOARD

Convert to the given unit.

1. 9 pounds $=\quad$ ounces
conversion factor: $\frac{\mathrm{oz}}{\mathrm{lb}}$

9 pounds $=9 \mathrm{lb} \times \frac{16 \mathrm{oz}}{1 \mathrm{lb}}=$ \qquad oz
3. Amanda's computer weighs 56 ounces.

How many pounds does it weigh?
2. 3.77 grams $=$ \qquad dekagram
4. A honeybee can carry 40 mg of nectar. How many grams of nectar can a honeybee carry?
\qquad

On Your Own

Convert to the given unit.

5. $4 \mathrm{lb}=$ \qquad oz
6. $7.13 \mathrm{~g}=$ \qquad cg
7. $3 \mathrm{~T}=$ \qquad lb
8. The African Goliath frog can weigh up to 7 pounds. How many ounces can the Goliath frog weigh?
9. HIDEEPER The mass of a standard hockey puck must be at least 156 grams. What is the minimum mass of 8 hockey pucks in kilograms?
\qquad

Practice: Copy and Solve Compare. Write $<,>$, or $=$.
10. 250 lb \qquad
11. 65.3 hg
 653 dag
12. 5 T
 $5,000 \mathrm{lb}$
13. THINKSMARTER Masses of precious stones are measured in carats, where 1 carat $=200$ milligrams. What is the mass of a $50-\mathrm{dg}$ diamond in carats?

Problem Solving • Applications (agold

Use the table for 14-17.

14. Express the weight range for bowling balls in pounds.
15. G■DEEPER How many more pounds does the heaviest soccer ball weigh than the heaviest baseball? Round your answer to the nearest hundredth.
16. THINK SMARTER A manufacturer produces 3 tons of baseballs per day and packs them in cartons of 24 baseballs each. If all of the balls are the minimum allowable weight, how many cartons of balls does the company produce each day?

Sport Ball Weights (in ounces)

17.

Maritmaical (5) Communicate Explain how you could use mental math to estimate the number of soccer balls it would take to produce a total weight WRITE Math • Show Your Work of 1 ton.
\qquad
\qquad
\qquad
\qquad
18. THINKSMARTER The Wilson family's newborn baby weighs 84 ounces. Choose the numbers to show the baby's weight in pounds and ounces.

\qquad

(V) Mid-Chapter Checkpoint

Vocabulary

Vocabulary

Choose the best term from the box to complete the sentence.

1. A \qquad is a rate in which the two quantities are equal, but use different units. (p. 229)
capacity
conversion factor metric system
2. \qquad is the amount a container can hold. (p. 233)

Concepts and Skills

Convert units to solve. (6.RP.3d)
3. A professional football field is 160 feet wide. What is the width of the field in yards?
\qquad
5. The mass of Hinto's math book is 4,458 grams. What is the mass of 4 math books in kilograms?
4. Julia drinks 8 cups of water per day. How many quarts of water does she drink per day?
6. Turning off the water while brushing your teeth saves 379 centiliters of water. How many liters of water can you save if you turn off the water the next 3 times you brush your teeth?
\qquad
Convert to the given unit. (6.RP.3d)
7. $34.2 \mathrm{~mm}=$ \qquad cm
10. $4 \mathrm{gal}=$ \qquad qt
8. 42 in. $=$ \qquad ft
11. $53 \mathrm{dL}=$ \qquad daL
9. $1.4 \mathrm{~km}=$ \qquad hm
12. $28 \mathrm{c}=$ \qquad
13. Trenton's laptop is 32 centimeters wide. What is the width of the laptop in decimeters? (6.RP.3d)
14. A truck is carrying 8 cars weighing an average of 4,500 pounds each. What is the total weight in tons of the cars on the truck? (6.RP.3d)
15. Ben's living room is a rectangle measuring 10 yards by 168 inches. By how many feet does the length of the room exceed the width? (6.RP.3d)
16. Jessie served 13 pints of orange juice at her party. How many quarts of orange juice did she serve? (6.RP.3d)
17. Kaylah's cell phone has a mass of 50,000 centigrams. What is the mass of her phone in grams? (6.RP.3d)

Ratios and Proportional Relationships-6.RP.3d MATHEMATICAL PRACTICES MP.1, MP.3, MP.5, MP. 6

You can sometimes use the units of the quantities in a problem to help you decide how to solve the problem.

Unlock the Problem

A car's gas mileage is the average distance the car can travel on 1 gallon of gas. Maria's car has a gas mileage of 20 miles per gallon. How many miles can Maria travel on 9 gallons of gas?

- Would you expect the answer to be greater or less than 20 miles? Why?

Transform Units

Essential Question How can you transform units to solve problems?

Analyze the units in the problem.
STEP 1 Identify the units.
You know two quantities:
the car's gas mileage and \quad Gas mileage: 20 miles per gallon $=\frac{20}{1}$ the amount of gas.

Amount of gas: 9 \qquad

You want to know a third quantity: Distance: \qquad
the distance the car can travel.
STEP 2 Determine the relationship among the units.
Think: The answer needs to have units of miles. If I multiply $\frac{20}{1 \text { gallos }}$ by 9 gallons, I can divide out units of gallons. The product will have units of
\qquad , which is what I want.

STEP 3 Use the relationship.

$$
\frac{20 \mathrm{mi}}{1 \mathrm{gal}} \times 9 \mathrm{gal}=\frac{20 \mathrm{mi}}{1 \mathrm{gat}} \times \frac{9 \mathrm{gat}}{1}=
$$

\qquad

So, Maria can travel \qquad on 9 gallons of gas.

1. Explain why the units of gallons are crossed out in the multiplication step above.
\qquad
\qquad

Sometimes you may need to convert units before solving a problem.

1. Example

The material for a rectangular awning has an area of 315 square feet. If the width of the material is 5 yards, what is the length of the material in feet? (Recall that the area of a rectangle is equal to its length times its width.)

STEP 1 Identify the units.

You know two quantities: the area of the material and the width of the

Area: $315 \mathrm{sq} \mathrm{ft}=315 \mathrm{ft} \times \mathrm{ft}$ material.

Width: 5 \qquad
You want to know a third quantity: the length of the material.

Length: $\square \mathrm{ft}$
STEP 2 Determine the relationship among the units.
Think: The answer needs to have units of feet. So, I should convert the width from yards to feet.

Width: $\frac{5 y d}{1} \times \frac{\mathrm{ft}}{1 y \mathrm{t}}=\quad \mathrm{ft}$
Think: If I divide the area by the width I can divide out units of feet. The quotient will have units of \qquad which is what I want.

Math Idea

You can write units of area as products.
$\mathrm{sq} \mathrm{ft}=\mathrm{ft} \times \mathrm{ft}$

STEP 3 Use the relationship.

Divide the area by the width to find the length.

Write the division using a fraction bar.

Write the units of area as a product and divide out the common units.

315 sq ft \div \qquad ft

So, the length of the material is \qquad .
2. Mathematical (3)Apply Explain how knowing how to find the area of a rectangle could help you solve the problem above.
\qquad
\qquad
3.

MATHEMATICAL 6 Explain why the answer is in feet even though units of feet are divided out.
\qquad
\qquad

Name

Share and Show MATH
 BOARD

1. A dripping faucet leaks 12 gallons of water per day. How many gallons does the faucet leak in 6 days?

Quantities you know: 12 and \qquad days

1
Quantity you want to know:
\qquad

$$
\frac{\text { gal }}{1 \text { day }} \times \quad \text { days }=
$$

\qquad
So, the faucet leaks \qquad in 6 days.
2. Bananas sell for $\$ 0.44$ per pound. How much will 7 pounds of bananas cost?
3. Grizzly Park is a rectangular park with an area of 24 square miles. The park is 3 miles wide. What is its length in miles?
\qquad

On Your Own

Multiply or divide the quantities.

4. $\frac{24 \mathrm{~kg}}{1 \min } \times 15 \mathrm{~min}$

元
5. $216 \mathrm{sq} \mathrm{cm} \div 8 \mathrm{~cm}$
6. $\frac{17 \mathrm{~L}}{1 \mathrm{hr}} \times 9 \mathrm{hr}$
\qquad
7. GIDEEPER

The rectangular rug in Marcia's living room measures 12 feet by 108 inches. What is the rug's area in square feet?
 A box-making machine makes cardboard boxes at a rate of 72 boxes per minute. How many minutes does it take to make 360 boxes?

Personal Math Trainer

9. THINKSMARTER The area of an Olympic-size swimming pool is 1,250 square meters. The length of the pool is 5,000 centimeters.
Select True or False for each statement.
9a. The length of the pool is 50 meters.
9b. The width of the pool is 25 meters.
9c. The area of the pool is 1.25 square kilometers
O True
○ True
O False
O True
O False

Connect to Reading

Make Predictions

A prediction is a guess about something in the future. A prediction is more likely to be accurate if it is based on facts and logical reasoning.

The Hoover Dam is one of America's largest producers of hydroelectric power. Up to 300,000 gallons of water can move through the dam's generators every second. Predict the amount of water that moves through the generators in half of an hour.

FACT 300,000 gallons per second

Use what you know about transforming units to make a prediction.

You know the rate of the water through the generators, and you are given an amount of time.

You want to find the amount of water.
Rate of flow: $\frac{\text { gal }}{1 \mathrm{sec}}$; time: $\frac{1}{2}$ \qquad

Amount of water: \square gallons

Convert the amount of time to seconds to match the units in the rate.
$\frac{1}{2} \mathrm{hr}=\quad \min$
$\frac{30 \mathrm{~min}}{1} \times \frac{\mathrm{sec}}{1 \mathrm{mint}}=$ \qquad sec

\qquad gal
Multiply the rate by the amount of time to find the amount of water.

So, a good prediction of the amount of water that moves through the
generators in half of an hour is \qquad .

Transform units to solve.
10. An average of 19,230 people tour the Hoover Dam each week. Predict the number of people touring the dam in a year.
11. THINKSMARIER The Hoover Dam generates an average of about 11,506,000 kilowatt-hours of electricity per day. Predict the number of kilowatt-hours generated in 7 weeks.

Problem Solving • Distance, Rate, and

 Time FormulasEssential Question How can you use the strategy use a formula to solve problems involving distance, rate, and time?

Ratios and Proportional
Relationships-6.RP.3d
MATHEMATICAL PRACTICES MP.1, MP. 7

You can solve problems involving distance, rate, and time by using the formulas below. In each formula, d represents distance, r represents rate, and t represents time.

Distance, Rate, and Time Formulas		
To find distance, use	To find rate, use	To find time, use
$d=r \times t$	$r=d \div t$	$t=d \div r$

Unlock the Problem

Helena drives 220 miles to visit Niagara Falls. She drives at an average speed of 55 miles per hour. How long does the trip take?

Use the graphic organizer to help you solve the problem.

Read the Problem

What do I need to find?

I need to find the \qquad the trip takes.

What information do I need to use?

I need to use the \qquad Helena travels and
the \qquad of speed her car is moving.

How will I use the information?

First I will choose the formula \qquad because I
need to find time. Next I will substitute for d and r. Then I will \qquad to find the time.
\qquad
\square

Solve the Problem

- First write the formula for finding time.

$$
t=d \div r
$$

- Next substitute the values for d and r.

$$
t=\ldots \mathrm{mi} \div \frac{\mathrm{mi}}{1 \mathrm{hr}}
$$

- Rewrite the division as multiplication by the reciprocal of $\frac{55 \mathrm{mi}}{1 \mathrm{hr}}$.
$t=\frac{m^{\prime \prime}}{1} \times \frac{1 \mathrm{hr}}{\mathrm{mpr}}=$ \qquad hr

Math
 Talk

Mathematical Practices
Explain how you know which formula to use.

So, the trip takes \qquad hours.

(1) Try Another Problem

Santiago's class traveled to the Museum of Natural Science for a field trip. To reach the destination, the bus traveled at a rate of 65 miles per hour for 2 hours. What distance did Santiago's class travel?

Choose a formula.

$$
d=r \times t \quad r=d \div t \quad t=d \div r
$$

Use the graphic organizer below to help you solve the problem.

2. Martinwaical (7) Identify Relationships Describe how to find the rate if you are given the distance and time.
\qquad
\qquad

Name

Share and Show MATH BOARD

1. Mariana runs at a rate of 180 meters per minute. How far does she run in 5 minutes?

First, choose a formula.

Next, substitute the values into the formula and solve.

So, Mariana runs \qquad in 5 minutes.
2. THINKSMARTER What if Mariana runs for 20 minutes at the same speed? How many kilometers will she run?
3. A car traveled 130 miles in 2 hours. How fast did the car travel?
\qquad
4. A subway car travels at a rate of 32 feet per second. How far does it travel in 16 seconds?
\qquad
5. A garden snail travels at a rate of 2.6 feet per minute. At this rate, how long will it take for the snail to travel 65 feet?
\qquad
6. GDDEEPER A squirrel can run at a maximum speed of 12 miles per hour. At this rate, how many seconds will it take the squirrel to run 3 miles?
\qquad
7. THINKSMARTER A cyclist rides 8 miles in 32 minutes. What is the speed of the cyclist in miles per hour?

Unlock the Problem

\checkmark Choose the appropriate formula.
\checkmark Include the unit in your answer.

WRITE Math Show Your Work

On Your Own

8. A pilot flies 441 kilometers in 31.5 minutes. What is the speed of the airplane?
9. HDDEEPER Chris spent half of his money on a pair of headphones. Then he spent half of his remaining money on CDs. Finally, he spent his remaining $\$ 12.75$ on a book. How much money did Chris have to begin with?
10. THINKSMARTER André and Yazmeen leave at the same time and travel 75 miles to a fair. André drives 11 miles in 12 minutes. Yazmeen drives 26 miles in 24 minutes. If they continue at the same rates, who will arrive at the fair first? Explain.
\qquad

($\sqrt{ }$ Chapter 6 Review/Test

1. A construction crew needs to remove 2.5 tons of river rock during the construction of new office buildings.

The weight of the rocks is | 800 |
| :---: |
| 2,000 |
| 5,000 | pounds.

2. Select the conversions that are equivalent to 10 yards.

Mark all that apply.
(A) 20 feet
(C) 30 feet
(B) 240 inches
(D) 360 inches
3. Meredith runs at a rate of 190 meters per minute. Use the formula $d=r \times t$ to find how far she runs in 6 minutes.
\square
4. The table shows data for 4 cyclists during one day of training.

Complete the table by finding the speed for each cyclist. Use the formula $r=d \div t$.

Cyclist	Distance (mi)	Time (hr)	Rate (mi per hr)
Alisha	36	3	
Jose	39	3	
Raul	40	4	
Ruthie	22	2	

5. For numbers $5 \mathrm{a}-5 \mathrm{c}$, choose $<,>$, or $=$.

5a. 5 kilometers $\begin{aligned} & \quad< \\ & > \\ & \\ & \end{aligned}$
5b. 254 centiliters $\begin{aligned} & < \\ & > \\ & \\ & =\end{aligned} 25.4$ liters
5c. 6 kilogram $\begin{aligned} & < \\ & > \\ & \\ & =\end{aligned} 600$ gram
6. A recipe calls for 16 fluid ounces of light whipping cream. If Anthony has 1 pint of whipping cream in his refrigerator, does he have enough for the recipe? Explain your answer using numbers and words.
\square
7. For numbers 7a-7d, choose $<,>$, or $=$.
7a. 43 feet $\begin{aligned} & \quad< \\ & > \\ & \\ & \end{aligned}$
7c. $\quad 10$ pints $\begin{aligned} & < \\ & \\ & > \\ & \\ & =\end{aligned} 5$ quarts
7b. 5 tons \(\begin{aligned} \& \quad<

\& >

\& >

\& >\end{aligned} 5000\) pounds 7 7d. 6 miles | $<$ |
| :---: |
| $>$ |
| |
| | 600 yards

8. The distance from Caleb's house to the school is 1.5 miles, and the distance from Ashlee's house to the school is 3,520 feet. Who lives closer to the school, Caleb or Ashlee? Use numbers and words to support your answer.

Name

9. Write the mass measurements in order from least to greatest.

7.4 kilograms	7.4 decigrams	7.4 centigrams

10. An elephant's heart beats 28 times per minute. Complete the product to find how many times its heart beats in 30 minutes.

11. The length of a rectangular football field, including both end zones, is 120 yards. The area of the field is 57,600 square feet. For numbers 11a-11d, select True or False for each statement.

11a. The width of the field is 480 yards.

11b. The length of the field is
\bigcirc True

○ False 360 feet.

11c. The width of the field is
O True
O False 160 feet.

11d. The area of the field is
TrueFalse 6,400 square yards.
12. Harry received a package for his birthday. The package weighed 357,000 centigrams. Select the conversions that are equivalent to 357,000 centigrams. Mark all that apply.

○ 3.57 kilograms
O 357 dekagrams

- 3,570 grams

○ 3,570,000 decigrams
13. Mr. Martin wrote the following problem on the board.

Juanita's car has a gas mileage of 21 miles per gallon. How many miles can Juanita travel on 7 gallons of gas?

Alex used the expression $\frac{21 \text { miles }}{1 \text { gallon }} \times \frac{1}{7 \text { gallons }}$ to find the answer. Explain Alex's mistake.
\square
14. Mr. Chen filled his son's wading pool with 20 gallons of water.
80
60
40 quarts.
15. Nadia has a can of vegetables with a mass of 411 grams. Write equivalent conversions in the correct boxes.

kilograms	hectograms	dekagrams

16. Steve is driving 440 miles to visit the Grand Canyon. He drives at an average rate of 55 miles per hour. Explain how you can find the amount of time it will take Steve to get to the Grand Canyon.

Name

17. Lucy walks one time around the lake. She walks for 1.5 hours at an average rate of 3 miles per hour. What is the distance, in miles, around the lake?
\qquad miles
18. The parking lot at a store has a width of 20 yards 2 feet and a length of 30 yards.

Part A

Derrick says that the width could also be written as 22 feet.
Explain whether you agree or disagree with Derrick.
\square

Part B

The cost to repave the parking lot is $\$ 2$ per square foot. Explain how much it would cost to repave the parking lot.
\square
19. Jake is using a horse trailer to take his horses to his new ranch.

Part A

Complete the table by finding the weight, in pounds, of Jake's horse trailer and each horse.

	Weight (T)	Weight (Ib)
Horse	0.5	
Trailer	1.25	

Part B

Jake's truck can tow a maximum weight of 5,000 pounds. What is the maximum number of horses he can take in his trailer at one time without going over the maximum weight his truck can tow? Use numbers and words to support your answer.
\square
20. A rectangular room measures 13 feet by 132 inches. Tonya said the area of the room is 1,716 square feet. Explain her mistake, then find the area in square feet.
\square

Great Smoky Mountains National Park is located in the states of North Carolina and Tennessee.

Projed

The Great Outdoors

The Moores are planning a family reunion in Great Smoky Mountains National Park. This park includes several campgrounds and over 800 miles of hiking trails. Some trails lead to stunning views of the park's many waterfalls.

Get Started

The Moores want to camp at the park during their reunion. They will have 17 people in their group, and they want to spend no more than $\$ 100$ on camping fees.

Decide how many and what type of campsites the Moores should reserve, and determine how many nights n the Moores can camp without going over budget. Show your work, and support your answer by writing and evaluating algebraic expressions.

Important Facts

Group Campsite

- Fee of $\$ 35$ per night
- Holds up to 25 people

Individual Campsite

- Fee of $\$ 14$ per night
- Holds up to 6 people

Completed by \qquad

Algebrar Expressions

Show What You Know

Check your understanding of important skills.
Name \qquad

Addition Properties Find the unknown number. Tell whether you used the Identity (or Zero) Property, Commutative Property, or Associative Property of Addition.

1. $128+$ \qquad $=128$
2. $(17+36)+14=17+(\ldots+14)$
\qquad
3. $23+15=$ \qquad $+23$
4. $9+(11+46)=(9+$ \qquad) +46

Multiply with Decimals Find the product.

5. 1.5×7
6. 5.83×6
7. 3.7×0.8
8. 0.27×0.9

Use Parentheses Identify which operation to do first.

Then, find the value of the expression.
9. $5 \times(3+6)$ \qquad
11. $40 \div(20-16)$ \qquad
10. $(24 \div 3)-2$ \qquad
12. $(7 \times 6)+5$ \qquad

Lock Combination Top Secret!

Greg just moved into an old house and found a mysterious trunk in the attic. The lock on the trunk has a dial numbered 1 to 60 . Greg found the note shown at right lying near the trunk. Be a Math Detective and help him figure out the three numbers needed to open the lock.

Hint: $x=6$

Vocabulary Builder

Visualize It.

Sort the review words into the bubble map.

Understand Vocabulary

Complete the sentences using the preview words.

1. An exponent is a number that tells how many times a(n)
\qquad is used as a factor.
2. In the expression $4 a$, the number 4 is $\mathrm{a}(\mathrm{n})$
\qquad .
3. To \qquad an expression, substitute numbers
for the variables in the expression.
4. A mathematical phrase that uses only numbers and operation symbols is a(n) \qquad .
5. A letter or symbol that stands for one or more numbers is $a(n)$
\qquad .
6. The parts of an expression that are separated by an addition or subtraction sign are the \qquad of the expression. -

Review Words

addition
difference
division
multiplication
product
quotient
subtraction
sum

Preview Words
algebraic expression base
coefficient
evaluate
numerical expression
terms
variable
\qquad

Exponents

Essential Question How do you write and find the value of expressions involving exponents?

You can use an exponent and a base to show repeated multiplication of the same factor. An exponent is a number that tells how many times a number called the base is used as a repeated factor.

$$
\underbrace{5 \times 5 \times 5}_{3 \text { repeated factors }}=5_{\mathbb{K}}^{3 \leftarrow} \text { base }
$$

Math Idea

- 5^{2} can be read "the 2nd power of 5" or " 5 squared."
- 5^{3} can be read "the 3rd power of 5 " or " 5 cubed."

Unlock the Problem

The table shows the number of bonuses a player can receive in each level of a video game. Use an exponent to write the number of bonuses a player can receive in level D.

Use an exponent to write $3 \times 3 \times 3 \times 3$.
The number \qquad is used as a repeated factor.

3 is used as a factor \qquad times.

Write the base and exponent. \qquad

So, a player can receive \qquad bonuses in level D.

Try This! Use one or more exponents to write the expression.

B $6 \times 6 \times 8 \times 8 \times 8$
The numbers \qquad and \qquad are used as repeated factors.

6 is used as a factor \qquad times.

8 is used as a factor \qquad times.

Write each base with its
6 $\times 8$ own exponent.

I. Example 1 Find the value.

(A) 10^{3}

STEP 1 Use repeated multiplication to write 10^{3}.
The repeated factor is \qquad .

$$
10^{3}=
$$

\qquad \times \qquad \times \qquad
Write the factor \qquad times.

STEP 2 Multiply.
Multiply each pair of factors, working from left to right.
$10 \times 10 \times 10=$ \qquad $\times 10$
$=$ \qquad
(B) 7^{1}

The repeated factor is \qquad . $7^{1}=$

Math Talk

In 10^{3}, what do you notice about the value of the exponent and the product? Is there a similar pattern in other powers of 10? Explain.

(1) Example 2 wite 81 with an exponent by using 3 as the base.

STEP 1 Find the correct exponent.
Try 2. $\quad 3^{2}=3 \times 3=$ \qquad
Try 3. $\quad 3^{3}=$ \qquad \times \qquad \times \qquad $=$ \qquad
Try 4. $\quad 3^{4}=$ \qquad \times \qquad \times \qquad \times \qquad $=$

STEP 2 Write using the base and exponent.
$81=$ \qquad

1. Explain how to write repeated multiplication of a factor by using an exponent.
\qquad
\qquad
2. THINKSMARTER

Is 5^{2} equal to 2^{5} ? Explain why or why not.
\qquad

3. | MATHEEMATICAL |
| :---: |
| PRACICE |

Describe a Method Describe how you could have solved the problem in Example 2 by using division.
\qquad
\qquad

Share and Show

2. $7 \times 7 \times 7 \times 7$

On Your Own

4. $3 \times 3 \times 4 \times 4$

Math Talk
 Mathematical Practices
 In 3^{4}, does it matter in what order you multiply the factors when finding the value? Explain.

Find the value.

5. 20^{2}
6. 82^{1}
7. 3^{5}
8. Write 32 as a number with an exponent by using 2 as the base.

Complete the statement with the correct exponent.

$$
\text { 9. } 5=125
$$

10. $16=16$
11. $30=900$
12. Manitenaical 8) Use Repeated Reasoning Find the values of $4^{1}, 4^{2}, 4^{3}, 4^{4}$, and 4^{5}. Look for a pattern in your results and use it to predict the ones digit in the value of 4^{6}.
13. THINKSMARTER Select the expressions that are equivalent to 32 . Mark all that apply.
(A) 2^{5}
(B) 8^{4}
(C) $2^{3} \times 4$
(D) $2 \times 4 \times 4$

Connect to Science

Bacterial Growth

Bacteria are tiny, one-celled organisms that live almost everywhere on Earth. Although some bacteria cause disease, other bacteria are helpful to humans, other animals, and plants. For example, bacteria are needed to make yogurt and many types of cheese.

Under ideal conditions, a certain type of bacterium cell grows larger and then splits into 2 "daughter" cells. After 20 minutes, the daughter cells split, resulting in 4 cells. This splitting can happen again and again as long as conditions remain ideal.

Complete the table.

Bacterial Growth	
Number of Cells	Time (min)
1	0
$2^{1}=2$	20
$2^{2}=2 \times 2=4$	40
$2^{3}=\ldots \times \ldots \times=$	60
$2=2 \times 2 \times 2 \times 2=16$	80
$2^{5}=\ldots \times \ldots \times \ldots \times \ldots$	100
$2=\ldots \times \ldots \times+$	120
$2^{7}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=$	

Extend the pattern in the table above to answer 14 and 15.
14. GПDEEPER What power of 2 shows the number of cells after 3 hours? How many cells are there after 3 hours?
15. THINKSMARTER How many minutes would it take to have a total of 4,096 cells?

\qquad

Evaluate Expressions Involving Exponents

Essential Question How do you use the order of operations to evaluate expressions involving exponents?

A numerical expression is a mathematical phrase that uses only numbers and operation symbols.

$$
3+16 \times 2^{2} \quad 4 \times\left(8+5^{1}\right) \quad 2^{3}+4
$$

You evaluate a numerical expression when you find its value. To evaluate an expression with more than one operation, you must follow a set of rules called the order of operations.

Expressions and Equations6.EE. 1
 mathematical practices MP.4, MP. 6

Order of Operations

1. Perform operations in parentheses.
2. Find the values of numbers with exponents.
3. Multiply and divide from left to right.
4. Add and subtract from left to right.

Unlock the Problem

An archer shoots 6 arrows at a target. Two arrows hit the ring worth 8 points, and 4 arrows hit the ring worth 4 points. Evaluate the expression $2 \times 8+4^{2}$ to find the archer's total number of points.

Follow the order of operations.
Write the expression. There are
no parentheses.

Find the value of numbers with
exponents.
from left to right.

Then add.
So, the archer scores a total of_16

Try This! Evaluate the expression $24 \div \mathbf{2}^{3}$.

```
There are no parentheses.
Find the value of numbers with
exponents.
Then divide.
```


\square
 Example 1 Evaluate the expression $72 \div(13-4)+5 \times 2^{3}$.

Write the expression.
Perform operations in \qquad .

Find the values of numbers with \qquad -

Multiply and \qquad from left to right.

$$
72 \div(13-4)+5 \times 2^{3}
$$

$72 \div$ \qquad $+5 \times 2^{3}$
$72 \div 9+5 \times$ \qquad \qquad $+5 \times 8$
$8+$ \qquad

Then add.

1. Example 2

Last month, an online bookstore had approximately 10^{5} visitors to its website. On average, each visitor bought 2 books. Approximately how many books did the bookstore sell last month?

STEP 1 Write an expression.

Think: The number of books sold is equal to the number of visitors times the number of books each visitor bought.

STEP 2 Evaluate the expression.
Write the expression. There are no parentheses.
$10^{5} \times 2$

Find the values of numbers with \qquad . \qquad $\times 2$

Multiply.
So, the bookstore sold approximately \qquad books last month.

- Marifichical 6 Explain why the order of operations is necessary.
\qquad
\qquad
\qquad

Share and Show
 MATH
 BOARD

1. Evaluate the expression $9+\left(5^{2}-10\right)$.
$9+\left(5^{2}-10\right)$
$9+\left(_\quad-10\right)$
$9+$ \qquad

Write the expression.
Follow the order of operations within the parentheses.

Add.

Evaluate the expression.

2. $6+3^{3} \div 9$

-

On Your Own

3. $(15-3)^{2} \div 9$
4. $\left(8+9^{2}\right)-4 \times 10$

Evaluate the expression.

5. $10+6^{2} \times 2 \div 9$
6. $6^{2}-\left(2^{3}+5\right)$
7. $16+18 \div 9+3^{4}$

Explain how the parentheses make the values of these expressions different: $\left(2^{2}+8\right) \div 4$ and $2^{2}+(8 \div 4)$.

THINKSMARTER Place parentheses in the expression so that it equals the given value.
8. $10^{2}-50 \div 5$
value: 10
9. $20+2 \times 5+4^{1}$
value: 38
10. $28 \div 2^{2}+3$
value: 4

Problem Solving • Applications

Use the table for 11-13.

11.

MATHEMATICA PRACTICE

 4) Write an Expression To find the cost of a window, multiply its area in square feet by the price per square foot. Write and evaluate an expression to find the cost of a knot window.12. G■DEEPER A builder installs 2 rose windows and 2 tulip windows. Write and evaluate an expression to find the combined area of the windows.
13. THINKSMARTER DeShawn bought a tulip window. Emma bought a rose window. Write and evaluate an expression to determine how much more DeShawn paid for his window than Emma paid for hers.

Art Glass Windows		
Type	Area (square feet)	Price per square foot
Knot	2^{2}	$\$ 27$
Rose	3^{2}	$\$ 30$
Tulip	4^{2}	$\$ 33$

14. What's the Error? Darius wrote $17-2^{2}=225$.

Explain his error.
\qquad
\qquad
\qquad
\qquad
15. THINKSMARTER Ms. Hall wrote the expression $2 \times(3+5)^{2} \div 4$ on the board. Shyann said the first step is to evaluate 5^{2}. Explain Shyann's mistake. Then evaluate the expression.
\qquad

Write Algebraic Expressions

Essential Question How do you write an algebraic expression to represent a situation?

Expressions and Equations-

 6.EE.2amathematical practices MP.2, MP.4, MP. 6

An algebraic expression is a mathematical phrase that includes at least one variable. A variable is a letter or symbol that stands for one or more numbers.
$x+10$
$3 \times y$
variable

variable

Math Idea

There are several ways to show multiplication with a variable. Each expression below represents " 3 times y."
$3 \times y \quad 3 y \quad 3(y) \quad 3 \cdot y$

Unlock the Problem

An artist charges $\$ 5$ for each person in a cartoon drawing. Write an algebraic expression for the cost in dollars for a drawing that includes p people.

Write an algebraic expression for the cost.

So, the cost in dollars is \qquad .

Try This! On Mondays, a bakery adds 2 extra muffins for free with every muffin order. Write an algebraic expression for the number of muffins customers will receive on Mondays when they order m muffins.

So, customers will receive \qquad muffins on Mondays. points that items on a quiz are worth. Write an algebraic expression for the quiz score of a student who gets m multiple-choice items and s short-answer items correct.

points for multiple-choice items	points for short-answer items	
\downarrow		
$(2 \times m)$	+	(\square)

Quiz Scoring

Quiz Scoring	
Item Type	Points
Multiple-choice	2
Short-answer	5

\qquad points.
So, the student's quiz score is

(1) Example 2 Write an algebraic expression for the word expression.

A 30 more than the product of 4 and x
Think: Start with the product of 4 and x. Then find 30 more than the product.
the product of 4 and x \qquad \times \qquad

30 more than the product \qquad $+4 x$

B 4 times the sum of x and 30
Think: Start with the sum of x and 30 . Then find 4 times the sum.
the sum of \boldsymbol{x} and 30 \qquad $+$ \qquad

4 times the sum \qquad $\times(x+30)$

1. When you write an algebraic expression with two operations, how can you show which operation to do first?
2. IHINKSMARTER One student wrote $4+x$ for the word expression
" 4 more than x." Another student wrote $x+4$ for the same word expression. Are both students correct? Justify your answer.
\qquad
\qquad
\qquad

Share and Show

1. Write an algebraic expression for the product of 6 and p.

What operation does the word "product" indicate?

The expression is \qquad \times \qquad .

Write an algebraic expression for the word expression.
2. 11 more than e

On Your Own

Write an algebraic expression for the word expression.
3. 9 less than the quotient of n and 5

5. 8 times the product of 5 and t
7. A state park charges a $\$ 6.00$ entry fee plus $\$ 7.50$ per night of camping. Write an algebraic expression for the cost in dollars of entering the park and camping for n nights.
\qquad
6. There are 12 eggs in a dozen. Write an algebraic expression for the number of eggs in d dozen. -
4. 20 divided by c
\qquad
9. Martina signs up for the cell phone plan described at the right. Write an expression that gives the total cost of the plan in dollars if Martina uses it for m months.
a. What information do you know about the cell phone plan?
\qquad
\qquad
b. Write an expression for the monthly fee in dollars for m months.
\qquad
10. THINKSMARTER A group of n friends evenly share the cost of dinner. The dinner costs $\$ 74$. After dinner, each friend pays $\$ 11$ for a movie. Write an expression to represent what each friend paid for dinner and the movie.

11. THINKSMARTER A cell phone company charges $\$ 40$ per month plus $\$ 0.05$ for each text message sent. Select the expressions that represent the cost in dollars for one month of cell phone usage and sending m text messages. Mark all that apply.

○ $40 m+0.05$

- $40+0.05 m$
- 40 more than the product of 0.05 and m
\bigcirc the product of 40 and m plus 0.05

Identify Parts of Expressions

Essential Question How can you describe the parts of an expression?

- Explain how you could find the cost of each type of seed.

At a gardening store, seed packets cost $\$ 2$ each. Martin bought 6 packets of lettuce seeds and 7 packets of pea seeds. The expression $2 \times(6+7)$ represents the cost in dollars of Martin's seeds. Identify the parts of the expression. Then write a word expression for $2 \times(6+7)$.

Describe the parts of the expression $2 \times(6+7)$.

Identify the operations in the expression.

Describe the part of the expression in parentheses, and tell what it represents.

Describe the multiplication, and tell what it represents.
multiplication and \qquad

- The part in parentheses shows the \qquad of 6 and \qquad .
- The sum represents the number of packets of \qquad seeds plus the number of packets of \qquad seeds.
- One of the factors is \qquad . The other factor is the \qquad of 6 and 7 .
- The product represents the \qquad per packet times the number of \qquad Martin bought.

So, a word expression for $2 \times(6+7)$ is "the \qquad of 2 and the
\qquad of \qquad and 7."

- manienical 6) Attend to Precision Explain how the expression $2 \times(6+7)$ differs from $2 \times 6+7$. Then, write a word expression for $2 \times 6+7$.

The terms of an expression are the parts of the expression that are separated by an addition or subtraction sign. A coefficient is a number that is multiplied by a variable.
$4 k+5$
The expression has two terms, $4 k$ and 5 . The coefficient of the term $4 k$ is 4 .

1. Example

Identify the parts of the expression. Then write a word expression for the algebraic expression.
(A) $2 x+8$

Identify the terms in the expression.

Describe the first term.

Describe the second term.
The second term is the number \qquad .

A word expression for $2 x+8$ is " 8 more than the \qquad
of \qquad and x."
(B) $3 a-4 b$

Identify the terms in the expression.

The expression is the sum of \qquad terms.

The terms are \qquad and 8.

The first term is the product of the coefficient
\qquad and the variable \qquad .

Describe the first term.

Describe the second term.

The expression is the \qquad of

2 terms. The terms are \qquad and \qquad .

The first term is the product of the
\qquad 3 and the variable \qquad .

The second term is the product of the coefficient \qquad and the variable \qquad .

A word expression for the algebraic expression is "the difference of
\qquad times \qquad and 4 \qquad b."

Share and Show

```
MATH
BOARD
```

Identify the parts of the expression. Then, write a word expression for the numerical or algebraic expression.

1. $7 \times(9-4)$

The part in parentheses shows the \qquad of \qquad and \qquad .

One factor of the multiplication is \qquad , and the other factor is $9-4$.

Word expression: \qquad
2. $5 m+2 n$
\qquad
\qquad
\qquad

On Your Own

Practice: Copy and Solve Identify the parts of the expression. Then write a word expression for the numerical or algebraic expression.
3. $8+(10-7)$
4. $1.5 \times 6+8.3$
5. $b+12 x$
6. $4 a \div 6$

Identify the terms of the expression. Then, give the coefficient of each term.
7. $k-3 d$
\qquad
 expression with three terms. She said the first term has the coefficient 7 , the second term has the coefficient 1 , and the third term has the coefficient 0.1. Each term involves a different variable. Write an expression that could be the expression Ava wrote.

Problem Solving • Applications

Use the table for 10-12.

10. GロDEEPER

A football team scored 2 touchdowns and 2 extra points. Their opponent scored 1 touchdown and 2 field goals. Write a numerical expression for the points scored in the game.
11. Write an algebraic expression for the number of points scored by a football team that makes t touchdowns, f field goals, and e extra points.

12. Identify the parts of the expression you wrote in Exercise 11.
\qquad
\qquad
\qquad
13. THINKSMARIER Give an example of an expression involving multiplication in which one of the factors is a sum. Explain why you do or do not need parentheses in your expression.
\qquad

\qquad
\qquad
\qquad
14. THINKSMARTER Kennedy bought a pounds of almonds at $\$ 5$ per pound and p pounds of peanuts at $\$ 2$ per pound. Write an algebraic expression for the cost of Kennedy's purchase.
\qquad

Evaluate Algebraic Expressions and Formulas

Essential Question How do you evaluate an algebraic expression or a formula?
To evaluate an algebraic expression, substitute numbers for the

Expressions and Equations6.EE.2c

MATHEMATICAL PRACTICES MP.4, MP.5, MP. 6 variables and then follow the order of operations.

Unlock the Problem

Amir is saving money to buy an MP3 player that costs
$\$ 120$. He starts with $\$ 25$, and each week he saves $\$ 9$. The expression $25+9 w$ gives the amount in dollars that Amir will have saved after w weeks.
(A)

How much will Amir have saved after 8 weeks?
(1)

Evaluate the expression for $\boldsymbol{w}=8$.
Write the expression. $25+9 w$
Substitute 8 for w. $25+9 \times$ \qquad
Multiply.
$25+$ \qquad
Add.

So, Amir will have saved \$ \qquad after 8 weeks.

B After how many weeks will Amir have saved enough money to buy the MP3 player?

Ω
Make a table to find the week when the amount

- Which operations does the expression $25+9 w$ include?
- In what order should you perform the operations?
 saved is at least \$120.

Week	Value of $\mathbf{2 5}+9 w$	Amount Saved
9	$25+9 \times 9=25+\ldots=106$	
10	$25+9 \times 10=25+\ldots=$	
11	$25+9 \times 11=25+\ldots=$	

So, Amir will have saved enough money for the
MP3 player after \qquad weeks.

Explain what it means to substitute a value for a variable.

(1) Example 1 Evaluate the expression for the given value of the variable.

(A) $4 \times(m-8) \div 3$ for $m=14$

Write the expression.
Substitute 14 for m.

Perform operations in parentheses.

Multiply and divide from left to right.
$4 \times\left(_\quad-8\right) \div 3$
$4 \times$ \qquad $\div 3$
\qquad $\div 3$

B $3 \times\left(y^{2}+2\right)$ for $y=4$
Write the expression.
$3 \times\left(y^{2}+2\right)$

Substitute 4 for y.

Follow the order of operations within the parentheses.
\qquad
$3 \times(\ldots+2)$

ERROR Alert

When squaring a number, be sure to multiply the number by itself.

$$
4^{2}=4 \times 4
$$

Multiply.

Recall that a formula is a set of symbols that expresses a mathematical rule.

(1) Example 2

The formula $P=2 \ell \times 2 w$ gives the perimeter P of a rectangle with length ℓ and width w. What is the perimeter of a rectangular garden with a length of 2.4 meters and a width of 1.2 meters?

> Write the expression for the perimeter of a rectangle.

Substitute 2.4 for ℓ and \qquad for w. \qquad

Multiply from left to right. \qquad $+2 \times 1.2$
$4.8+$ \qquad

Add. \qquad

So, the perimeter of the garden is \qquad meters.

Describe how evaluating an algebraic expression is different from evaluating a numerical expression.

Share and Show

1. Evaluate $5 k+6$ for $k=4$.

Write the expression.

Substitute 4 for k.
$5 \times$ \qquad $+6$

Multiply. \qquad $+6$

Add. \qquad
Evaluate the expression for the given value of the variable.
2. $m-9$ for $m=13$
\qquad
4. $p^{2}+4$ for $p=6$
5. The formula $A=\ell w$ gives the area A of a rectangle with length ℓ and width w. What is the area in square feet of a United States flag with a length of 12 feet and a width of 8 feet?

On Your Own

Tell what information you need to evaluate an algebraic expression.

Practice: Copy and Solve Evaluate the expression for the given value of the variable.
6. $7 s+5$ for $s=3$
9. $6 \times(2 v-3)$ for $v=5$
12. GロDEEPER

The formula $P=4 s$ gives the perimeter P of a square with side length s. How much greater is the perimeter of a square with a side length of $5 \frac{1}{2}$ inches than a square with a side length of 5 inches?

Problem Solving • Applications

The table shows how much a company charges for skateboard wheels. Each pack of 8 wheels costs $\$ 50$. Shipping costs \$7 for any order. Use the table for 13-15.
13. Complete the table.
14. A skateboard club has $\$ 200$ to spend on new wheels this year. What is the greatest number of packs of wheels the club can order?
15. Mathematical (1) Make Sense of Problems A sporting goods store placed an order for 12 packs of wheels on the first day of each month last year. How much did the sporting goods store spend on these orders last year?
\qquad

Costs for Skateboard Wheels		
Packs	$\mathbf{5 0 \times n + 7}$	Cost
1	$50 \times 1+7$	$\$ 57$
2		
3		
4		
5		

16. THINKSMARTER What's the Error? Bob used these steps to evaluate $3 m-3 \div 3$ for $m=8$. Explain his error.
$3 \times 8-3 \div 3=24-3 \div 3$

$$
\begin{aligned}
& =21 \div 3 \\
& =7
\end{aligned}
$$

17. THINKSMARIER The surface area of a cube can be found by using the formula $6 s^{2}$, where s represents the length of the side of the cube.
The surface area of a cube that has a side length of

\qquad
\qquad
\qquad
\qquad

\qquad

(V) Mid-Chapter Checkpoint

Vogabulary

Choose the best term from the box to complete the sentence.

1. $\mathrm{A}(\mathrm{n})$ \qquad tells how many times a base is used as a factor. (p. 261)
2. The mathematical phrase $5+2 \times 18$ is an example of a(n)
\qquad . (p. 265)

Concepts and Skills

Find the value. (6.EE.1)
3. 5^{4}

4
4. 21^{2}

2
\qquad

Evaluate the expression. (6.EE.1)
6. $9^{2} \times 2-4^{2}$ \qquad
5. 8^{3}
8. $30-\left(3^{3}-8\right)$
11. 9 less than the sum of x and 5

Write an algebraic expression for the word expression. (6.E..2a)
9. the quotient of c and 8
12. $5 \times(h+3)$ for $h=7$
and p
10. 16 more than the product of 5

Evaluate the expression for the given value of the variable. (6.EE.2c)
13. $2 \times\left(c^{2}-5\right)$ for $c=4$
14. $7 a-4 a$ for $a=8$
15. The greatest value of any U.S. paper money ever printed is 10^{5} dollars. What is this amount written in standard form? (6.E..1)
16. A clothing store is raising the price of all its sweaters by $\$ 3.00$. Write an expression that could be used to find the new price of a sweater that originally cost d dollars. (6.EE.2a)
17. Kendra bought a magazine for $\$ 3$ and 4 paperback books for $\$ 5$ each. The expression $3+4 \times 5$ represents the total cost in dollars of her purchases. What are the terms in this expression? (6.EE.2b)
18. The expression $5 c+7 m$ gives the number of people who can ride in c cars and m minivans. What are the coefficients in this expression? (6.EE.2b)
19. The formula $P=a+b+c$ gives the perimeter P of a triangle with side lengths a, b, and c. A triangular field has sides that measure 33 yards, 56 yards, and 65 yards. What is the perimeter of the field? (6.EE.2c)
\qquad

Use Algebraic Expressions

Essential Question How can you use variables and algebraic expressions to solve problems?

Expressions and Equations-

 6.EE. 6MATHEMATICAL PRACTICES MP.1, MP.2, MP. 4

Sometimes you are missing a number that you need to solve a problem. You can represent a problem like this by writing an algebraic expression in which a variable represents the unknown number.

Unlock the Problem

Rafe's flight from Los Angeles to New York took 5 hours. He wants to know the average speed of the plane in miles per hour.
(A) Write an expression to represent the average speed of the plane.

0Use a variable to represent the unknown quantity.

Think: The plane's average speed is equal to the distance traveled divided by the time traveled.

Use a variable to represent the unknown quantity.

Write an algebraic expression for the average speed.

Let d represent the \qquad traveled in units of \qquad .

B Rafe looks up the distance between Los Angeles and New York on the Internet and finds that the distance is 2,460 miles. Use this distance to find the average speed of Rafe's plane.

0Evaluate the expression for $d=2,460$.

Write the expression.

Substitute 2,460 for d.

Divide to find the unit rate.

So, the plane's average speed was \qquad miles per hour.

In the problem on the previous page, the variable represented a single value-the distance in miles between Los Angeles and New York. In other situations, a variable may represent any number in a particular set of numbers, such as the set of positive numbers.

(1) Example Joanna makes and sells candles online. She charges $\$ 7$ per candle, and shipping is $\$ 5$ per order.

(A) Write an expression that Joanna can use to find the total cost for any candle order.

Think: The number of candles a customer buys will vary from order to order.

Let n represent the number of \qquad a customer buys, where n is a whole number greater than 0.

The cost per order equals the charge per

\qquad
So, an expression for the total cost of a candle order is \qquad .

B In March, one of Joanna's customers placed an order for 4 candles. In May, the same customer placed an order for 6 candles. What was the total charge for both orders?

STEP 1 Find the charge in dollars for each order.

	March	May
Write the expression.	$7 n+5$	$7 n+5$
Substitute the number of candles ordered for n.	$7 \times \ldots+5$	$7 \times \ldots+5$
Follow the order of operations.	\ldots	

\qquad
STEP 2 Find the charge in dollars for both orders.
Add the charge in dollars for March to the charge in dollars for May.

So, the total charge for both orders was \qquad .

Share and Show

Louisa read that the highest elevation of Mount Everest is $\mathbf{8 , 8 4 8}$ meters.
She wants to know how much higher Mount Everest is than Mount
Rainier. Use this information for 1-2.

1. Write an expression to represent the difference in heights of the two mountains. Tell what the variable in your expression represents.
\qquad
\qquad

On Your Own

A muffin recipe calls for 3 times as much flour as sugar. Use this information for 3-5.
3. Write an expression that can be used to find the amount of flour needed for a given amount of sugar. Tell what the variable in your expression represents.
2. Louisa researches the highest elevation of Mount Rainier and finds that it is 4,392 meters. Use your expression to find the difference in the mountains' heights.

Mathematical Practices
Explain whether the variable in Exercise 1 represents a single unknown number or any number in a particular set.
your expention
4. Use your expression to find the amount of flour needed when $\frac{3}{4}$ cup of sugar is used.
5. Marinnaical (2) Reason Quantitatively Is the value of the variable in your expression restricted to a particular set of numbers? Explain.

Practice: Copy and Solve Write an algebraic expression for each word expression. Then evaluate the expression for these values of the variable: $\frac{1}{2}, 4$, and 6.5.
6. the quotient of p and 4
7. 4 less than the sum of x and 5

Problem Solving • Applications

Use the graph for 8-10.

8. Write expressions for the distance in feet that each animal could run at top speed in a given amount of time. Tell what the variable in your expressions represents.
\qquad
\qquad
\qquad
\qquad
9. GПDEEPER

How much farther could a cheetah run in 20 seconds at top speed than a hippopotamus could?

Top Speeds of African Animals

10. \square A giraffe runs at top speed toward a tree that is 400 feet away. Write an expression that represents the giraffe's distance in feet from the tree after s seconds.
\qquad

Personal Math Trainer
11. THINKSMARTER A carnival charges $\$ 7$ for admission and $\$ 2$ for each ride. An expression for the total cost of going to the carnival and riding n rides is $7+2 n$.

Complete the table by finding the total cost of going to the carnival and riding n rides.

Number of rides, \boldsymbol{n}	$\mathbf{7 + 2 n}$	Total Cost
1		
2		
3		
4		

Problem Solving • Combine Like Terms

Essential Question How can you use the strategy use a model to combine like terms?

Like terms are terms that have the same variables with the same exponents. Numerical terms are also like terms.

Algebraic Expression	Terms	Like Terms
$5 x+3 y-2 x$	$5 x, 3 y$, and $2 x$	$5 x$ and $2 x$
$8 z^{2}+4 z+12 z^{2}$	$8 z^{2}, 4 z$, and $12 z^{2}$	$8 z^{2}$ and $12 z^{2}$
$15-3 x+5$	$15,3 x$, and 5	15 and 5

Unlock the Problem

Baseball caps cost $\$ 9$, and patches cost $\$ 4$. Shipping is $\$ 8$ per order. The expression $9 n+4 n+8$ gives the cost in dollars of buying caps with patches for n players. Simplify the expression $9 n+4 n+8$ by combining like terms.

Use the graphic organizer to help you solve the problem.

Read the Problem

What do I need to find?

I need to simplify the expression
\qquad -.

Draw a bar model to add \qquad

L

The model shows that $9 n+4 n=$

So, a simplified expression for the cost in dollars is

What information do I need to use?

I need to use the like terms $9 n$ and \qquad .

How will I use the information?

I can use a bar model to find the sum of the \qquad terms.

Solve the Problem

 and \qquad . Each square represents n, or $1 n$.
\qquad n
\qquad .
$9 n+4 n+8=$ \qquad $+8$
\qquad

Mathematical Practices

Explain how the bar model shows that your answer is correct.

(1) Try Another Problem

Paintbrushes normally cost $\$ 5$ each, but they are on sale for $\$ 1$ off.
A paintbrush case costs $\$ 12$. The expression $5 p-p+12$ can be used to find the cost in dollars of buying p paintbrushes on sale plus a case for them.
Simplify the expression $5 p-p+12$ by combining like terms.
Use the graphic organizer to help you solve the problem.

Read the Problem		
What do I need to find?	What information do I need to use?	How will I use the information?

Solve the Problem

So, a simplified expression for the cost in dollars is \qquad .

1. (мarinamical (4) Use Models Explain how the bar model shows that your answer is correct.
\qquad
\qquad
\qquad
2. Explain how you could combine like terms without using a model.
\qquad
\qquad
\qquad

Name

Share and Show

MATH

BOARD

1. Museum admission costs $\$ 7$, and tickets to the mammoth exhibit cost $\$ 5$. The expression $7 p+5 p$ represents the cost in dollars for p people to visit the museum and attend the exhibit. Simplify the expression by combining like terms.

First, draw a bar model to combine the like terms.

Next, use the bar model to simplify the expression.

So, a simplified expression for the cost in dollars is \qquad .
2. IHINKSMARTER What if the cost of tickets to the exhibit were reduced to $\$ 3$? Write an expression for the new cost in dollars for p people to visit the museum and attend the exhibit. Then, simplify the expression by combining like terms.
3. A store receives tomatoes in boxes of 40 tomatoes each. About 4 tomatoes per box cannot be sold due to damage. The expression $40 b-4 b$ gives the number of tomatoes that the store can sell from a shipment of b boxes. Simplify the expression by combining like terms.
4. Each cheerleading uniform includes a shirt and a skirt. Shirts cost $\$ 12$ each, and skirts cost $\$ 18$ each. The expression $12 u+18 u$ represents the cost in dollars of buying u uniforms. Simplify the expression by combining like terms.
5. A shop sells vases holding 9 red roses and 6 white roses. The expression $9 v+6 v$ represents the total number of roses needed for v vases. Simplify the expression by combining like terms.

Unlock the Problem

\checkmark Read the entire problem carefully before you begin to solve it.
\checkmark Check your answer by using a different method.
vext, use the bar model to simplity the expression.
\qquad (
\qquad

On Your Own

6. GПDEEPER Marco received a gift card. He used it to buy 2 bike lights for $\$ 10.50$ each. Then he bought a handlebar bag for $\$ 18.25$. After these purchases, he had $\$ 0.75$ left on the card. How much money was on the gift card when Marco received it?
\qquad

Sea snail shells

7. Lydia collects shells. She has 24 sea snail shells, 16 conch shells, and 32 scallop shells. She wants to display the shells in equal rows, with only one type of shell in each row. What is the greatest number of shells Lydia can put in each row?

8. THINKSMARIER The three sides of a triangle measure $3 x+6$ inches, $5 x$ inches, and $6 x$ inches. Write an expression for the perimeter of the triangle in inches. Then simplify the expression by combining like terms.

Conch shell

 states that you can simplify the expression $20 x+4$ by combining like terms to get $24 x$. Does Karina's statement make sense? Explain.
\qquad
\qquad
\qquad
10. THINK SMARTER Vincent is ordering accessories for his surfboard. A set of fins costs $\$ 24$ each and a leash costs $\$ 15$. The shipping cost is $\$ 4$ per order. The expression $24 b+15 b+4$ can be used to find the cost in dollars of buying b fins and b leashes plus the cost of shipping.

For numbers 10a-10c, select True or False for each statement.
10a. The terms are $24 b, 15 b$ and 4.
\bigcirc True
\bigcirc False
10b. The like terms are $24 b$ and $15 b$.TrueFalse

10c. The simplified expression is $43 b$.
TrueFalse

Expressions and Equations6.EE. 3

MATHEMATICAL PRACTICES MP.2, MP.3, MP. 8 variables. For example, $x+3$ and $3+x$ are equivalent. You can use properties of operations to write equivalent expressions.

Properties of Addition

Commutative Property of Addition If the order of terms changes, the sum stays the same.	$12+a=a+12$
Associative Property of Addition When the grouping of terms changes, the sum stays the same.	$5+(8+b)=(5+8)+b$
Identity Property of Addition The sum of 0 and any number is that number.	$0+c=c$

Properties of Multiplication

Commutative Property of Multiplication
If the order of factors changes, the product stays the same.

$$
d \times 9=9 \times d
$$

Associative Property of Multiplication
When the grouping of factors changes, the product stays the same. $11 \times(3 \times e)=(11 \times 3) \times e$
Identity Property of Multiplication
The product of 1 and any number is that number.
$1 \times f=f$

Unlock the Problem

Nelson ran 2 miles, 3 laps, and 5 miles. The expression $2+3 \ell+5$ represents the total distance in miles Nelson ran, where ℓ is the length in miles of one lap. Write an equivalent expression with only two terms.

0
Rewrite the expression $2+3 \ell+5$ with only two terms.

The like terms are 2 and \qquad . Use the

$$
2+3 \ell+5=3 \ell+
$$

\qquad $+5$
\qquad Property to reorder the terms.

Use the \qquad Property to regroup the terms.

$$
=3 \ell+(\ldots+
$$

\qquad

Add within the parentheses.
$=3 \ell+$ \qquad

So, an equivalent expression for the total distance in miles is \qquad .

Distributive Property

Multiplying a sum by a number is the same as multiplying each term by the number and then adding the products.

$$
5 \times(g+9)=(5 \times g)+(5 \times 9)
$$

The Distributive Property can also be used with multiplication and subtraction. For example, $2 \times(10-h)=(2 \times 10)-(2 \times h)$.

(1) Fxample1
 Use properties of operations to write an expression equivalent to $5 a+8 a-16$ by combining like terms.

Use the Commutative Property of Multiplication to rewrite the like terms $5 a$ and $8 a$.
$5 a+8 a-16=a \times$ \qquad $+a \times$ \qquad -16

Use the Distributive Property to rewrite
$=$ \qquad $\times(5+8)-16$
$a \times 5+a \times 8$.

Add within the parentheses.
$=a \times$ \qquad -16

Use the Commutative Property of Multiplication
$=$ \qquad -16

So, the expression \qquad is equivalent to $5 a+8 a-16$.

(1) Exampe 2 Use the Distributive Property to write an equivalent expression.

(A) $6(y+7)$

Use the Distributive Property.

$$
\begin{aligned}
6(y+7) & =(6 \times \\
& =6 y+
\end{aligned}
$$ $)+(6 \times$ \qquad)

Multiply within the parentheses.

So, the expression \qquad is equivalent to $6(y+7)$.

Math Idea

When one factor in a product is in parentheses, you can leave out the multiplication sign. So, $6 \times(y+7)$ can be written as $6(y+7)$.
(B) $12 a+8 b$

Find the greatest common factor (GCF) The GCF of 12 and 8 is \qquad . of the coefficients of the terms.

Write the first term, $12 a$, as the product $12 a+8 b=4 \times 3 a+8 b$ of the GCF and another factor.

Write the second term, $8 b$, as the product of the GCF and another factor.

$$
=4 \times 3 a+4 \times
$$

\qquad

Use the Distributive Property.

$$
=4 \times(
$$

\qquad $+2 b)$

So, the expression \qquad is equivalent to $12 a+8 b$. that is equivalent to $12 a+8 b$. Explain what property you used.

Share and Show

MATH
 BOARD

Use properties of operations to write an equivalent expression by combining like terms.

1. $3.7 r-1.5 r$
2. $20 a+18+16 a$
3. $7 s+8 t+10 s+12 t$

Use the Distributive Property to write an equivalent expression.
4. $8(h+1.5)$
\qquad
5. $4 m+4 p$
\qquad

On Your Own

Practice: Copy and Solve Use the Distributive Property to write an equivalent expression.

6. $3 a+9 b$
7. $3.5(w+7)$
8. $\frac{1}{2}(f+10)$
9. $4(3 z+2)$
10. $20 b+16 c$
11. $30 d+18$
12. $24 g-8 h$
13. Maprichical 4. Write an Expression The lengths of the sides of a triangle are $3 t, 2 t+1$, and $t+4$. Write an expression for the perimeter (sum of the lengths). Then, write an equivalent expression with 2 terms.
\qquad
14. GПDEEPER Use properties of operations to write an expression equivalent to the sum of the expressions $3(g+5)$ and $2(3 g-6)$.

Problem Solving • Applications (acld

15. THINKSMARTER Sense or Nonsense Peter and Jade are using what they know about properties to write an expression equivalent to $2 \times(n+6)+3$. Whose answer makes sense? Whose answer is nonsense? Explain your reasoning.

Jade's Work Expression: $\quad 2 \times(n+6)+3$
Distributive Property: $\quad(2 \times n)+(2 \times 6)+3$
Multiply within $\quad 2 n+12+3$
parentheses:
Associative Property $\quad 2 n+(12+3)$ of Addition:

Add within $\quad 2 n+15$
parentheses:

Expression:	$2 \times(n+6)+3$
Associative Property	$2 \times n+(6+3)$

of Addition:
Add within parentheses:
$2 \times n+9$
Multiply: $\quad 2 n+9$

For the answer that is nonsense, correct the statement.
\qquad
\qquad
16. THINKSMARTER Write the algebraic expression in the box that shows an equivalent expression.

\[

\]

Essential Question How can you identify equivalent algebraic expressions?

Unlock the Problem

Each train on a roller coaster has 10 cars, and
each car can hold 4 riders. The expression $10 t \times 4$ can be used to find the greatest number of riders when there are t trains on the track. Is this expression equivalent to $14 t$? Use properties of operations to support your answer.

- What is one property of operations that you could use to write an expression equivalent to $10 t \times 4$?

\square
 Determine whether $10 t \times 4$ is equivalent to $14 t$.

The expression $14 t$ is the product of a number and a variable, so rewrite $10 t \times 4$ as a product of a number and a variable.

Use the Commutative Property of
$10 t \times 4=4 \times$ \qquad Multiplication.

Use the \qquad $=(4 \times$ \qquad) $\times t$
Property of Multiplication.

Multiply within the parentheses.
Compare the expressions $40 t$ and $14 t$.
Think: 40 times a number is not equal to 14 times the number, except when the number is 0 .

Check by choosing a value for t and evaluating $40 t$ and $14 t$.
Write the expressions.
Use 2 as a value for t.
Multiply. The expressions have
different values.
$40 t$
$40 \times$ \qquad $14 t$ $14 \times$ \qquad different values.
\qquad

So, the expressions $10 t \times 4$ and $14 t$ are \qquad .

1. Example use properties of operations to determine

 whether the expressions are equivalent.(A) $7 y+(x+3 y)$ and $10 y+x$

The expression $10 y+x$ is a sum of two terms, so rewrite $7 y+(x+3 y)$ as a sum of two terms.

Use the Commutative Property of Addition to rewrite $x+3 y$.

$$
7 y+(x+3 y)=7 y+(\ldots+\ldots)
$$

Use the \qquad Property of

$$
=(\ldots+3 y)+x
$$

Addition to group like terms.

Combine like terms.

$$
=
$$

Compare the expressions $10 y+x$ and $10 y+x$: They are the same.
me.
\qquad $+x$

So, the expressions $7 y+(x+3 y)$ and $10 y+x$
are \qquad .

Explain how you can decide whether two algebraic expressions are equivalent.

B $10(m+n)$ and $10 m+n$

The expression $10 m+n$ is a sum of two terms, so rewrite $10(m+n)$ as a sum of two terms.

Use the Distributive Property.

$$
\begin{aligned}
10(m+n) & =(10 \times \ldots)+(10 \times \ldots \\
& =10 m+\ldots
\end{aligned}
$$

Compare the expressions $10 m+10 n$ and $10 m+n$.
Think: The first terms of both expressions are \qquad but the second terms are different.

Check by choosing values for m and n and evaluating $10 m+10 n$ and $10 m+n$.

Name

Share and Show

Use properties of operations to determine whether the expressions are equivalent.

1. $7 k+4+2 k$ and $4+9 k$

Rewrite $7 k+4+2 k$. Use the Commutative Property of Addition.

$$
7 k+4+2 k=4+\ldots+2 k
$$

Use the Associative Property of Addition.

$$
=4+(\ldots+
$$

\qquad)

Add like terms.
$=4+$ \qquad
The expressions $7 k+4+2 k$ and $4+9 k$ are \qquad .
2. $9 a \times 3$ and $12 a$

路
3. $8 p+0$ and $8 p \times 0$

On Your Own

Use properties of operations to determine whether the
5. $3(v+2)+7 v$ and $16 v$
(v)
6. $14 h+(17+11 h)$ and
$25 h+17$
7. $4 b \times 7$ and $28 b$

Explain how you can use logical reasoning to show that $x+5$ is not equivalent to $x+8$.

expressions are equivalent.

8. GПDEEPER Each case of dog food contains c cans. Each case of cat food contains 12 cans. Four students wrote the expressions below for the number of cans in 6 cases of dog food and 1 case of cat food. Which of the expressions are correct?

$$
6 c+12 \quad 6 c \times 12 \quad 6(c+2) \quad(2 c+4) \times 3
$$

Problem Solving • Applications

Use the table for 9-11.

9. Marcus bought 4 packets of baseball cards and 4 packets of animal cards. Write an algebraic expression for the total number of cards Marcus bought.
10. \qquad Make Arguments Is the expression for the number of cards Marcus bought equivalent to $4(a+b)$? Justify your answer.
\qquad
\qquad
\qquad
\qquad
11. THINKSMARTER Angelica buys 3 packets of movie cards and 6 packets of cartoon cards and adds these to the 3 packets of movie cards she already has. Write three equivalent algebraic expressions for the number of cards Angelica has now.
\qquad
\qquad
12. THINKSMARIER Select the expressions that are equivalent to $3(x+2)$. Mark all that apply.
(A) $3 x+6$
(B) $3 x+2$
(C) $5 x$
(D) $x+5$

(V) Chapter 7 Review/Test

1. Use exponents to rewrite the expression.
$3 \times 3 \times 3 \times 3 \times 5 \times 5$

2. A plumber charges $\$ 10$ for transportation and $\$ 55$ per hour for repairs. Write an expression that can be used to find the cost in dollars for a repair that takes h hours.
3. Ellen is 2 years older than her brother Luke. Let k represent Luke's age. Identify the expression that can be used to find Ellen's age.
(A) $k-2$
(B) $k+2$
(C) $2 k$
(D) $\frac{k}{2}$
4. Write 4^{3} using repeated multiplication. Then find the value of 4^{3}.
5. Jasmine is buying beans. She bought r pounds of red beans that cost $\$ 3$ per pound and b pounds of black beans that cost $\$ 2$ per pound. The total amount of her purchase is given by the expression $3 r+2 b$.
Select the terms of the expression. Mark all that apply.
(A) 2
(B) $2 b$
(C) 3
(D) $3 r$
6. Choose the number that makes the sentence true.

The formula $V=s^{3}$ gives the volume V of a cube with side length s.
The volume of a cube that has a side length of 8 inches

is | 24 |
| :---: |
| 64 |
| 512 | inches cubed.

7. Liang is ordering new chairs and cushions for his dining room table. A new chair costs $\$ 88$ and a new cushion costs $\$ 12$. Shipping costs $\$ 34$. The expression $88 c+12 c+34$ gives the total cost for buying c sets of chairs and cushions. Simplify the expression by combining like terms.
8. Mr. Ruiz writes the expression $5 \times(2+1)^{2} \div 3$ on the board.

Chelsea says the first step is to evaluate 1^{2}. Explain Chelsea's mistake. Then, evaluate the expression.
\square
9. Jake writes this word expression.

the product of 7 and m

Write an algebraic expression for the word expression. Then, evaluate the expression for $m=4$. Show your work.

Name

10. Sora has some bags that each contain 12 potatoes. She takes 3 potatoes from each bag. The expression $12 p-3 p$ represents the number of potatoes p left in the bags. Simplify the expression by combining like terms. Draw a line to match the expression with the simplified expression.

11. Logan works at a florist. He earns $\$ 600$ per week plus $\$ 5$ for each floral arrangement he delivers. The expression $600+5 f$ gives the amount in dollars that Logan earns for delivering f floral arrangements. How much will Logan earn if he delivers 45 floral arrangements in one week? Show your work.
\square
12. Choose the word that makes the sentence true.

Dara wrote the expression $7 \times(d+4)$ in her notebook. She used the

Associative
Commutative \quad Property to write the equivalent expression $7 d+28$. Distributive
13. Use properties of operations to determine whether $5(n+1)+2 n$ and $7 n+1$ are equivalent expressions.
\square
14. Alisha buys 5 boxes of peanut butter granola bars and 5 boxes of cinnamon granola bars. Let p represent the number of peanut butter granola bars and c represent the number of cinnamon granola bars. Jaira and Emma each write an expression that represents the total number of granola bars Alisha bought. Are the expressions equivalent? Justify your answer.

Jaira	Emma
$5 p+5 c$	$5(p+c)$

\square
15. Abe is 3 inches taller than Chen. Select the expressions that represent Abe's height if Chen's height is h inches. Mark all that apply.

○ $h-3$
O $h+3$
\bigcirc the sum of h and 3
\bigcirc the difference between h and 3
16. Write the algebraic expression in the box that shows an equivalent expression.

$6 k+5$	$5 k$	$3 k+6$

Name

17. Draw a line to match the property with the expression that shows the property.

Associative Property of Addition

Commutative Property of Addition
Identity Property of Addition

- $0+14=14$
- $14+b=b+14$
- $6+(8+b)=(6+8)+b$

18. A bike rental company charges $\$ 10$ to rent a bike plus $\$ 2$ for each hour the bike is rented. An expression for the total cost of renting a bike for h hours is $10+2 h$. Complete the table to find the total cost of renting a bike for h hours.

Number of Hours, \boldsymbol{h}	$\mathbf{1 0}+\mathbf{2 h}$	Total Cost
1	$10+2 \times 1$	
2		
3		
4		

19. An online sporting goods store charges $\$ 12$ for a pair of athletic socks. Shipping is $\$ 2$ per order.

Part A

Write an expression that Hana can use to find the total cost in dollars for ordering n pairs of socks.

Part B

Hana orders 3 pairs of athletic socks and her friend, Charlie, orders
2 pairs of athletic socks. What is the total cost, including shipping, for both orders? Show your work.
\square
20. Fernando simplifies the expression $(6+2)^{2}-4 \times 3$.

Part A

Fernando shows his work on the board. Use numbers and words to explain his mistake.
$(6+2)^{2}-4 \times 3$
$(6+4)-4 \times 3$
$10-4 \times 3$
6×3
18
\square

Part B

Simplify the expression $(6+2)^{2}-4 \times 3$ using the order of operations.
\square

Chapter
 8 Algebrar Equations and hequalities

Show What You Know

Check your understanding of important skills.
Name \qquad
Multiplication Properties Find the unknown number. Write which multiplication property you used.

1. $42 \times \underline{ }=42$
\qquad
\qquad
Evaluate Algebraic Expressions Evaluate the expression.
2. $4 a-2 b$ for $a=5$ and $b=3$
3. $7 x+9 y$ for $x=7$ and $y=1$
\qquad
4. $9 \times 6=$ \qquad $\times 9$
\qquad
5. $8 c \times d-6$ for $c=10$ and $d=2$
6. $4 s \div t+10$ for $s=9$ and $t=3$

Add Fractions and Decimals Find the sum. Write the sum in simplest form.

7. $35.68+17.84=$ \qquad
8. $24.38+25.3=$ \qquad
9. $\frac{3}{4}+\frac{1}{8}=$ \qquad
10. $\frac{2}{5}+\frac{1}{4}=$
\qquad

Math
 etective

The equation $m=19.32 v$ can be used to find the mass m in grams of a pure gold coin with volume v in cubic centimeters. Carl has a coin with a mass of 37.8 grams. The coin's volume is 2.1 cubic centimeters. Be a Math Detective and decide if the coin could be pure gold. Explain your reasoning.

Vocabulary Builder

Visualize It

Use the review words to complete the tree diagram.
 You may use some words more than once.

Understand Vocabulary

Draw a line to match the preview word with its definition.

Preview Words	Definitions of Equality
1. Addition Property of \bullet Equality	- operations that undo each other
2. inequality \bullet	a value of a variable that makes an equation true
3. inverse operations -	
4. equation -	- property that states that if you add the same number to both sides of an equation, the two sides will remain equal
5. solution of an equation \bullet	
6. Subtraction Property of Equality	a mathematical statement that compares two expressions by using the symbol $<$, $>, \leq, \geq$, or \neq
	- property that states that if you subtract the same number from both sides of an equation, the two sides will remain equal
	- a statement that two mathematical expressions are equal

\qquad

Solutions of Equations

Essential Question How do you determine whether a number is a solution of an equation?

An equation is a statement that two mathematical expressions are equal. These are examples of equations:
$8+12=20$
$14=a-3$
$2 d=14$

A solution of an equation is a value of a variable that makes an equation true.
$x+3=5 \quad x=2$ is the solution of the equation because $2+3=5$.

Unlock the Problem

In the 2009-2010 season, the women's basketball team of Duke University lost 5 of their 29 games. The equation $w+5=29$ can be used to find the team's number of wins w. Determine whether $w=14$ or $w=24$ is a solution of the equation, and tell what the solution means.

\square
Use substitution to determine the solution.

STEP 1 Check whether $w=14$ is a solution.
Write the equation.

$$
w+5=29
$$

Substitute 14 for w. \qquad $+5 \stackrel{?}{=} 29$

Add. \qquad $\neq 29$

The equation is not true when $w=14$, so $w=14$ is not a solution.
STEP 2 Check whether $w=24$ is a solution.
Write the equation.

$$
w+5=29
$$

Substitute 24 for w. \qquad $+5 \stackrel{?}{\underline{?}} 29$

Add. \qquad $=29$

The equation is true when $w=24$, so $w=24$ is a solution.
So, the solution of the equation $w+5=29$ is $w=$ \qquad ,
which means that the team won \qquad games.

D Example 1 Detemine whetere the given valuo of the varatel is

solution of the equation.
A $x-0.7=4.3 ; x=3.6$
Write the equation

$$
x-0.7=4.3
$$

Substitute the given value for the variable. \qquad $-0.7 \stackrel{?}{\underline{?}} 4.3$

Subtract. Write $=$ or \neq.

The equation \qquad true when $x=3.6$, so $x=3.6$
\qquad a solution.

B $\frac{1}{3} a=\frac{1}{4} ; a=\frac{3}{4}$
Write the equation.

$$
\frac{1}{3} a=\frac{1}{4}
$$

Substitute the given value for the variable.

Simplify factors and multiply. Write $=$ or \neq.

The equation \qquad true when $a=\frac{3}{4}$, so $a=\frac{3}{4}$
\qquad a solution.

I Example 2 the sixth-grade class president serves a term of 8 months.

Janice has already served 5 months of her term as class president. The equation $m+5=8$ can be used to determine the number of months m Janice has left. Use mental math to find the solution of the equation.

Think: What number plus 5 is equal to 8 ? \qquad plus 5 is equal to 8 .

Use substitution to check whether $m=3$ is a solution.

Write the equation.

$$
m+5=8
$$

Substitute 3 for m. \qquad $+5 \stackrel{?}{\underline{=}} 8$

8

So, $m=$ \qquad is the solution of the equation, and months of Janice's term remain.
Add. Write $=$ or \neq.

Give an example of an equation whose solution is $y=7$. Explain how you know that the equation has this solution.

Share and Show

MATH BOARD

Determine whether the given value of the variable is a solution of the equation.

1. $x+12=29 ; x=7$
\qquad $+12 \stackrel{?}{\underline{2}} 29$
$\ldots \quad \neq 29$
\qquad
2. $m+2.5=4.6 ; m=2.9$
\qquad

On Your Own

Determine whether the given value of the variable is a solution of the equation.

Explain why $2 x-6$ is not an equation.
6. $k-\frac{3}{5}=\frac{1}{10} ; k=\frac{7}{10}$
3. $\frac{1}{2} c=14 ; c=28$
\qquad
7. $17.9+v=35.8 ; v=17.9$
8. $c+35=57 ; c=32$
\qquad

Practice: Copy and Solve Use mental math to find the solution of the equation. Use substitution to check your answer.
11. $t-3=6$
\mid

10. $x+5=12$
11. Antonia pays for a cat toy with a $\$ 10$ bill and receives $\$ 4.35$ in change. The equation $10-c=4.35$ gives the cost in dollars of the cat toy. Determine whether $c=5.35, c=5.65$, or $c=6.35$ is a solution of the equation, and tell what the solution means.
12. $18=\frac{2}{3} h ; h=12$
13. $8 z=40$

Problem Solving • Applications

Use the table for 14-16.

14.

Connect Symbols and Words The length of a day on Saturn is 14 hours less than a day on Mars. The equation $24.7-s=14$ gives the length in hours s of a day on Saturn. Determine whether $s=9.3$ or $s=10.7$ is a solution of the equation, and tell what the solution means.
15. A storm on one of the planets listed in the table lasted for 60 hours, or 2.5 of the planet's days. The equation $2.5 h=60$ gives the length in hours h of a day on the planet. Is the planet Earth, Mars, or Jupiter? Explain.
16. HDDEEPER A day on Pluto is 143.4 hours longer than a
 day on one of the planets listed in the table. The equation $153.3-p=143.4$ gives the length in hours p of a day on the planet. What is the length of a storm that lasts $\frac{1}{3}$ of a day on this planet?
\qquad
17. THINKSMARTER What's the Error? Jason said that the solution of the equation $2 m=4$ is $m=8$. Describe Jason's error, and give the correct solution.

18. THINKSMARTER The marking period is 45 school days long. Today is the twenty-first day of the marking period. The equation $x+21=45$ can be used to find the number of days left in the marking period. Using substitution, Rachel determines

\qquad

Write Equations

Essential Question How do you write an equation to represent a situation?

Expressions and Equations6.EE. 7

MATHEMATICAL PRACTICES MP.2, MP.3, MP.4, MP. 6

CONNECT You can use what you know about writing algebraic expressions to help you write algebraic equations.

0
 Unlock the Problem

A circus recently spent $\$ 1,650$ on new trapezes. The trapezes cost $\$ 275$ each. Write an equation that could be used to find the number of trapezes t that the circus bought.

- Circle the information that you need to write the equation.
- What expression could you use to represent the cost of t trapezes?

0Write an equation for the situation.

Think:

Cost per trapeze	times	number of trapezes	equals	total cost.
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
	\times	t	$=$	

So, an equation that could be used to find the number of trapezes t is \qquad .

Try This! Ben is making a recipe for salsa that calls for $3 \frac{1}{2}$ cups of tomatoes. He chops 4 tomatoes, which fill $2 \frac{1}{4}$ cups. Write an equation that could be used to find out how many more cups \boldsymbol{c} Ben needs.

So, an equation that could be used to find the number of additional cups c is \qquad .

Mathematical Practices
Describe another equation you could use to model the problem.

\square Example 1 Write an equation for the word sentence.

(A) Six fewer than a number is 46.33 .

Think: Let n represent the unknown number. The phrase "fewer than" indicates

ERROR Alert

The expression $n-6$ means " 6 fewer than n." The expression
$6-n$ means " n fewer than 6."
(B) Two-thirds of the cost of the sweater is $\$ 18$.

Think: Let c represent the \qquad of the sweater in dollars. The word "of"
indicates \qquad _.

(1) Example 2 write two word sentences for the equation.

(A) $a+15=24$
B $r \div 0.2=40$

- The \qquad of a and 15 \qquad 24.
- The \qquad of r and 0.2 \qquad 40.
- 15 \qquad than a \qquad 24.
- r \qquad by 0.2 \qquad 40.

1. Explain how you can rewrite the equation $n+8=24$ so that it involves subtraction rather than addition.
\qquad
\qquad
 $18 \times d=54$ for the sentence "The product of 18 and d equals 54 ." Another student wrote $d \times 18=54$ for the same sentence. Are both students correct? Justify your answer.

Share and Show

MATH
 BOARD

1. Write an equation for the word sentence " 25 is 13 more than a number."

What operation does the phrase "more than" indicate? \qquad
The equation is \qquad $=$ \qquad $+$ \qquad .

Write an equation for the word sentence.

2. The difference of a number and 2 is $3 \frac{1}{3}$.

Write a word sentence for the equation.

C4. $x-0.3=1.7$

On Your Dwn

Write an equation for the word sentence.
6. The quotient of a number and 20.7 is 9 .
8. 75 is $18 \frac{1}{2}$ more than a number.

Write a word sentence for the equation.
10. $15 g=135$
3. Ten times the number of balloons is 120 .
5. $25=\frac{1}{4} n$
\qquad
7. 24 less than the number of snakes is 35 .
9. d degrees warmer than 50 degrees is 78 degrees.
\qquad

Problem Solving • Applications (earld

To find out how far a car can travel on a certain amount of gas, multiply the car's fuel efficiency in miles per gallon by the gas used in gallons. Use this information and the table for 12-13.
12. Write an equation that could be used to find how many miles a hybrid SUV can travel in the city on 20 gallons of gas.

13. A sedan traveled 504 miles on the highway on a full tank of gas. Write an equation that could be used to find the number of gallons the tank holds.

Fuel Efficiency		
Vehicle	Miles per gallon, city	Miles per gallon, highway
Hybrid SUV	36	31
Minivan	19	26
Sedan	20	28
SUV	22	26

14. (marifnailcal (2) Connect Symbols to Words Sonya was born in 1998. Carmen was born 11 years after Sonya. If you wrote an equation to find the year in which Carmen was born, what operation would you use in your equation?
15. $-[\square D E E P E R$ A magazine has 110 pages. There are 23 full-page ads and 14 half-page ads. The rest of the magazine consists of articles. Write an equation that can be used to find the number of pages of articles in the magazine.
16. THINKSMARTER What's the Error? Tony is traveling 560 miles to visit his cousins. He travels 313 miles the first day. He says that he can use the equation $m-313=560$ to find the number of miles he has left on his trip. Describe and correct Tony's error.
17. THINKSMARIER Jamie is making cookies for a bake sale. She triples the recipe in order to have enough cookies to sell. Jamie uses 12 cups of flour to make the triple batch.
Write an equation that can be used to find out how much flour f is needed for one batch of cookies.
\qquad

Model and Solve Addition Equations

Essential Question How can you use models to solve addition equations?

You can use algebra tiles to help you find solutions of equations.

Algebra Tiles

Investigate

Materials $■$ MathBoard, algebra tiles
Thomas has $\$ 2$. He wants to buy a poster that costs $\$ 7$. Model and solve the equation $x+2=7$ to find the amount x in dollars that Thomas needs to save in order to buy the poster.
A. Draw 2 rectangles on your MathBoard to represent the two sides of the equation.
B. Use algebra tiles to model the equation. Model $x+2$ in the left rectangle, and model 7 in the right rectangle.

- What type of tiles and number of tiles did you use to $\operatorname{model} x+2$?
C. To solve the equation, get the x tile by itself on one side. If you remove a tile from one side, you can keep the two sides equal by removing the same type of tile from the other side.
- How many 1 tiles do you need to remove from each side to
get the x tile by itself on the left side? \qquad
- When the x tile is by itself on the left side, how many

1 tiles are on the right side? \qquad -

Draw Conclusions

1. Manifmatical (5) Use Appropriate Tools Describe how you could use your model to check your solution.
\qquad
\qquad
\qquad
2. Tell how you could use algebra tiles to model the equation $x+4=8$.
\qquad
\qquad
3. THINKSMARTER What would you do to solve the equation $x+9=12$
without using a model?

Make Connections

You can solve an equation by drawing a model to represent algebra tiles.
Let a rectangle represent the variable. Let a small square represent 1.
Solve the equation $x+3=7$.

STEP 1

Draw a model of the equation.

STEP 2

Get the variable by itself on one side of the model by doing the same thing to both sides.

Cross out \qquad squares on the left side and

\qquad squares on the right side.

STEP 3

Draw a model of the solution.
There is 1 rectangle on the left side. There are

\qquad squares on the right side.

So, the solution of the equation $x+3=7$ is $x=$ \qquad .

Share and Show

```
MATH
BOARD
```

Model and solve the equation by using algebra tiles.

1. $x+5=7$ \qquad | 2. $8=x+1$ \qquad 3. $x+2=5$ \qquad
2. $x+6=8$ \qquad | 5. $5+x=9$ \qquad 6. $5=4+x$
\qquad
Solve the equation by drawing a model.
3. $x+1=5$ \qquad 8. $3+x=4$ \qquad
4. $6=x+4$ \qquad 10. $8=2+x$ \qquad
5. (Marinkaical (6) Describe a Method Describe how you would draw a model to solve the equation $x+5=10$.
\qquad
\qquad
\qquad
\qquad

Problem Solving • Applications (acild

12.

MATHEEAATICAL
4
Interpret a Result The table shows how long several animals have lived at a zoo. The giraffe has lived at the zoo 4 years longer than the mountain lion. The equation $5=4+y$ can be used to find the number of years y the mountain lion has lived at the zoo. Solve the equation. Then tell what the solution means.
13. GПDEEPER Carlos walked 2 miles on Monday and 5 miles on Saturday. The number of miles he walked on those two days is
 3 miles more than the number of miles he walked on Friday. Write and solve an addition equation to find the number of miles Carlos walked on Friday.
14. THINKSMARTER Sense or Nonsense? Gabriela is solving the equation $x+1=6$. She says that the solution must be less than 6. Is Gabriela's statement sense or nonsense? Explain.

Personal Math Trainer

15. THINKSMARTER The Hawks beat the Tigers by 5 points in a football game. The Hawks scored a total of 12 points.

Use numbers and words to explain how this model can be used to solve the equation $x+5=12$.

\qquad

Solve Addition and Subtraction Equations

Essential Question How do you solve addition and subtraction equations?

Connect To solve an equation, you must get the variable on one side of the equal sign by itself. You have solved equations by using models. You can also solve equations by using Properties of Equality.

Subtraction Property of Equality

If you subtract the same number from both sides of an equation, the two sides will remain equal.

$$
\begin{aligned}
3+4 & =7 \\
3+4-4 & =7-4 \\
3+0 & =3 \\
3 & =3
\end{aligned}
$$

Unlock the Problem

The longest distance jumped on a pogo stick is 23 miles. Emilio has jumped 5 miles on a pogo stick. The equation $d+5=23$ can be used to find the remaining distance d in miles he must jump to match the record. Solve the equation, and explain what the solution means.

Solve the addition equation.
To get d by itself, you must undo the addition by 5 . Operations that undo each other are called inverse operations. Subtracting 5 is the inverse operation of adding 5 .

Write the equation.

Use the Subtraction Property of Equality.

Subtract.

Use the Identity Property of Addition.
Check the solution.

$$
d+5=23
$$

Write the equation.

Substitute \qquad for d.

The solution checks.

So, the solution means that Emilio must jump \qquad more miles.
\qquad $+5=23$

When you solve an equation that involves subtraction, you can use addition to get the variable by itself on one side of the equal sign.

Addition Property of Equality
If you add the same number to both sides of an equation, the two sides will remain equal.

$$
\begin{aligned}
7-4 & =3 \\
7-4+4 & =3+4 \\
7+0 & =7 \\
7 & =7
\end{aligned}
$$

1. Example

While cooking dinner, Carla pours $\frac{5}{8}$ cup of milk from a carton. This leaves $\frac{7}{8}$ cup of milk in the carton. Write and solve an equation to find how much milk was in the carton when Carla started cooking.

STEP 1 Write an equation.
Let a represent the amount of milk in cups in the carton when Carla started cooking.

STEP 2 Solve the equation.
Think: $\frac{5}{8}$ is subtracted from a, so add $\frac{5}{8}$ to both sides to undo the subtraction.

Write the equation.

$$
a-\frac{5}{8}=\frac{7}{8}
$$

Use the Addition Property of Equality.

$$
a-\frac{5}{8}+-=\frac{7}{8}+\square
$$

Add.

$$
a=
$$

Write the fraction greater than 1 as a mixed number, and simplify.

So, there were \qquad cups of milk in the carton when Carla

$$
a=
$$

\qquad started cooking.

Share and Show

```
MATH
BOARD
```

1. Solve the equation $n+35=80$.

$$
\begin{aligned}
n+35 & =80 \\
n+35-35 & =80-\quad \text { Use the } _\quad \text { Subtract. }
\end{aligned}
$$

Solve the equation, and check the solution.
2. $16+x=42$
3. $y+6.2=9.1$
\qquad
5. $z-\frac{1}{3}=1 \frac{2}{3}$
-
6. $12=x-24$
\qquad
4. $m+\frac{3}{10}=\frac{7}{10}$
7. $25.3=w-14.9$

Explain how to get the variable by itself on one side of a subtraction equation.

Practice: Copy and Solve Solve the equation, and check the solution.
8. $y-\frac{3}{4}=\frac{1}{2}$
9. $75=n+12$
10. $m+16.8=40$
11. $w-36=56$
12. $8 \frac{2}{5}=d+2 \frac{2}{5}$
13. $8.7=r-1.4$
14. The temperature dropped 8 degrees between 6:00 p.м. and midnight. The temperature at midnight was $26^{\circ} \mathrm{F}$. Write and solve an equation to find the temperature at 6:00 p.m.

On Your Own

\qquad
15. Maryenaical (2) Reason Abstractly Write an addition equation that has the solution $x=9$.

Unlock the Problem

16. G■DEEPER In July, Kimberly made two deposits into her bank account. She made no withdrawals. At the end of July, her account balance was $\$ 120.62$. Write and solve an equation to find Kimberly's balance at the beginning of July.
a. What do you need to find?
\qquad
\qquad
b. What information do you need from the bank statement?
\qquad
\qquad
c. Write an equation you can use to solve the problem. Explain what the variable represents.
\qquad
\qquad
\qquad
\qquad
17. THINKSMARIER If $x+6=35$, what is the value of $x+4$? Explain how to find the value without solving the equation.

18. THINKSMARTER Select the equations that have the solution $n=23$. Mark all that apply.
(A) $16+n=39$
(B) $n-4=19$
(C) $25=n-2$
(D) $12=n-11$
\qquad

Model and Solve Multiplication Equations

Essential Question How can you use models to solve
multiplication equations?

Expressions and Equations$6 . E E .7$

mathematical practices
MP.1, MP.4, MP.5, MP. 6
You can use algebra tiles to model and solve equations that involve multiplication.

Algebra Tiles

To model an expression involving multiplication of a variable, you can use more than one x tile. For example, to model the expression $4 x$, you can use four x tiles.

Investigate

Materials $■$ MathBoard, algebra tiles
Tennis balls are sold in cans of 3 tennis balls each. Daniel needs 15 tennis balls for a tournament. Model and solve the equation $3 x=15$ to find the number of cans x that Daniel should buy.
A. Draw 2 rectangles on your MathBoard to represent the two sides of the equation.

B. Use algebra tiles to model the equation. Model $3 x$ in the left rectangle, and model 15 in the right rectangle.
C. There are three x tiles on the left side of your model. To solve the equation by using the model, you need to find the value of one x tile. To do this, divide each side of your model into 3 equal groups.

- When the tiles on each side have been divided into 3 equal groups, how many 1 tiles are in each group on the right side? \qquad
D. Write the solution of the equation: $x=$ \qquad .

So, Daniel should buy \qquad cans of tennis balls.

Tell what operation you modeled in Step C.

Draw Conclusions

1. Explain how you could use your model to check your solution.
\qquad
\qquad
\qquad
2. Matrinaical (6) Describe how you could use algebra tiles to model the equation $6 x=12$.
3. THINKSMARTER What would you do to solve the equation $5 x=35$ without using a model?

Make Connections

You can also solve multiplication equations by drawing a model to represent algebra tiles. Let a rectangle represent x. Let a square represent 1 . Solve the equation $2 x=6$.

STEP 1 Draw a model of the equation.

STEP 2 Find the value of one rectangle.

Divide each side of the model into \qquad
equal groups.

STEP 3 Draw a model of the solution.
There is 1 rectangle on the left side. There
are \qquad squares on the right side.

So, the solution of the equation $2 x=6$ is $x=$ \qquad .
\qquad

Share and Show

MATH
 BOARD

Model and solve the equation by using algebra tiles.

1. $4 x=16$
\qquad
2. $3 x=9$
\qquad
3. $3 x=12$
\qquad
4. $2 x=10$

Solve the equation by drawing a model.
3. $4=4 x$
6. $15=5 x$
\qquad
\qquad
67. $4 x=8$
8. $3 x=18$ \qquad

Problem Solving • Applications

9. Marimaical 5) Communicate Explain the steps you use to solve a multiplication equation with algebra tiles.
\qquad
\qquad
\qquad
\qquad

The bar graph shows the number of countries that competed in the first four modern Olympic Games. Use the bar graph for 10-11.
10. GIDEEPER

Naomi is doing a report about the 1900 and 1904 Olympic Games. Each page will contain information about 4 of the countries that competed each year. Write and solve an equation to find the number of pages Naomi will need.

11. THINKSMARTER

Pose a Problem Use the information in the bar graph to write and solve a problem involving a multiplication equation.

12. The equation $7 s=21$ can be used to find the number of snakes s in each cage at a zoo. Solve the equation. Then tell what the solution means.
13. THINK'SMARTER A choir is made up of 6 vocal groups. Each group has an equal number of singers. There are 18 singers in the choir. Solve the equation $6 p=18$ to find the number of singers in each group. Use a model.
\qquad

Solve Multiplication and Division Equations

Essential Question How do you solve multiplication and division equations?
connect You can use Properties of Equality and inverse operations to solve multiplication and division equations.

Expressions and Equations$6 . E E .7$
 mathematical practices

MP.2, MP.7, MP. 8

Division Property of Equality

If you divide both sides of an equation by the same nonzero number, the two sides will remain equal.

$$
\begin{aligned}
2 \times 6 & =12 \\
\frac{2 \times 6}{2} & =\frac{12}{2} \\
1 \times 6 & =6 \\
6 & =6
\end{aligned}
$$

Unlock the Problem

Mei ran 14 laps around a track for a total of 4,200 meters. The equation $14 d=4,200$ can be used to find - What operation is indicated by $14 d$? the distance d in meters she ran in each lap. Solve the equation, and explain what the solution means.

Solve a multiplication equation.
To get d by itself, you must undo the multiplication by 14 . Dividing by 14 is the inverse operation of multiplying by 14.

Write the equation.

Use the Division Property of Equality.

Divide.

Use the Identity Property of
Multiplication.
Check the solution.

$$
\begin{aligned}
& 14 d=4,200 \\
& \underline{14 d}=\underline{4,200}
\end{aligned}
$$

$$
1 \times d=
$$

\qquad

$$
\ldots=300
$$

Write the equation.

Substitute \qquad for d.
$14 \times$ \qquad $=4,200$

The solution checks. \qquad

So, the solution means that Mei ran \qquad meters in each lap. number to divide both sides of the equation by.

(1) Example 1 Solve the equation $\frac{2}{3} n=\frac{1}{4}$.

Think: n is multiplied by $\frac{2}{3}$, so divide both sides by $\frac{2}{3}$ to undo the division. Write the equation.

$$
\frac{2}{3} n=\frac{1}{4}
$$

Use the \qquad Property of Equality.

To divide by $\frac{2}{3}$, multiply by its reciprocal.

$$
\begin{aligned}
& \frac{2}{3} n \div \frac{2}{3}=\frac{1}{4} \div \square \\
& \frac{2}{3} n \times \frac{3}{2}=\frac{1}{4} \times-
\end{aligned}
$$

Multiply.

$$
n=-
$$

Multiplication Property of Equality
If you multiply both sides of an equation by the same number, the two sides will remain equal.

$$
\begin{aligned}
\frac{12}{4} & =3 \\
4 \times \frac{12}{4} & =4 \times 3 \\
1 \times 12 & =12 \\
12 & =12
\end{aligned}
$$

1. Example 2

A biologist divides a water sample equally among 8 test tubes. Each test tube contains 24.5 milliliters of water. Write and solve an equation to find the volume of the water sample.

STEP 1 Write an equation. Let v represent the volume in milliliters.
Think: The volume divided by 8 equals the volume in each test tube.
STEP 2 Solve the equation. v is divided by 8 , so multiply both sides by 8 to undo the division.

Write the equation.

Use the \qquad Property of Equality. \qquad $\times \frac{v}{8}=$ \qquad $\times 24.5$ Multiply.

So, the volume of the water sample is \qquad milliliters.
\qquad

Explain how you can use the Multiplication Property of Equality to solve Example 1.

Share and Show

1. Solve the equation $2.5 m=10$.

$$
\begin{aligned}
& 2.5 m=10 \\
& \frac{2.5 m}{2.5}=10
\end{aligned}
$$

Use the
\qquad Property of Equality.

$$
m=
$$

\qquad Divide.

Solve the equation, and check the solution.
2. $3 x=210$
3. $2.8=4 t$
4. $\frac{1}{3} n=15$
5. $\frac{1}{2} y=\frac{1}{10}$
6. $25=\frac{a}{5}$
7. $1.3=\frac{c}{4}$

On Your Own

Math

Practice: Copy and Solve Solve the equation, and check the solution.
8. $150=6 m$
9. $14.7=\frac{b}{7}$
10. $\frac{1}{4}=\frac{3}{5} s$
11. $6 \square D E E P E R$ There are 100 calories in 8 fluid ounces of orange juice and 140 calories in 8 fluid ounces of pineapple juice. Tia mixed 4 fluid ounces of each juice. Write and solve an equation to find the number of calories in each fluid ounce of Tia's juice mixture.
\qquad
12. THINKSMARTER Write a division equation that has the solution $x=16$.

Problem Solving • Applications (raild

What's the Error?

13. IHINKSMARTER Melinda has a block of clay that weighs 14.4 ounces. She divides the clay into 6 equal pieces. To find the weight w in ounces of each piece, Melinda solved the equation $6 w=14.4$.

Look at how Melinda solved the equation. Find her error.

Correct the error. Solve the equation, and explain your steps.

This is how Melinda solved the equation:

$$
\begin{aligned}
6 w & =14.4 \\
\frac{6 w}{6} & =6 \times 14.4 \\
w & =86.4
\end{aligned}
$$

Melinda concludes that each piece of clay weighs 86.4 ounces.

So, $w=$ \qquad .

This means each piece of clay weighs \qquad .

- Mandinaical (1) Describe the error that Melinda made.
\qquad
\qquad

14. IHINKSMARTER For numbers $14 \mathrm{a}-14 \mathrm{~d}$, choose Yes or No to indicate whether the equation has the solution $x=15$.
14a. $15 x=30$
○ Yes
O No

14b. $4 x=60$
Yes

O No
14c. $\frac{x}{5}=3$
O Yes
O No
14d. $\frac{x}{3}=5$
O Yes

○ No
\qquad

Problem Solving • Equations with Fractions

Essential Question How can you use the strategy solve a simpler problem to solve equations involving fractions?

Expressions and Equations6.EE. 7

MATHEMATICAL PRACTICES
MP.2, MP.6, MP.7, MP. 8

You can change an equation involving a fraction to an equation involving only whole numbers. To do so, multiply both sides of the equation by the denominator of the fraction.

Unlock the Problem

On canoe trips, people sometimes carry their canoes between bodies of water. Maps for canoeing use a unit of length called a rod to show distances. Victoria and Mick carry their canoe 40 rods. The equation $40=\frac{2}{11} d$ gives the distance d in yards that they carried the canoe. How many yards did they carry the canoe?

Use the graphic organizer to help you solve the problem.

Solve the Problem

- Write a simpler equation.

$$
\begin{array}{lr}
\text { Write the equation. } & 40=\frac{2}{11} d \\
\text { Multiply both sides by } & 11 \times 40= \\
\text { the denominator. } & =2 d \\
\text { Multiply. } & =
\end{array}
$$

- Solve the simpler equation.

Write the equation.

Use the Division
Property of Equality.

Divide.

$$
440=2 d
$$

$$
\underline{440}=2 d
$$

\qquad $=d$

If an equation contains more than one fraction, you can change it to an equation involving only whole numbers by multiplying both sides of the equation by the product of the denominators of the fractions.

(1) Try Another Problem

Trevor is making $\frac{2}{3}$ of a recipe for chicken noodle soup. He adds $\frac{1}{2}$ cup of chopped celery. The equation $\frac{2}{3} c=\frac{1}{2}$ can be used to find the number of cups c of chopped celery in the original recipe. How many cups of chopped celery does the original recipe call for?

Use the graphic organizer to help you solve the problem.

| Read the Problem | |
| :--- | :--- | Solve the Problem

So, the original recipe calls for \qquad cup of chopped celery.

- Mantinalical 6 Describe a Method Describe another method that you could use to solve the problem.

Name

Share and Show

MATH

BOARD

1. Connor ran 3 kilometers in a relay race. His distance represents $\frac{3}{10}$ of the total distance of the race. The equation $\frac{3}{10} d=3$ can be used to find the total distance d of the race in kilometers. What was the total distance of the race?

First, write a simpler equation by multiplying both sides by the denominator of the fraction.

Next, solve the simpler equation.

So, the race is \qquad long.
2. THINKSMARTER What if Connor's distance of 3 kilometers represented only $\frac{2}{10}$ of the total distance of the race. What would the total distance of the race have been?
3. The lightest puppy in a litter weighs 9 ounces, which is $\frac{3}{4}$ of the weight of the heaviest puppy. The equation $\frac{3}{4} w=9$ can be used to find the weight w in ounces of the heaviest puppy. How much does the heaviest puppy weigh?
4. Sophia took home $\frac{2}{5}$ of the pizza that was left over from a party. The amount she took represents $\frac{1}{2}$ of a whole pizza. The equation $\frac{2}{5} p=\frac{1}{2}$ can be used to find the number of pizzas p left over from the party. How many pizzas were left over?
5. A city received $\frac{3}{4}$ inch of rain on July 31 . This represents $\frac{3}{10}$ of the total amount of rain the city received in July. The equation $\frac{3}{10} r=\frac{3}{4}$ can be used to find the amount of rain r in inches the city received in July. How much rain did the city receive in July? pur

Unlock the Problem

\checkmark Circle the important information.
\checkmark Use the Properties of Equality when you solve equations.
\checkmark Check your solution by substituting it into the original equation.
..WRITE Math . Show Your Work

On Your Own

6. GПDEEPER Carole ordered 4 dresses for $\$ 80$ each, a $\$ 25$ sweater, and a coat. The cost of the items without sales tax was $\$ 430$. What was the cost of the coat?
7. IHINKSMARTER A dog sled race is 25 miles long. The equation $\frac{5}{8} k=25$ can be used to estimate the race's length k in kilometers. Approximately how many hours will it take a dog sled team to finish the race if it travels at an average speed of 30 kilometers per hour?

8. Maritemical (6) Explain a Method Explain how you could use the strategy solve a simpler problem to solve the equation $\frac{3}{4} x=\frac{3}{10}$.
\qquad
\qquad
\qquad
\qquad
9. IHINKSMARTER In a basket of fruit, $\frac{5}{6}$ of the pieces of fruit are apples. There are 20 apples in the display. The equation $\frac{5}{6} f=20$ can be used to find how many pieces of fruit f are in the basket. Use words and numbers to explain how to solve the equation to find how many pieces of fruit are in the basket.
\qquad

(V) Mid-Chapter Checkpoint

Vocabulary

Vocabulary

equation
inverse operations
solution of an equation
2. Adding 5 and subtracting 5 are \qquad . (p. 319)

Concepts and Skills

Write an equation for the word sentence. (6.EE.7)

3. The sum of a number and 4.5 is 8.2.

Determine whether the given value of the variable is a solution of the equation. (6.E.5)
5. $x-24=58 ; x=82$

Solve the equation, and check the solution. (6.EE.7)
7. $a+2.4=7.8$
\qquad
9. $3 x=27$
\qquad
11. $\frac{t}{4}=16$
\qquad
4. Three times the cost is $\$ 24$.
6. $\frac{1}{3} c=\frac{3}{8} ; c=\frac{3}{4}$
8. $b-\frac{1}{4}=3 \frac{1}{2}$
10. $\frac{1}{3} s=\frac{1}{5}$
12. $\frac{w}{7}=0.3$
13. A stadium has a total of 18,000 seats. Of these, 7,500 are field seats, and the rest are grandstand seats. Write an equation that could be used to find the number of grandstand seats s. (6.EE.7)
14. Aaron wants to buy a bicycle that costs $\$ 128$. So far, he has saved $\$ 56$. The equation $a+56=128$ can be used to find the amount a in dollars that Aaron still needs to save. What is the solution of the equation? (6.EE.7)
15. Ms. McNeil buys 2.4 gallons of gasoline. The total cost is $\$ 7.56$. The equation $2.4 p=7.56$ can be used to find the price p in dollars of one gallon of gasoline. What is the price of one gallon of gasoline? (6.EE.7)
16. Crystal is picking blueberries. So far, she has filled $\frac{2}{3}$ of her basket, and the blueberries weigh $\frac{3}{4}$ pound. The equation $\frac{2}{3} w=\frac{3}{4}$ can be used to estimate the weight w in pounds of the blueberries when the basket is full. About how much will the blueberries in Crystal's basket weigh when it is full? (6.E..7)

An inequality is a mathematical sentence that compares two expressions using the symbol $<,>, \leq, \geq$, or \neq. These are examples of inequalities:
$8<11$
$9>{ }^{-} 4$
$a \leq 50$
$x \geq 3.2$

A solution of an inequality is a value of a variable that makes the

Math Idea

- The symbol \leq means "is less than or equal to."
- The symbol \geq means "is greater than or equal to." inequality true. Inequalities can have more than one solution.

Unlock the Problem

A library has books from the Middle Ages. The books are more than 650 years old. The inequality $a>650$ represents the possible ages a in years of the books. Determine whether $a=678$ or $a=634$ is a solution of the inequality, and tell what the solution means.

-
 Use substitution to determine the solution.

STEP 1 Check whether $a=678$ is a solution.

Write the inequality.

Substitute 678 for a.

678 is \qquad than 650.
Compare the values.
678 $a>650$

The inequality is true when $a=678$, so $a=678$ is a solution.

STEP 2 Check whether $a=634$ is a solution.

Write the inequality. a>650

Substitute 634 for a. \qquad
$\stackrel{?}{>} 650$

Compare the values.
634 \qquad greater than 650.

The inequality \qquad true when $a=634$, so $a=634$ a solution.

The solution $a=678$ means that a book in the library from the Middle Ages could be \qquad years old.

(f) Example 1 Determine whether the given value of the variable is a

 solution of the inequality.(A) $b<0.3 ; b=-0.2$

Write the inequality.

Substitute the given value for the variable.

Compare the values.
\qquad than 0.3.

The inequality \qquad true when $b={ }^{-} 0.2$, so $b={ }^{-} 0.2$ \qquad a solution.
(B) $m \geq \frac{2}{3} ; m=\frac{3}{5}$

Write the inequality.

$$
m \geq \frac{2}{3}
$$

Substitute the given value for the variable.

Rewrite the fractions with a common denominator.

$$
\frac{}{15} \stackrel{?}{ } \frac{}{15}
$$

Compare the values. \qquad greater than or equal to $\frac{10}{15}$.

The inequality \qquad true when $m=\frac{3}{5}$, so $m=\frac{3}{5}$ \qquad a solution.

(1) Example 2

An airplane can hold no more than 416 passengers. The inequality $p \leq 416$ represents the possible number of passengers p on the airplane, where p is a whole number. Give two solutions of the inequality, and tell what the solutions mean.

Think: The solutions of the inequality are whole numbers \qquad than or
\qquad to 416 .

- $p=200$ is a solution because 200 is \qquad than \qquad .
- $p=$ \qquad is a solution because \qquad is \qquad
than 416.
These solutions mean that the number of passengers on the plane could be \qquad or \qquad . of p that is not a solution of the inequality. Explain why it is not a solution.

Name

Share and Show

Determine whether the given value of the variable is a solution of the inequality.

1. $a \geq{ }^{-} 6 ; a={ }^{-} 3$
$\square \stackrel{?}{\geq}-6$
\qquad
2. $y<7.8 ; y=8$
\qquad
3. $x \leq 3 ; x=3$
\qquad
4. $d<{ }^{-} 0.52 ; d={ }^{-} 0.51$
\qquad
5. $c>\frac{1}{4} ; c=\frac{1}{5}$
6. $t \geq \frac{2}{3}$; $t=\frac{3}{4}$

Explain how you could use a number line to check your answer to Exercise 5.

On Your Own

Practice: Copy and Solve Determine whether the given value of the variable is a solution of the inequality.
7. $s>^{-} 1 ; s=0$
8. $v \leq 1 \frac{5}{6} ; v=1 \frac{3}{4}$
9. $x<0.43 ; x=0.48$

Give two solutions of the inequality.
10. $e<3$
11. $p>{ }^{-} 12$
12. $y \geq 5.8$
13. (Maमinmaical (2) Connect Symbols and Words A person must be at least 18 years old to vote. The inequality $a \geq 18$ represents the possible ages a in years at which a person can vote. Determine whether $a=18, a=17 \frac{1}{2}$, and $a=91.5$ are solutions of the inequality, and tell what the solutions mean.

Problem Solving • Applications

The table shows ticket and popcorn prices at five movie theater chains. Use the table for $14-15$.
14. GDDEEPER The inequality $p<4.75$ represents the prices p in dollars that Paige is willing to pay for popcorn. The inequality $p<8.00$ represents the prices p in dollars that Paige is willing to pay for a movie ticket. At how many theaters would Paige be willing to buy a ticket and popcorn?

16.

Marifmaical (6) Use Math Vocabulary Explain why the statement $t>13$ is an inequality.
\qquad
\qquad

\qquad

Write Inequalities

Essential Question How do you write an inequality to represent a situation?

Expressions and Equations$6 . E E .8$
mathematical practices
MP.2, MP. 4
connect You can use what you know about writing equations to help you write inequalities.

Unlock the Problem

The highest temperature ever recorded at the South Pole was $8^{\circ} \mathrm{F}$. Write an inequality to show that the temperature t in degrees Fahrenheit at the South Pole is less than or equal to $8^{\circ} \mathrm{F}$.

Write an inequality for the situation.
Think:

So, an inequality that describes the temperature t in
degrees Fahrenheit at the South Pole is \qquad .

Try This! The directors of an animal shelter need to raise more than $\mathbf{\$ 5 0 , 0 0 0}$ during a fundraiser. Write an inequality that represents the amount of money \boldsymbol{m} in dollars that the directors need to raise.

Think:

So, an inequality that describes the amount of money m in
dollars is \qquad .

\square Example 1 write an inequality for the word sentence. Tell

what type of numbers the variable in the inequality can represent.
A The weight is less than $3 \frac{1}{2}$ pounds.
Think: Let w represent the unknown weight in pounds.

B There must be at least 65 police officers on duty.
Think: Let p represent the number of police officers. The phrase "at least" is
equivalent to "is \qquad than or equal to."

, where p is a \qquad number

(T) Example 2 write two word sentences for the inequality.

(A) $n \leq 0.3$

- n is \qquad than or \qquad to 0.3.
- n is no \qquad than 0.3.
(B) $a>-4$
- a is \qquad than ${ }^{-} 4$.
- a is \qquad than ${ }^{-4 .}$
- THINKSMARTER

Which inequality symbol would you use to show that the number of people attending a party will be at most 14? Explain.
\qquad
\qquad

Share and Show

Write an inequality for the word sentence. Tell what type of numbers the variable in the inequality can represent.

1. The elevation e is greater than or equal to 15 meters.

Write a word sentence for the inequality.
3. $b<\frac{1}{2}$
\qquad

On Your Own

5. Maritichical 6 Compare Explain the difference between $t \leq 4$ and $t<4$.
6. A passenger's age a must be more than 4 years.
\qquad
7. $m \geq 55$
\qquad
8. FIDEEPER A children's roller coaster is limited to riders whose height is at least 30 inches and at most 48 inches. Write two inequalities that represent the height h of riders for the roller coaster.
9. THINKSMARTER it represents.
$r>10 \bullet$
$s \leq 10$ •
$t \geq 10 \bullet$
$w<10$ •

Match the inequality with the word sentence

- Walter sold more than 10 tickets.
- Fewer than 10 children are at the party.

No more than 10 people can be seated at a table.

At least 10 people need to sign up for the class.

Connect to Reading

Make Generalizations

The reading skill make generalizations can help you write inequalities to represent situations. A generalization is a statement that is true about a group of facts.

Sea otters spend almost their entire lives in the ocean. Their thick fur helps them to stay warm in cold water. Sea otters often float together in groups called rafts. A team of biologists weighed the female sea otters in one raft off the coast of Alaska. The chart shows their results.

Write two inequalities that represent generalizations about the sea otter weights.

First, list the weights in pounds in order from least to greatest.

50, 51, 54, \qquad , \qquad , \qquad , \qquad , \qquad ,
\qquad , \qquad , \qquad , \qquad
Next, write an inequality to describe the weights by using the least weight in the list. Let w represent the weights of the otters in pounds.

Think: The least weight is \qquad pounds, so all of the weights are greater than or equal to 50 pounds.

Now, write an inequality to describe the weights by using the greatest weight in the list.

Think: The greatest weight is \qquad pounds, so

all of the weights are \qquad than or equal to
\qquad pounds.

So, the inequalities \qquad and \qquad represent generalizations about the weights w in pounds of the otters.
8. THINKSMARTER Use the chart at the right to write two inequalities that represent generalizations about the number of sea otter pups per raft.

Sea Otter Pups per Raft	
Raft Number	Number of Pups
1	7
2	10
3	15
4	23
5	6
6	16
7	20
8	6

\qquad

Graph Inequalities

Essential Question How do you represent the solutions of an inequality on a number line?

mathematical practices

 MP.4, MP.5, MP. 6Inequalities can have an infinite number of solutions. The solutions of the inequality $x>2$, for example, include all numbers greater than 2 . You can use a number line to represent all of the solutions of an inequality.

The number line at right shows the solutions of the inequality $x>2$.

The empty circle at 2 shows that 2 is not a solution. The shading to the right of 2 shows that values greater than 2 are solutions.

Unlock the Problem

Forest fires are most likely to occur when the air temperature is greater than $60^{\circ} \mathrm{F}$. The inequality $t>60$ represents the temperatures t in degrees Fahrenheit for which forest fires are most likely. Graph the solutions of the inequality on a number line.

Show the solutions of $t>60$ on a number line.

Think: I need to show all solutions that are greater
 than 60.

Draw an empty circle at \qquad to show that 60 is not a solution.
\qquad of \qquad to show that
Shade to the
values greater than 60 are solutions.

Try This! Graph the solutions of the inequality $y<5$.

Draw an empty circle at \qquad to show that 5 is
not a solution.

Shade to the \qquad of \qquad to show that
values less than 5 are solutions.

- mathematical (6) Make Connections Explain why $y=5$ is not a solution of the inequality $y<5$.

You can also use a number line to show the solutions of an inequality that includes the symbol \leq or \geq.

The number line at right shows the solutions of the inequality $x \geq 2$.

The filled-in circle at 2 shows that 2 is a solution. The shading to the right of 2 shows that values greater than 2 are also solutions.

(f) Example 1 Graph the solutions of the inequality on a

number line.
(A) $w \leq 0.8$

Draw a filled-in circle at \qquad to show that 0.8
is a solution.

Shade to the \qquad of \qquad to show
that values less than 0.8 are also solutions.
(B) $n \geq-3$

Draw a filled-in circle at \qquad to show that ${ }^{-3}$
is a solution.

Shade to the \qquad of \qquad to show

that values greater than ${ }^{-3}$ are also solutions.

(1) Example 2 write the inequality represented by the graph.

Use x (or another letter) for the variable in the inequality.

The \qquad circle at \qquad shows that ${ }^{-2}$
\qquad a solution.

The shading to the \qquad of \qquad shows that values
\qquad than - 2 are solutions.

So, the inequality represented by the graph is \qquad .
\qquad

Share and Show

Graph the inequality.

1. $m<15$

Draw an empty circle at \qquad to show that 15 is
not a solution. Shade to the \qquad of \qquad to
show that values less than 15 are solutions.
2. $c \geq{ }^{-} 1.5$

On Your Own

Practice: Copy and Solve Graph the inequality.
4. $a<\frac{2}{3}$
5. $x>-4$
6. $k \geq 0.3$
7. $t \leq 6$

Write the inequality represented by the graph.
8.

9.

10.

Mandimaical (4) Model Mathematics The inequality $w \geq 60$ represents the wind speed w in miles per hour of a tornado. Graph the solutions of the inequality on the number line.

11. G■DEEPER Graph the solutions of the inequality $c<12 \div 3$ on the number line.

Problem Solving • Applications

The table shows the height requirements for rides at an amusement park. Use the table for 12-16.
12. Write an inequality representing t, the heights in inches of people who can go on Twirl \& Whirl.
13. Graph your inequality from Exercise 12.

14. Write an inequality representing r, the heights in inches of people who can go on Race Track.
15. Graph your inequality from Exercise 14.

Height Requirements

Ride	Minimum height (in.)
Mighty Mountain	44
Race Track	42
River Rapids	38
Twirl \& Whirl	48

16. THINKSMARTER Write an inequality representing
 b, the heights in inches of people who can go on both River Rapids and Mighty Mountain. Explain how you determined your answer.
17. THINKSMARTER Alena graphed the inequality $c \leq 25$.

Darius said that 25 is not part of the solution of the inequality. Do you agree or disagree with Darius? Use numbers and words to support your answer.

\qquad

(V) Chapter 8 Review/Test

1. For numbers la-1c, choose Yes or No to indicate whether the given value of the variable is a solution of the equation.
1a. $\frac{2}{5} v=10 ; v=25$
O Yes
1b. $n+5=15 ; n=5$
O YesNo
1c. $5 z=25 ; z=5$
O Yes
O No
2. The distance from third base to home plate is 88.9 feet. Romeo was 22.1 feet away from third base when he was tagged out. The equation $88.9-t=22.1$ can be used to determine how far he needed to run to get to home plate. Using substitution, the coach determines that Romeo needed

to run | |
| :---: |
| 66 |
| 66.8 |
| 111 | feet to get to home plate.

3. There are 84 grapes in a bag. Four friends are sharing the grapes. Write an equation that can be used to find out how many grapes g each friend will get if each friend gets the same number of grapes.
4. Match each scenario with the equation that can be used to solve it.

Jane's dog eats 3 pounds of food a week. How many weeks will a 24 -pound bag last?

- $3 x=39$

There are 39 students in the gym, and there are an equal number of students in each class. If three classes are in the gym, how many students are in each class?

$$
\text { - } 4 x=24
$$

There are 4 games at the carnival. Kevin played all the games in 24 minutes. How many minutes did he spend at each game if he spent an equal amount of time at each?

- $3 x=24$

5. Frank's hockey team attempted 15 more goals than Spencer's team. Frank's team attempted 23 goals. Write and solve an equation that can be used to find how many goals Spencer's team attempted.
6. Ryan solved the equation $10+y=17$ by drawing a model. Use numbers and words to explain how Ryan's model can be used to find the solution.

7. Gabriella and Max worked on their math project for a total of 6 hours. Max worked on the project for 2 hours by himself. Solve the equation $x+2=6$ to find out how many hours Gabriella worked on the project.
8. Select the equations that have the solution $m=17$. Mark all that apply.
(A) $3+m=21$
(B) $m-2=15$
(C) $14=m-3$
(D) $2=m-15$

Name
9. Describe how you could use algebra tiles to model the equation $4 x=20$.
\square
10. For numbers 10a-10d, choose Yes or No to indicate whether the equation has the solution $x=12$.
10a. $\quad \frac{3}{4} x=9$
O Yes
O No

10b. $3 x=36$
O Yes
○ No
10c. $5 x=70$
O Yes
O No
10d. $\quad \frac{x}{3}=4$
O Yes
O No
11. Bryan rides the bus to and from work on the days he works at the library. In one month, he rode the bus 24 times. Solve the equation $2 x=24$ to find the number of days Bryan worked at the library. Use a model.
\square
12. Betty needs $\frac{3}{4}$ of a yard of fabric to make a skirt. She bought 9 yards of fabric.

Part A

Write and solve an equation to find how many skirts x she can make from 9 yards of fabric.
\square

Part B

Explain how you determined which operation was needed to write the equation.
\square
13. Karen is working on her math homework. She solves the equation $\frac{b}{8}=56$ and says that the solution is $b=7$. Do you agree or disagree with Karen? Use words and numbers to support your answer. If her answer is incorrect, find the correct answer.
\square

Name

14. There are 70 historical fiction books in the school library. Historical fiction books make up $\frac{1}{10}$ of the library's collection. The equation $\frac{1}{10} b=70$ can be used to find out how many books the library has. Solve the equation to find the total number of books in the library's collection. Use numbers and words to explain how to solve $\frac{1}{10} b=70$.
\square
15. Andy drove 33 miles on Monday morning. This was $\frac{3}{7}$ of the total number of miles he drove on Monday. Solve the equation $\frac{3}{7} m=33$ to find the total number of miles Andy drove on Monday.
\square
16. The maximum number of players allowed on a lacrosse team is 23 .

The inequality $t \leq 23$ represents the total number of players t

17. Mr. Charles needs to have at least 10 students sign up for homework help in order to use the computer lab. The inequality $h \geq 10$ represents the number of students h who must sign up. Select possible solutions of the inequality. Mark all that apply.
(A) 7
(D) 10
(B) 8
(E) 11
(C) 9
(F) 12
18. The maximum capacity of the school auditorium is 420 people. Write an inequality for the situation. Tell what type of numbers the variable in the inequality can represent.
19. Match the inequality to the word sentence it represents.

$w<70 \bullet$	\bulletThe temperature did not drop below 70 degrees.	
$x \leq 70 \bullet$	\bulletDane saved more than $\$ 70$. $y>70 \bullet$ $z \geq 70 \bullet$ Fewer than 70 people attended the game. 	No more than 70 people can participate.

20. Cydney graphed the inequality $d \leq 14$.

Part A

Dylan said that 14 is not a solution of the inequality. Do you agree or disagree with Dylan? Use numbers and words to support your answer.
\square

Part B

Suppose Cydney's graph had an empty circle at 14. Write the inequality represented by this graph.

Show What You Know

Check your understanding of important skills.
Name \qquad

Number Patterns Write a rule to explain the pattern.
Use the rule to find the missing numbers.

1. $127,123,119, \square, 111$,
2. $5,832, \square, 648,216,72, \square, 8$

Identify Points on a Coordinate Grid Use the

 ordered pair to name the point on the grid.3. $(4,6)$ \qquad
4. $(8,4)$ \qquad
5. $(2,8)$ \qquad

Evaluate Expressions Evaluate the expression.

6. $18+4-7$
7. $59-20+5$
8. $(40-15)+30$
9. $77-(59-18)$

Terrell plotted points on the coordinate plane as shown. He noticed that the points lie on a straight line. Be a Math Detective and help him write an equation that shows the relationship between the x - and y-coordinate of each point he plotted. Then use the equation to find the y-coordinate of a point on the line with an x-coordinate of 20.

Vocabulary Builder

Visualize It.

Use the review words to complete the bubble map.

Review Words

coordinate plane ordered pair quadrants x-coordinate y-coordinate

Preview Words
dependent variable independent variable linear equation

Understand Vocabulary

Draw a line to match the preview word with its definition.

Preview Words

1. dependent variable \bullet
2. independent variable

- names the point where the axes in the coordinate plane intersect

3. linear equation \bullet

- has a value that depends on the value of another quantity
- forms a straight line when graphed

You can use an equation with two variables to represent a relationship between two quantities. One variable is called the independent variable, and the other is called the dependent variable. The value of the independent variable determines the value of the dependent variable.

Essential Question How can you write an equation to represent the relationship between an independent variable and a dependent variable?

Independent and Dependent Variables

\qquad

Unlock the Problem

Jeri burns 5.8 calories for every minute she jogs. Identify the independent and dependent variables in this situation. Then write an equation to represent the relationship between the number of minutes Jeri jogs and the total number of calories she burns.

Identify the independent and dependent variables.
Then use the variables to write an equation.

Let c represent the total number of \qquad Jeri burns.

Let m represent the number of \qquad Jeri jogs.

Think: The total number of calories Jeri burns depends on the number of minutes she jogs.
\qquad is the dependent variable.
\qquad is the independent variable.

Write an equation to represent the situation.

Think: The total calories burned $\underset{\downarrow}{\text { is equal to }} \underset{\downarrow}{5.8}$ times the number of minutes jogged.
\qquad

So, the equation \qquad represents the number of calories c

Jeri burns if she jogs m minutes, where \qquad is the dependent
variable and \qquad is the independent variable.

P. Example

Lorelei is spending the afternoon bowling with her friends. Each game she plays costs $\$ 3.25$, and there is a one-time shoe-rental fee of $\$ 2.50$.

A Identify the independent and dependent variables in this situation. Then write an equation to represent the relationship between the number of games and the total cost.

Think: The total cost in dollars c depends on the number of games g Lorelei plays.
\qquad is the dependent variable.
\qquad is the independent variable.

Think:
$\underbrace{\text { The total cost }}_{\downarrow}$ is $\underbrace{\text { the cost of a game }}_{\downarrow} \underbrace{\text { times }}_{\downarrow} \underbrace{\text { the number of games }}_{\downarrow} \underbrace{\text { plus }}_{\downarrow}$ shoe rental.
\qquad \times \qquad $+\quad$

So, the equation \qquad represents the total cost in dollars c that Lorelei spends if she bowls g games, where \qquad is the dependent variable and \qquad is the independent variable.
(B) Use your equation to find the total cost for Lorelei to play 3 games.

Think: Find the value of c when $g=3$.

Write the equation

Substitute 3 for g.

Follow the order of operations to solve for c.
$c=3.25 g+2.50$
$c=3.25(\quad$ _ $)+2.50$
$b=$ \qquad $+2.50=$ \qquad
\qquad to play 3 games.

1. THINKSMARTER

What if there were no fee for shoe rentals? How would the equation be different?
2. Masifinaical (1) Evaluate Reasonableness How can you use estimation to check that your answer is reasonable?
\qquad
\qquad
\qquad

Share and Show

Identify the independent and dependent variables. Then write an equation to represent the relationship between them.

1. An online store lets customers have their name printed on any item they buy. The total cost c in dollars is the price of the item p in dollars plus $\$ 3.99$ for the name.

The \qquad depends on the \qquad .
dependent variable: \qquad
independent variable: \qquad
equation: \qquad $=$ \qquad
2. A raft travels downriver at a rate of 6 miles per hour. The total distance d in miles that the raft travels is equal to the rate times the number of hours h.
dependent variable: \qquad
independent variable: \qquad equation: \qquad

On Your Own

Identify the independent and dependent variables. Then write an equation to represent the relationship between them.
3. Apples are on sale for $\$ 1.99$ a pound. Sheila buys p pounds of apples for a total cost of c dollars.
dependent variable: \qquad independent variable: \qquad
equation: \qquad
Math Talk

Mathematical Practices
Explain how you know which variable in a relationship is dependent and which is independent.
4. Sean can make 8 paper birds in an hour. The total number of birds b is equal to the number of birds he makes per hour times the number of hours h.
dependent variable: \qquad
independent variable: \qquad
equation: \qquad
6. Mantimatical (2) Connect Symbols and Words Describe a situation that can be represented by the equation $c=12 b$.
\qquad
\qquad L
5. Billy has $\$ 25$. His father is going to give him more money. The total amount t Billy will have is equal to the amount m his father gives him plus the $\$ 25$ Billy already has.
dependent variable: \qquad
independent variable: \qquad
equation: \qquad
7. GПDEEPER Belinda pays $\$ 4.25$ for each glass she buys. The total cost c is equal to the price per glass times the number of glasses n plus $\$ 9.95$ for shipping and handling. Write an equation and use it to find how much it will cost Belinda to buy 12 glasses.

Unlock the Problem

8. Benji decides to save $\$ 15$ per week to buy a computer program. Write an equation that models the total amount t in dollars Benji will have saved in w weeks.
a. What does the variable t represent?
b. Which is the dependent variable? Which is the independent variable? How do you know?

\qquad
\qquad
c. How can you find the total amount saved in w weeks?
\qquad
\qquad
d. Write an equation for the total amount that Benji will have saved.
9. FIDEEPER Coach Diaz is buying hats for the baseball team. The total cost c is equal to the number of hats n that he buys times the sum of the price per hat h and a $\$ 2$ charge per hat to the have the team name printed on it. Write an equation that can be used to find the cost of the hats.

10. THINKSMARTER A steel cable that is $\frac{1}{2}$ inch in diameter weighs 0.42 pound per foot. The total weight in pounds w is equal to 0.42 times of the number of feet f of steel cable. Choose the letter or equation that makes each sentence true.

The independent variable is

> The dependent variable is

The equation that represents the relationship between the variables is $\begin{aligned} & w=0.42 f . \\ & f=0.42 w .\end{aligned}$
\qquad

Equations and Tables

Essential Question How can you translate between equations and tables?

When an equation describes the relationship between two quantities, the variable x often represents the independent variable, and y often represents the dependent variable.

A value of the independent variable is called the input value, and a value of the dependent variable is called the output value.

Expressions and Equations6.EE. 9
 MATHEMATICAL PRACTICES MP.2, MP.3, MP.4, MP. 7

Unlock the Problem
 Unlock the Prodiem

A skating rink charges $\$ 3.00$ for each hour of skating, plus $\$ 1.75$ to rent skates. Write an equation for the relationship that gives the total cost y in dollars for skating x hours. Then make a table that shows the cost of skating for $1,2,3$, and 4 hours.

(Write an equation for the relationship, and use the equation to make a table.

STEP 1 Write an equation.
Think:

So, the equation for the relationship is \qquad
STEP 2 Make a table.

Input	Rule	Output
Time (hr), \boldsymbol{x}	$3 \boldsymbol{x}+\mathbf{1 . 7 5}$	Cost (\$), \boldsymbol{y}
1	$3 \cdot 1+1.75$	4.75
2		
3		
4		

Replace x with each input value, and then evaluate the rule to find each output value.

Math Talk

Explain how you could use the equation to find the total cost of skating for 6 hours.

(1) Example

Jamal downloads songs on his MP3 player. The table shows how the time it takes him to download a song depends on the song's file size. Write an equation for the relationship shown in the table. Then use the equation to find how many seconds it takes Jamal to download a song with a file size of 7 megabytes (MB).

STEP 1 Write an equation.
Look for a pattern between the file sizes and the download times.

File Size (MB), \boldsymbol{x}	4	5	6	8	
Time (s), \boldsymbol{y}	48	60	72	96	
\uparrow					
	\uparrow	\uparrow		\uparrow	

Think: You can find each download time by multiplying the file size by \qquad .

So, the equation for the relationship is \qquad .

STEP 2 Use the equation to find the download time for a file size of 7 megabytes.

Write the equation.

$$
y=12 x
$$

Replace x with 7 .

$$
y=12 .
$$

\qquad
Solve for y.

$$
y=
$$

So, it takes Jamal \qquad seconds to download a 7 -megabyte song.

1. Explain how you can check that your equation for the relationship is correct.
\qquad
\qquad
2.

Marifinaical 3) Compare Representations Describe a situation in which it would be more useful to represent a relationship between two quantities with an equation than with a table of values.
\qquad

Share and Show

Use the equation to complete the table.

1. $y=x+3$

Input	Rule	Output
\boldsymbol{x}	$\boldsymbol{x}+\mathbf{3}$	\boldsymbol{y}
6	$6+3$	
8	$8+3$	
10		

2. $y=2 x+1$

Input	Output
\boldsymbol{x}	\boldsymbol{y}
4	
7	
10	

On Your Own

Write an equation for the relationship shown in the table. Then find the unknown value in the table.
3.

\boldsymbol{x}	8	9	10	11
\boldsymbol{y}	16	18	$?$	22

\qquad
4.

\boldsymbol{x}	10	20	30	40
\boldsymbol{y}	5	10	15	$?$

\qquad
5. FIDEEPER The table shows the current cost of buying apps for $^{\text {a }}$ a cell phone. Next month, the price of each app will double. Write an equation you can use to find the total cost y of buying x apps next month.

Cell Phone Apps	
Number of apps, \boldsymbol{x}	Total cost (\$), \boldsymbol{y}
3	9
4	12
5	15

6. THINKSMARTER A beach resort charges $\$ 1.50$ per hour plus $\$ 4.50$ to rent a bicycle. The equation $c=1.50 x+4.50$ gives the total cost c of renting a bicycle for x hours. Use numbers and words to explain how to find the cost c of renting a bicycle for 6 hours.

Input	Output
Time (hr), \boldsymbol{x}	Cost (\$), \boldsymbol{c}
1	6.00
2	7.50
3	9.00
4	10.50

Connect to Reading

Cause and Effect

The reading skill cause and effect can help you understand how a change in one variable may cause a change in another variable. In karate, a person's skill level is often shown by the color of his or her belt. At Sara's karate school, students must pass a test to move from one belt level to the next. Each test costs $\$ 23$. Sara hopes to move up 3 belt levels this year. How will this affect her karate expenses?

Cause:
Sara moves to higher belt levels.

Write an equation to show the relationship between cause and effect. Then use the equation to solve the problem.

Let x represent the number of belt levels Sara moves up, and let y
 represent the increase in dollars in her karate expenses.

Write the equation.
$y=$ \qquad - x

Sara plans to move up 3 levels, so replace x with \qquad - $y=23$. \qquad

Solve for y.
$y=$ \qquad
So, if Sara moves up 3 belt levels this year, her karate expenses will
increase by $\$$ \qquad .

Write an equation to show the relationship between cause and effect. Then use the equation to solve the problem.
7. THINKSMARTER

Classes at Tony's karate school cost $\$ 29.50$ per month. This year he plans to take 2 more months of classes than he did last year. How will this affect Tony's karate expenses?

 goods store regularly sells karate uniforms for $\$ 35.90$ each. The store is putting karate uniforms on sale for 10% off. How will this affect the price of a karate uniform?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem Solving• Analyze Relationships

Essential Question How can you use the strategy find a pattern to solve problems involving relationships between quantities?

Unlock the Problem

The table shows the amount of water pumped through a fire hose over time. If the pattern in the table continues, how long will it take a firefighter to spray 3,000 gallons of water on a fire using this hose?

Fire Hose Flow Rate				
Time (min)	1	2	3	4
Amount of water (gal)	150	300	450	600

Use the graphic organizer to help you solve the problem.

Read the Problem

What do I need to find?

I need to find \qquad
\qquad .

What information do I need to use?

I need to use the relationship between \qquad and \qquad .

How will I use the information?

I will find a \qquad in the table and write an

Solve the Problem

Use the table above to find the relationship between the time and the amount of water.

Think: Let t represent the time in minutes, and w represent the amount of water in gallons. The amount of water in gallons is \qquad multiplied by the time in minutes.

$$
=150
$$

Use the equation to find how long it will take to spray 3,000 gallons.

Write the equation.
Substitute 3,000 for w.
Solve for t. Divide both sides by 150 .

\qquad $=t$

So, it will take \qquad minutes to spray 3,000 gallons of water.

Explain how you can check that your answer is correct.

() Try Another Problem

Dairy cows provide 90% of the world's milk supply. The table shows the amount of milk produced by a cow over time. If the pattern in the table continues, how much milk can a farmer get from a cow in 1 year (365 days)?

Cow Milk Production				
Time (days), \boldsymbol{x}	2	7	10	30
Amount of milk (L), \boldsymbol{y}	50	175	250	750

Read the Problem

What do I need to find?

What information do I need to use?

How will I use the information?

Solve the Problem

Explain how you wrote an equation to represent the pattern in the table.

So, in 365 days, the farmer can get \qquad liters of milk from the cow.

- Explain how you could find the number of days it would take the cow to produce 500 liters of milk.
\qquad
\qquad
\qquad

Name

Share and Show

MATH
 BOARD

1. A soccer coach is ordering shirts for the players. The table shows the total cost based on the number of shirts ordered. How much will it cost the coach to order 18 shirts?

First, find a pattern and write an equation.
The cost is \qquad multiplied by \qquad .
\qquad $=$ \qquad .

Next, use the equation to find the cost of 18 shirts.

So, the cost of 18 shirts is \qquad .
2. THINKSMARTER What if the coach spent $\$ 375$ to purchase a number of shirts? Could you use the same equation to find how many shirts the coach bought? Explain.
\qquad
\qquad
3. FПDEEPER The table shows the number of miles the Carter family drove over time. If the pattern continues, will the Carter family have driven more than 400 miles in 8 hours? Explain.
4. Madinmaical (7) Look for a Pattern The Carter family drove a total of 564 miles. Describe how to use the pattern in the table to find the number of hours they spent driving.
\qquad
\qquad
\qquad

On Your Own

5. A group of dancers practiced for 4 hours in March, 8 hours in April, 12 hours in May, and 16 hours in June. If the pattern continues, how many hours will they practice in November?
6. G■DEEPER The table shows the number of hours Jacob worked and the amount he earned each day.

Jacob's Earnings					
Time (hr), \boldsymbol{h}	5	7	6	8	4
Amount earned (\$), d	60	84	72	96	48

At the end of the week, he used his earnings to buy a new pair of skis. He had $\$ 218$ left over. How much did the skis cost?
7. THINKSMARTER Pose a Problem Look back at Problem 6. Use the data in the table to write a new problem in which you could use the strategy find a pattern. Then solve the problem.

8.
(Manityaical 8 Draw Conclusions Marlon rode his bicycle 9 miles the first week, 18 miles the second week, and 27 miles the third week. If the pattern continues, will Marlon ride exactly 100 miles in a week at some point? Explain how you determined your answer.
\qquad
\qquad
Personal Math Trainer
9. THINKSMARTER A diving instructor ordered snorkels. The table shows the cost based on the number of snorkels ordered.

Number of Snorkels, s	1	2	3	4
Cost (\$), c	32	64	96	128

If the diving instructor spent $\$ 1,024$, how many snorkels did he order? Use numbers and words to explain your answer.
\qquad
\qquad
\qquad

uns Mid-Chapter Checkpoint

Vocabulary

Vocabulary

dependent variable
equation
independent variable
2. A variable whose value is determined by the value of another quantity has a value that determines

1. $\mathrm{A}(\mathrm{n})$ \qquad the value of another quantity. (p. 357) is called $a(n)$ \qquad . (p. 357)

Concepts and Skills

Identify the independent and dependent variables. (6.EE.9)
3. Marco spends a total of d dollars on postage to mail party invitations to each of g guests.
dependent variable: \qquad
independent variable: \qquad
4. Sophie has a doll collection with 36 dolls. She decides to sell s dolls to a museum and has r dolls remaining.
dependent variable: \qquad
independent variable: \qquad

Write an equation for the relationship shown in the table.
Then find the unknown value in the table. (6.EE.9)
5.

\boldsymbol{x}	6	7	8	9
\boldsymbol{y}	42	$?$	56	63

6.

x	20	40	60	80
y	4	8	$?$	16

Write an equation that describes the pattern shown in the table. (6.EE.9)
7. The table shows how the number of pepperoni slices used depends on the number of pizzas made.

Pepperonis Used				
Pizzas, \boldsymbol{x}	2	3	5	9
Pepperoni slices, \boldsymbol{y}	34	51	85	153

8. Brayden is training for a marathon. The table shows how the number of miles he runs depends on which week of training he is in.

Miles Run During Training				
Week, \boldsymbol{w}	3	5	8	12
Miles, \boldsymbol{m}	8	10	13	17

9. The band has a total of 152 members. Some of the members are in the marching band, and the rest are in the concert band. Write an equation that models how many marching band members m there are if there are c concert band members. (6.EE-9)
10. A coach is ordering baseball jerseys from a website. The jerseys cost $\$ 15$ each, and shipping is $\$ 8$ per order. Write an equation that can be used to determine the total cost y, in dollars, for x jerseys. (6.EE.9)
11. Amy volunteers at an animal shelter. She worked 10 hours in March, 12 hours in April, 14 hours in May, and 16 hours in June. If the pattern continues, how many hours will she work in December? (6.EE.9)
12. Aaron wants to buy a new snowboard. The table shows the amount that he has saved. If the pattern in the table continues, how much will he have saved after 1 year? (6.EE.9)

Aaron's Savings	
Time (months)	Money saved (\$)
3	135
4	180
6	270
7	315

\qquad

Graph Relationships

Essential Question How can you graph the relationship between two quantities?
CONNECT You have learned that tables and equations are two ways

Expressions and Equations6.EE. 9

MATHEMATICAL PRACTICES MP.4, MP.6, MP. 7 to represent the relationship between two quantities. You can also represent a relationship between two quantities by using a graph.

? Unlock the Problem

A cafeteria has a pancake-making machine. The table shows the relationship between the time in hours and the number of pancakes the machine can make. Graph the relationship represented by the table.

0
 Use the table values to graph the relationship.

STEP 1 Write ordered pairs.
Let x represent the time in hours and y represent the number of pancakes made. Use each row of the table to write an ordered pair.

Pancake Production	
Time (hours)	Pancakes Made
1	200
2	400
3	600
4	800
5	1,000

(3, \qquad
\qquad , \qquad , \qquad

STEP 2 Choose an appropriate scale for each axis of the graph. Label the axes and give the graph a title.

STEP 3 Graph a point for each ordered pair.

(T) Example The table shows the relationship between

 the number of bicycles y Shawn has left to assemble and the number of hours \boldsymbol{x} he has worked. Graph the relationship represented by the table to find the unknown value of y.STEP 1 Write ordered pairs.
Use each row of the table to write an ordered pair. Skip the row with the unknown y-value.

Time (hours), \boldsymbol{x}	Bicycles Left to Assemble, \boldsymbol{y}
0	10
1	8
2	$?$
3	4
4	2

$(0,10)$
(1, \qquad)
(3, \qquad) \qquad , \qquad
STEP 2 Graph a point for each ordered pair on a coordinate plane.

Remember

The first value in an ordered pair represents the independent variable x. The second value represents the dependent variable y.

STEP 3 Find the unknown y-value.
The points on the graph appear to lie on a line. Use a ruler to draw a dashed line through the points.

Use the line to find the y-value that corresponds to an x-value of 2. Start at the origin, and move 2 units right. Move up until you reach the line you drew. Then move left to find the y-value on the y-axis.

When x has a value of $2, y$ has a value of \qquad .

So, after 2 hours, Shawn has \qquad bicycles left to assemble.

Mathematical Practices
Describe a situation in which it would be more useful to represent a function with a graph than with a table of values.

- MATHingaical 6 Describe another way you could find the unknown value
of y in the table. fin the
\qquad
\qquad
\qquad
\qquad

Share and Show

Graph the relationship represented by the table.
1.

\boldsymbol{x}	1	2	3	4
\boldsymbol{y}	50	100	150	200

Write ordered pairs.
Then graph.
$(1,50)$
(2, \qquad
(3, \qquad
\qquad ,

2.

\boldsymbol{x}	20	40	60	80
\boldsymbol{y}	100	200	300	400

Graph the relationship represented by the table to find the unknown value of y.
3.

\boldsymbol{x}	4	5	6	7	8
\boldsymbol{y}	9	7	5		1

On Your Own

Practice: Copy and Solve Graph the relationship represented
4.

x	1	3	5	7	9
y	3	4	5		7

Mathematical Practices
Explain how to use a graph to find an unknown y-value in a table. by the table to find the unknown value of y.

5. | x | 1 | 3 | 5 | 7 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y | 7 | 6 | | 4 | 3 |
6.
7.

\boldsymbol{x}	1	2	4	6	7
\boldsymbol{y}	2	3	5		8

Problem Solving o Applioctions (rod $\begin{aligned} & \text { word }\end{aligned}$

The table at the right shows the typical price of a popular brand of corn cereal over time. Use the table for 7-8.
7.

Use Graphs Complete the table below to show the cost of buying 1 to 5 boxes of corn cereal in 1988. Then graph the relationship on the coordinate plane at right.

Boxes	1	2	3	4	5
Cost in 1988 (\$)	1.50				

8. GПDEEPER Suppose you graphed the cost of buying 1 to 5 boxes of corn cereal using the 1968 price and the 2008 price. Explain how those graphs would compare to the graph you made using the 1988 price.

Price of Corn Cereal

Year	Price per box (\$)
1968	0.39
1988	1.50
2008	4.50

Boxes

9. THINKSMARTER A bookstore charges $\$ 4$ for shipping, no matter how many books you buy. Irena makes a graph showing the shipping cost for 1 to 5 books. She claims that the points she graphed lie on a line. Does her statement make sense? Explain.
\qquad
10. THINKSMARTER Graph the relationship represented by the table to find the unknown value of y.

\boldsymbol{x}	1	2	3	4
\boldsymbol{y}	2	2.5		3.5

\qquad

Equations and Graphs

Essential Question How can you translate between equations and graphs?
The solution of an equation in two variables is an ordered pair that makes the equation true. For example, $(2,5)$ is a solution of the equation $y=x+3$ because $5=2+3$.

A linear equation is an equation whose solutions form a straight line on the coordinate plane. Any point on the line is a solution of the equation.

Unlock the Problem

A blue whale is swimming at an average rate of 3 miles per hour. Write a linear equation that gives the distance y in miles that the whale swims in x hours. Then graph the relationship.

- What formula can you use to help you write the equation?

(1) Write and graph a linear equation.

STEP 1 Write an equation for the relationship.

STEP 2 Find ordered pairs that are solutions of the equation.

Choose several values of x and find the corresponding values of y.

\boldsymbol{x}	$3 \boldsymbol{x}$	\boldsymbol{y}	Ordered Pair
1	$3 \cdot 1$	3	$(1,3)$
2	3		(2),
3	$3 \cdot$		$()$,
4	3		$()$,

Math
Talk
Mathematical Practices
Explain why the graph does not show negative values of x or y.

STEP 3 Graph the relationship.
Graph the ordered pairs. Draw a line through the points to show all the solutions of the linear equation.

0Example The graph shows the number of beaded necklaces y that Ginger can make in x hours. Write the linear equation for the relationship shown by the graph.

STEP 1 Use ordered pairs from the graph to complete the table of values below.

STEP 2 Look for a pattern in the table.
Compare each y-value with the corresponding x-value.

\boldsymbol{x}	0	1	3	4
\boldsymbol{y}	0			
\uparrow 				

Think: Each y-value is \qquad times the corresponding x-value.

So, the linear equation for the relationship is $y=$ \qquad -

1. Explain how to graph a linear equation. \qquad
\qquad
\qquad
2.

Compare Representations Describe a situation in which it would be more useful to represent a relationship with an equation than with a graph.
\qquad
\qquad

Share and Show

Graph the linear equation.

1. $y=x-2$

Make a table of values. Then graph.

x	y
2	0
4	
6	
8	

2. $y=3 x$

\qquad
Write the linear equation for the relationship shown by the graph.
$\bigcirc 3$.

\qquad

On Your Own

Graph the linear equation.

5. $y=x+1$

© Houghton Mifflin Harcourt Publishing Company
6.

Marifichical (7) Identify Relationships The graph shows the number of loaves of bread y that Kareem bakes in x hours. Write the linear equation for the relationship shown by the graph.
\qquad
6. $y=2 x-1$

Problem Solving • Applications

The graph shows the growth of a bamboo plant.

Use the graph for 8-9.

8. Write a linear equation for the relationship shown by the graph. Use your equation to predict the height of the bamboo plant after 7 days.

9. THINKSMARTER The height y in centimeters of a second bamboo plant is given by the equation $y=30 x$, where x is the time in days. Describe how the graph showing the growth of this plant would compare to the graph showing the growth of the first plant.

\qquad
10. G■DEEPER Maria graphed the linear equation $y=x+3$. Then she used her ruler to draw a vertical line through the point (4,0). At what point do the two lines intersect?
\qquad
11. IHINKSMARTER Antonio claims the linear equation for the relationship shown by the graph is $y=\frac{1}{2} x+2$. Use numbers and words to support Antonio's claim.

\qquad

(V) Chapter 9 Review/Test

1. A box of peanut butter crackers contains 12 individual snacks. The total number of individual snacks s is equal to 12 times the number of boxes of crackers b.

The independent variable is \begin{tabular}{|c|}
\hlineb.

s.

\hline

\quad The dependent variable is

\hlineb.

s.

\hline
\end{tabular}

The equation that represents the relationship between the variables is

$$
\begin{aligned}
& b=12 s . \\
& s=12 b .
\end{aligned}
$$

2. A stationery store charges $\$ 8$ to print logos on paper purchases. The total cost c is the price of the paper p plus $\$ 8$ for printing the logo.

For numbers 2a-2d, select True or False for each statement.
2a. The total cost c depends on the
O True
O False price of the paper.
2b. $\quad c$ is the dependent variable.
O TrueFalse
2c. $\quad p$ is the independent variable.
TrueFalse
2d. The equation that represents theTrueFalse relationship between the variables is $c=8 p$.
3. An electrician charges $\$ 75$ an hour for labor and an initial fee of $\$ 65$. The total cost c equals 75 times the number of hours x plus 65. Write an equation for the relationship and use the equation to complete the table.

Time (hr), \boldsymbol{x}	Cost (\$), \boldsymbol{c}
1	
2	
3	
4	

equation \qquad
4. The community center offers classes in arts and crafts. There is a registration fee of $\$ 125$ and each class costs $\$ 79$. The total cost c equals 79 times the number of classes n plus 125 .

Input	Output
Number of Classes, \boldsymbol{n}	Cost (\$), \boldsymbol{c}
1	204
2	283
3	362
4	441

For numbers 4a-4d, select True or False for each statement.
4a. The registration fee is $\$ 120$.
○ True
O False
4b. n is the independent variable.
○ True
○ False
4c. $\quad c$ is the dependent variable.
○ True
\bigcirc False
4d. The cost for 7 classes is $\$ 678$.
O True
○ False
5. Ms. Walsh is buying calculators for her class. The table shows the total cost based on the number of calculators purchased.

Number of Calculators, \boldsymbol{n}	1	2	3	4
Cost (\$), \boldsymbol{c}	15	30	45	60

If Ms. Walsh spent a total of $\$ 525$, how many calculators did she buy?
Use numbers and words to explain your answer.
\square
6. The table shows the number of cups of lemonade that can be made from cups of lemon juice.

Lemon Juice (cups), \boldsymbol{j}	2	4	5	7
Lemonade (cups), \boldsymbol{l}	14	28	35	49

Mary Beth says the number of cups of lemon juice j depends on the number of cups of lemonade l. She says the equation $j=7 l$ represents the relationship between the cups of lemon juice j and the cups of lemonade l. Is Mary Beth correct? Use words and numbers to explain why or why not.
\square
7. For numbers 7a-7d, choose Yes or No to indicate whether the points, when graphed, would lie on the same line.
7a. $(1,6),(2,4),(3,2),(4,0)$Yes
○ No
7b. $(1,1),(2,4),(3,9),(4,16)$Yes
○ No
7c. $(1,3),(2,5),(3,7),(4,9)$Yes
○ No
7d. $(1,8),(2,10),(3,12),(4,14)$
Yes
○ No
8. Graph the relationship represented by the table to find the unknown value.

Time (seconds), \boldsymbol{x}	40	50	60	70
Water in Tub (gal), \boldsymbol{y}	13	11.5		8.5

9. Graph the relationship represented by the table.

Time (hr), \boldsymbol{x}	3	4	5	6
Distance (mi), \boldsymbol{y}	240	320	400	480

10. Miranda's wages are $\$ 15$ per hour. Write a linear equation that gives the wages w in dollars that Miranda earns in h hours.
11. The table shows the number of apples a that Lucinda uses in b batches of applesauce.

Batches, \boldsymbol{b}	1	2	3	4
Apples, \boldsymbol{a}	4	8	12	16

Graph the relationship between batches b and apples a. Then write the equation that shows the relationship.

12. Delonna walks 4 miles per day for exercise. The total number of miles m she walks equals 4 times the number of days d she walks.

What is the dependent variable? \qquad

What is the independent variable? \qquad
Write the equation that represents the relationship between the m and d.
13. Lacy is staying at a hotel that costs $\$ 85$ per night. The total cost of Lacy's stay is 85 times the number of nights n she stays.

For numbers 13a-13d, select True or False for each statement.
13a. The number of nights n
O True is dependent on the cost c.

13b. n is the independent variable.
O True
O False
13c. c is the dependent variable.
True

O False
13d. The equation that represents the
O True
\bigcirc False total cost is $c=85 n$.
14. A taxi cab company charges an initial fee of $\$ 5$ and then $\$ 4$ per mile for a ride. Use the equation $c=4 x+5$ to complete the table.

Input	Output
Miles (mi), \boldsymbol{x}	Cost (\$), \boldsymbol{c}
2	
4	
6	
8	

15. A grocery display of cans is arranged in the form of a pyramid with 1 can in the top row, 3 in the second row from the top, 5 in the third row, and 7 in the fourth row. The total number of cans c equals 2 times the row r minus 1 . Use the equation $c=2 r-1$ to complete the table.

Row, \boldsymbol{r}	Cans, \boldsymbol{c}
5	
6	
7	
8	

16. The graph shows the number of words Mason read in a given amount of minutes. If Mason continues to read at the same rate, how many words will he have read in 5 minutes?
\qquad
17. Casey claims the linear equation for the relationship shown by the graph is $c=25 j$. Use numbers and words to support Casey's claim.
\qquad
\qquad
\qquad

Gritical area Geometry and Statistics

CRITICAL AREA
Solve real-world and mathematical problems involving area, surface
area, and volume.
Developing understanding of statistical thinking

Project

This Place is a Zoo!

Planning a zoo is a difficult task. Each animal requires a special environment with different amounts of space and different features.

Get Started

You are helping to design a new section of a zoo. The table lists some of the new attractions planned for the zoo. Each attraction includes notes about the type and the amount of space needed. The zoo owns a rectangle of land that is 100 feet long and 60 feet wide. Find the dimensions of each of the attractions and draw a sketch of the plan for the zoo.

Important Facts

Attraction	Minimum Floor Space $(\mathbf{s q} \mathbf{f t})$	Notes
American Alligators	400	rectangular pen with one side at least 24 feet long
Amur Tigers	750	trapezoid-shaped area with one side at least 40 feet long
Howler Monkeys	450	parallelogram-shaped cage with one side at least 30 feet long
Meerkat Village	250	square pen with glass sides
Red Foxes	350	rectangular pen with length twice as long as width
Tropical Aquarium	200	triangular bottom with base at least 20 feet long

\qquad

Completed by \qquad

Show What You Know

Check your understanding of important skills.

Name \qquad

Perimeter Find the perimeter.

1.

$P=$ \qquad units
2.

$P=$ \qquad mm

Identify Polygons Name each polygon based on the number of sides.
3.

4.

5.

Evaluate Algebraic Expressions Evaluate the expression.
6. $5 x+2 y$ for $x=7$ and $y=9$
7. $6 a \times 3 b+4$ for $a=2$ and $b=8$
8. $s^{2}+t^{2}-2^{3}$ for $s=4$ and $t=6$

Ross needs to paint the white boundary lines of one end zone on a football field. The area of the end zone is 4,800 square feet, and one side of the end zone measures 30 feet. One can of paint is enough to paint 300 feet of line. Be a Math Detective and find out if one can is enough to line the perimeter of the end zone.

Vocabulary Builder

Visualize It

Complete the bubble map by using the checked words that are types of quadrilaterals.

Understand Vocabulary

Complete the sentences using the preview words.

1. The \qquad of a figure is the number of square units needed to cover it without any gaps or overlaps.

Review Words

acute triangle
base
height
obtuse triangle
polygon
quadrilateral
rectangle
right triangle
square

Preview Words
area
composite figure
congruent
parallelogram
regular polygon
trapezoid
2. A polygon in which all sides are the same length and all angles
have the same measure is called $a(n)$ \qquad .
3. $\mathrm{A}(\mathrm{n})$ \qquad is a quadrilateral with exactly one pair of parallel sides.
4. \qquad figures have the same size and shape.
5. A quadrilateral with two pairs of parallel sides is called a
\qquad .
6. $\mathrm{A}(\mathrm{n})$ \qquad is made up of more than one shape.

Area of Parallelograms

Essential Question How can you find the area of parallelograms?

Geometry-6.G.1 Also
6.EE.2c, 6.EE. 7

MATHEMATICAL PRACTICES
MP.4, MP.5, MP.6, MP. 8 to cover it without any gaps or overlaps. The area of a rectangle is the product of the length and the width. The rectangle shown has an area of 12 square units. For a rectangle with length l and width w, $A=l \times w$, or $A=l w$.

Recall that a rectangle is a special type of parallelogram. A parallelogram is a quadrilateral with two pairs of parallel sides.

Unlock the Problem

Victoria is making a quilt. She is using material in the shape of parallelograms to form the pattern. The base of each parallelogram measures 9 cm and the height measures 4 cm . What is the area of each parallelogram?

(1) Activity Use the area of a rectangle to find the area of the parallelogram.

Materials $■$ grid paper \llbracket scissors

- Draw the parallelogram on grid paper and cut it out.
- Cut along the dashed line to remove a triangle.
- Move the triangle to the right side of the figure to form a rectangle.
- What is the area of the rectangle? \qquad
- What is the area of the parallelogram? \qquad
- base of parallelogram = \qquad of rectangle height of parallelogram $=$ \qquad of rectangle

width (w) 4 cm

Math Idea

The height of a parallelogram forms a 90° angle with the base.

$$
\text { area of parallelogram }=\ldots \text { of rectangle }
$$

- For a parallelogram with base b and height $h, A=$ \qquad
Area of parallelogram $=b \times h=9 \mathrm{~cm} \times 4 \mathrm{~cm}=$ \qquad sq cm

So, the area of each parallelogram in the quilt is \qquad sq cm.

Example 1

Use the formula $\boldsymbol{A}=\boldsymbol{b} \boldsymbol{h}$ to find the area
of the parallelogram.
Write the formula.
$A=b h$
Replace b and h with their values.
$A=6.3 \times$ \qquad

Multiply.
$A=$ \qquad
So, the area of the parallelogram is \qquad square meters.

A square is a special rectangle in which the length and width are equal. For a square with side length $s, A=l \times w=s \times s=s^{2}$, or $A=s^{2}$.

(1)Example 2 find the area of a square with sides measuring 9.5 cm .

Write the formula.

$$
A=s^{2}
$$

Substitute 9.5 for s. Simplify.

$$
A=(
$$

\qquad $)^{2}=$ \qquad
So, the area of the square is \qquad cm^{2}. and a base of 14 feet. What is the height of the parallelogram?

Write the formula.
Replace A and b with their values.

Use the Division Property of Equality.

Solve for h.

$$
A=b h
$$

\qquad $=$ \qquad $\times h$

$$
\underline{98}=\underline{14 h}
$$

So, the height of the parallelogram is \qquad feet.

Manimenical (6) Compare Explain the difference between the height of a rectangle and the height of a parallelogram.
\qquad
\qquad
\qquad
\qquad

Share and Show

Find the area of the parallelogram or square.

1. $A=b h$

$A=8.3 \times 1.2$
$A=$ \qquad m^{2}
2.

\qquad ft^{2}
3. 2.5 mm

4.

\qquad ft^{2}

Find the unknown measurement for the parallelogram.
5. Area $=11 \mathrm{yd}^{2}$
 yd

On Your Dwn

Find the area of the parallelogram.

6. Area $=32 \mathrm{yd}^{2}$

\qquad yd
Math
Talk
Explain how the areas of some parallelograms and rectangles are related.
7.

\qquad m^{2}

Find the unknown measurement for the figure.
9. square

$$
\begin{aligned}
& A= \\
& s=15 \mathrm{ft}
\end{aligned}
$$

10. parallelogram

$$
\begin{aligned}
& A=32 \mathrm{~m}^{2} \\
& b= \\
& h=8 \mathrm{~m}
\end{aligned}
$$

8.

\qquad ft^{2}
11. parallelogram

$$
\begin{aligned}
& A=51 \frac{1}{4} \mathrm{in} . .^{2} \\
& b=8 \frac{1}{5} \mathrm{in} . \\
& h=
\end{aligned}
$$

12. parallelogram

$$
\begin{aligned}
& A=121 \mathrm{~mm}^{2} \\
& b=11 \mathrm{~mm} \\
& h=
\end{aligned}
$$

13. THINKSMARTER The height of a parallelogram is four times the base.

The base measures $3 \frac{1}{2} \mathrm{ft}$. Find the area of the parallelogram.

Problem Solving • Applications

14. Jane's backyard is shaped like a parallelogram. The base of the parallelogram is 90 feet, and the height is 25 feet. What is the area of Jane's backyard?

15. THINKSMARTER Jack made a parallelogram by putting together two congruent triangles and a square, like the figures shown at the right. The triangles have the same height as the square. What is the area of Jack's parallelogram?

\qquad
16. $G \square D E E P E R$ The base of a parallelogram is 2 times the parallelogram's height. If the base is 12 inches, what is the area?
17. Marimagical 3)Verify the Reasoning of Others Li Ping says that a square with 3 -inch sides has a greater area than a parallelogram that is not a square but has sides that have the same length. Does Li Ping's statement make sense? Explain.

18. THINKSMARTER Find the area of the parallelogram.

The area is \qquad $i n^{2}$.
\qquad

Explore Area of Triangles

Essential Question What is the relationship among the areas of triangles, rectangles, and parallelograms?

Geometry6.G. 1
 mathematical practices

 MP.1, MP7, MP. 8
Investigate

Materials $■$ grid paper $■$ tracing paper $■$ ruler $■$ scissors
A. On the grid, draw a rectangle with a base of 6 units and a height of 5 units.

- What is the area of the rectangle?

B. Trace the rectangle onto tracing paper. Draw a diagonal from the top-left corner to the lower-right corner.
- A diagonal is a line segment that connects two nonadjacent vertices of a polygon.
C. Cut out the rectangle. Then cut along the diagonal to divide the rectangle into two right triangles. Compare the two triangles.
- Congruent figures are the same shape and size. Are the two right triangles congruent?
\qquad
\qquad
- How is the area of each right triangle related to the area of the rectangle?
\qquad
\qquad
- What is the area of each right triangle?

Draw Conclusions

1. Explain how finding the area of a rectangle is like finding the area
of a right triangle. How is it different?
\qquad
\qquad
2. Maninkafical (1) Analyze Because a rectangle is a parallelogram, its area can be found using the formula $A=b \times h$. Use this formula and your results from the Investigate to write a formula for the area of a right triangle with base b and height h.
\qquad

Make Connections

The area of any parallelogram, including a rectangle, can be found using the formula $A=b \times h$. You can use a parallelogram to look at more triangles.
A. Trace and cut out two copies of the acute triangle.
B. Arrange the two triangles to make a parallelogram.

- Are the triangles congruent? \qquad
- If the area of the parallelogram is 10 square centimeters, what is the area of each triangle? Explain how you know.

Acute triangle

Obtuse triangle

C. Repeat Steps A and B with the obtuse triangle.
 the area of any triangle? Explain.
\qquad
\qquad
\qquad

Share and Show

1. Trace the parallelogram, and cut it into two congruent triangles. Find the areas of the parallelogram and one triangle, using square units.

Find the area of each triangle.
2.

\qquad in. ${ }^{2}$
5.

\qquad mm^{2}
3.

\qquad ft^{2}
4.

\qquad y^{2}
7.

\qquad cm^{2}

Problem Solving • Applications (Warld

8. Marimaical (5) Communicate Describe how you can use two triangles of the same shape and size to form a parallelogram.
\qquad
\qquad
\qquad
\qquad

A school flag is in the shape of a right triangle. The height of the flag is 36 inches and the base is $\frac{3}{4}$ of the height. What is the area of the flag?

Sense or Nonsense?

10. Cyndi and Tyson drew the models below. Each said his or her drawing represents a triangle with an area of 600 square inches. Whose statement makes sense? Whose statement is nonsense? Explain your reasoning.

Tyson's Model

Cyndi's Model

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11. THINKSMARTER A flag is separated into two different colors.

Find the area of the white region. Show your work.

\qquad

Area of Triangles

Essential Question How can you find the area of triangles?
Any parallelogram can be divided into two congruent triangles. The area of each triangle is half the area of the parallelogram, so the area of a triangle is half the product of its base and its height.

Area of a Triangle

$$
A=\frac{1}{2} b h
$$

where b is the base and h is the height

Geometry-6.G.1 Also 6.EE.2c mathematical practices MP.1, MP.5, MP. 8

- How can you identify the base and the height of the triangle?
\qquad
\qquad
\qquad
Substitute 190 for b and 79 for h.
$A=\frac{1}{2} \times$ \qquad \times \qquad
$A=\frac{1}{2} \times$ \qquad
Multiply the base and height.
$A=$ \qquad

So, the area of the triangle is \qquad ft^{2}.

Explain how the area of a triangle relates to the area of a rectangle with the same base and height.

Example 1

Find the area of the triangle.
Write the formula.

$$
A=\frac{1}{2} b h
$$

Substitute $4 \frac{1}{2}$ for b and $3 \frac{1}{2}$ for h.
$A=\frac{1}{2} \times$ \qquad \times \qquad

Rewrite the mixed numbers as fractions.

$$
A=\frac{1}{2} \times \frac{}{2} \times \frac{}{2}
$$

Multiply.

$$
A=\frac{}{8}
$$

Rewrite the fraction as a mixed number.

$$
A=
$$

\qquad

So, the area of the triangle is \qquad ft^{2}.

1) Example 2

Daniella is decorating a triangular pennant for her wall. The area of the pennant is $225 \mathrm{in} .^{2}$ and the base measures 30 in . What is the height of the triangular pennant?

Write the formula.
$A=\frac{1}{2} b h$

Substitute 225 for A and 30 for b. \qquad $=\frac{1}{2} \times$ \qquad $\times h$

Multiply $\frac{1}{2}$ and 30 .
$225=$ \qquad $\times h$

Use the Division Property of Equality.

Simplify.

So, the height of the triangular pennant is \qquad in.
\qquad

Share and Show

1. FInd the area of the triangle.
$A=\frac{1}{2} b h$
$A=\frac{1}{2} \times 14 \times$ \qquad
$A=$ \qquad cm^{2}

Find the area of the triangle.
3.

2. The area of the triangle is 132 in. ${ }^{2}$ Find the height of the triangle.

$$
h=
$$

84.

Mathematical Practices
Explain how you can identify the height of a triangle.

On Your Own

THINKSMARTER Find the unknown measurement for the figure.

5. \quad Area $=52.5 \mathrm{in}^{2}$

$h=$ \qquad
6.

$h=$ \qquad
7. Matilenilical (3)Verify the Reasoning of Others The height of a triangle is twice the base. The area of the triangle is $625 \mathrm{in}^{2}{ }^{2}$ Carson says the base of the triangle is at least 50 in . Is Carson's estimate reasonable? Explain.
\qquad
\qquad
\qquad

Unlock the Problem

8. GIDEEPER

Alani is building a set of 4 shelves. Each shelf will have 2 supports in the shape of right isosceles triangles. Each shelf is 14 inches deep. How many square inches of wood will she need to make all of the supports?
a. What are the base and height of each triangle?
\qquad
b. What formula can you use to find the area of a triangle?
\qquad
c. Explain how you can find the area of one triangular support.
\qquad
\qquad
\qquad
\qquad

d. How many triangular supports are needed to build 4 shelves?
e. How many square inches of wood will Alani need to make all the supports?
10. THINKSMARTER The area of a triangle is $30 \mathrm{ft}^{2}$. For numbers 10a-10d, select Yes or No to tell if the dimensions given could be the height and base of the triangle.

10a. $h=3, b=10$
O Yes
○ No
10b. $h=3, b=20$
O Yes
\bigcirc No
10c. $h=5, b=12$
O Yes
○ No
10d. $h=5, b=24$
O Yes
○ No

Name

\qquad

Explore Area of Trapezoids

Essential Question What is the relationship between the areas of trapezoids and parallelograms?

Geometry6.G. 1 MATHEMATICAL PRACTICES MP.4, MP.7, MP. 8

Investigate

Materials $■$ grid paper $■$ ruler $■$ scissors
A. Draw two copies of the trapezoid on grid paper.
B. Cut out the trapezoids.
C. Arrange the trapezoids to form a parallelogram, as shown.

Examine the parallelogram.

- How can you find the length of the base of the parallelogram?

CONNECT A trapezoid is a quadrilateral with exactly one pair of parallel sides. The parallel sides are the bases of the trapezoid. A line segment drawn at a 90° angle to the two bases is the height of the trapezoid. You can use what you know about the area of a parallelogram to find the area of a trapezoid.

\qquad
\qquad

- The base of the parallelogram is \qquad $+$ \qquad $=$ \qquad units.
- The height of the parallelogram is \qquad units.
- The area of the parallelogram is \qquad \times \qquad $=$ \qquad square units.
D. Examine the trapezoids.
- How does the area of one trapezoid relate to the area of the parallelogram?
\qquad
\qquad
- Find the area of one trapezoid. Explain how you found the area.
\qquad
\qquad

Draw Gonclusions

1.

Marisicaical (7) Identify Relationships Explain how knowing how to find the area of a parallelogram helped you find the area of the trapezoid.
2. Use your results from the Investigate to describe how you can find the area of any trapezoid.
\qquad
\qquad
\qquad
3. Martimagical 8) Generalize Can you use the method you described above to find the area of a trapezoid if two copies of the trapezoid can be arranged to form a rectangle? Explain.

Make Connections

You can use the formula for the area of a rectangle to find the area of some types of trapezoids.

A. Trace and cut out two copies of the trapezoid.
B. Arrange the two trapezoids to form a rectangle. Examine the rectangle.

- The length of the rectangle is \qquad $+$ \qquad $=$ \qquad cm.
- The width of the rectangle is \qquad cm .
- The area of the rectangle is \qquad \times \qquad $=$ \qquad cm^{2}.
C. Examine the trapezoids.
- How does the area of each trapezoid relate to the area of the rectangle?
- The area of the given trapezoid is $\frac{1}{2} \times$ \qquad $=$ \qquad cm^{2}.
\qquad

Share and Show

1. Trace and cut out two copies of the trapezoid. Arrange the trapezoids to form a parallelogram. Find the areas of the parallelogram and one trapezoid using square units.

Find the area of the trapezoid.

\qquad cm^{2}
$\circlearrowleft 5$
5.

\qquad cm^{2}
3.

\qquad in. ${ }^{2}$
6.

\qquad mm^{2}
4.

\qquad ft^{2}
7.

in. ${ }^{2}$

Problem Solving • Applications (earld

8. Maphinaical (4) Describe a Method Explain one way to find the height of a trapezoid if you know the area of the trapezoid and the length of both
9. GDDEEPER

A patio is in the shape of a trapezoid. The length of the longer base is 18 feet. The length of the shorter base is two feet less than half the longer base. The height is 8 feet. What is the area of the patio?

THINK SMARTER

10. Except for a small region near its southeast corner, the state of Nevada is shaped like a trapezoid. The map at the right shows the approximate dimensions of the trapezoid. Sabrina used the map to estimate the area of Nevada.

Look at how Sabrina solved the problem.

 Find her error.Two copies of the trapezoid can be put together to form a rectangle.
length of rectangle:
$200+480=680 \mathrm{mi}$
width of rectangle: 300 mi

$$
\begin{aligned}
A & =l w \\
& =680 \times 300 \\
& =204,000
\end{aligned}
$$

The area of Nevada is about 204,000 square miles.
11. THINKSMARIER A photo was cut in half at an angle. What is the area of one of the cut pieces?

7 in.

The area is \qquad .

Describe the error. Find the area of the trapezoid to estimate the area of Nevada.
\qquad

Area of Trapezoids

Essential Question How can you find the area of trapezoids?
Any parallelogram can be divided into two trapezoids with the same shape and size. The bases of the trapezoids, b_{1} and b_{2}, form the base of the parallelogram. The area of each trapezoid is half the area of the parallelogram. So, the area of a trapezoid is half the product of its height and the sum of its bases.

Lesson 10.5

Geometry-6.G. 1
Also 6.EE.2C MATHEMATICAL PRACTICES MP.1, MP.3, MP. 7

$$
A=\frac{1}{2}\left(b_{1}+b_{2}\right) h
$$

where b_{1} and b_{2} are the two bases and h is the height

- How can you identify the bases?
- How can you identify the height?
\qquad

Unlock the Problem

Mr. Desmond has tables in his office with tops shaped like trapezoids. The diagram shows the dimensions of each tabletop. What is the area of each tabletop?

Find the area of the trapezoid.

Write the formula.

$$
A=\frac{1}{2}\left(b_{1}+b_{2}\right) h
$$

Substitute 1.6 for $b_{1}, 0.9$ for b_{2} and 0.6 for h.
$A=\frac{1}{2} \times($ \qquad $+$ \qquad) \times \qquad Add within the parentheses.
$A=\frac{1}{2} \times$ \qquad 0.6

Multiply.
$A=\frac{1}{2} \times$ \qquad
\qquad
So, the area of each tabletop is \qquad m^{2}.

Describe the relationship between the area of a trapezoid and the area of a parallelogram with the same height and a base equal to the sum of the trapezoid's bases.

0 Example 1 Find the area of the trapezoid.

Write the formula.
$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$

Substitute 4.6 for b_{1},
9.4 for $b_{2^{\prime}}$, and 3.5 for h.

Add.
$A=\frac{1}{2} x$ \qquad $\times 3.5$

Multiply.
$A=$ \qquad $\times 3.5=$ \qquad

So, the area of the trapezoid is \qquad cm^{2}.

\squareExample 2

The area of the trapezoid is $702 \mathrm{in} .{ }^{2}$ Find the

height of the trapezoid.

Write the formula.

Substitute 702 for $A, 20$ for b_{1}, and 34 for b_{2}.
Add within the parentheses.

Multiply $\frac{1}{2}$ and 54 .
Use the Division Property of Equality.

Simplify.
So, the height of the trapezoid is \qquad in.

34 in.

$$
A=\frac{1}{2}\left(b_{1}+b_{2}\right) h
$$

$702=\frac{1}{2} \times(20+$ \qquad) $\times h$
$702=\frac{1}{2} \times$ \qquad $\times h$
$702=$ \qquad $\times h$

$$
\underline{702}=\quad \times h
$$

Mathematical Practices
Explain how to find the height of a trapezoid if you know the area and the lengths of both bases.

- Mapingaical (1) Analyze Relationships Explain why the formula for the area of a trapezoid contains the expression $b_{1}+b_{2}$.
\qquad
\qquad
\qquad
\qquad

Share and Show

1. Find the area of the trapezoid.
$A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
$A=\frac{1}{2} \times($ \qquad $+$ \qquad) $\times 4$
$A=\frac{1}{2} \times$ \qquad $\times 4$

$A=$ \qquad cm^{2}
2. The area of the trapezoid is $45 \mathrm{ft}^{2}$. Find the height of the trapezoid.

$h=$ \qquad

On Your Own

Find the area of the trapezoid.
4.

$A=$ \qquad

Find the height of the trapezoid.
6. $\quad 12.5 \mathrm{in}$.

$$
h=
$$

\qquad
5.

$A=$ \qquad
7.

\qquad
$h=$

Problem Solving • Applications (rear world

Use the diagram for 8-9.

8. GIDEEPER A baseball home plate can be divided into two trapezoids with the dimensions shown in the drawing. Find area of home plate.
9. Suppose you cut home plate along the dotted line and rearranged the pieces to form a rectangle. What would the dimensions and the area of the rectangle be?
dimensions: \qquad
area: \qquad
10. THINKSMARTER A pattern used for tile floors is shown. A side of the inner square measures 10 cm , and a side of the outer square measures 30 cm . What is the area of one of the yellow trapezoid tiles?

11. (mpinkilical 3)Verify the Reasoning of Others A trapezoid has a height of 12 cm and bases with lengths of 14 cm and 10 cm . Tina says the area of the trapezoid is $288 \mathrm{~cm}^{2}$. Find her error, and correct the error.
12. THINKSMARIER Which expression can be used to find the area of the trapezoid? Mark all that apply.

(A) $\frac{1}{2} \times(4+1.5) \times 3.5$
(B) $\frac{1}{2} \times(1.5+3.5) \times 4$
(C) $\frac{1}{2} \times(4+3.5) \times 1.5$
(D) $\frac{1}{2} \times(5) \times 4$
\qquad

(V) Mid-Chapter Checkpoint

Vocabulary

Choose the best term from the box to complete the sentence.

1. A \qquad is a quadrilateral with two pairs of parallel sides. (p. 387)
2. The number of square units needed to cover a surface without

Vocabulary

area

congruent
parallelogram
trapezoid any gaps or overlaps is called the \qquad (p. 387)
3. Figures with the same size and shape are \qquad . (p. 393)

Concepts and Skills

Find the area. (6.G.1, 6.EE.2c)

5.

6.

8. A parallelogram has an area of 276 square meters and a base measuring 12 meters. What is the height of the parallelogram?
7.
 the triangle?
\qquad
9. The base of a triangle measures 8 inches and the area is 136 square inches. What is the height of
10. The height of a parallelogram is 3 times the base. The base measures 4.5 cm . What is the area of the parallelogram? (6.G.1)
11. A triangular window pane has a base of 30 inches and a height of 24 inches. What is the area of the window pane? (6.G.1)
12. The courtyard behind Jennie's house is shaped like a trapezoid. The bases measure 8 meters and 11 meters. The height of the trapezoid is 12 meters. What is the area of the courtyard? (6.G.1)
13. Rugs sell for $\$ 8$ per square foot. Beth bought a 9 -foot-long rectangular rug for $\$ 432$. How wide was the rug? (6.G.1, 6.EE.2c)
14. A square painting has a side length of 18 inches. What is the area of the painting? (6.G.1, 6.EE.2c)

Area of Regular Polygons

Essential Question How can you find the area of regular polygons?

Geometry-6.G. 1
Also 6.EE.2c
mathematical practices MP.7, MP. 8

Unlock the Problem

Emory is making a patch for his soccer ball. The patch he is using is a regular polygon. A regular polygon is a polygon in which all sides have the same length and all angles have the same measure. Emory needs to find the area of a piece of material shaped like a regular pentagon.

1) Activity

You can find the area of a regular polygon by dividing the polygon into congruent triangles.

- Draw line segments from each vertex to the center of the pentagon to divide it into five congruent triangles.
- You can find the area of one of the triangles if you know the side length of the polygon and the height of the triangle.

Explain how to determine the number of congruent triangles a regular polygon should be divided into in order to find the area.

- Find the area of one triangle.

Write the formula.

$$
A=\frac{1}{2} b h
$$

Substitute 20 for b and 14 for h.

$$
A=\frac{1}{2} \times
$$

\qquad \times \qquad
Simplify.

$$
A=
$$

\qquad cm^{2}

- Find the area of the regular polygon by multiplying the number of triangles by the area of one triangle.
$A=$ \qquad \times \qquad $=$ \qquad cm^{2}

So, the area of the pentagon-shaped piece is \qquad .

1
 Example
 Find the area of the regular polygon.

STEP 1 Draw line segments from each vertex to the center of the hexagon.

Into how many congruent triangles did you divide the figure? \qquad
STEP 2 Find the area of one triangle.
Write the formula.

$$
A=\frac{1}{2} b h
$$

Substitute 4.2 for b and 3.6 for h.

$$
A=\frac{1}{2} \times
$$

\qquad \times \qquad

Simplify.

$$
A=\quad \mathrm{m}^{2}
$$

STEP 3 Find the area of the hexagon.
$A=$ \qquad \times \qquad $=$ \qquad m^{2}

So, the area of the hexagon is \qquad m^{2}

1. Mavinaqical 8 Use Repeated Reasoning Into how many congruent triangles can you divide a regular decagon by drawing line segments from each vertex to the center of the decagon? Explain.
2. IHINKSMARTER In an irregular polygon, the sides do not all have the same length and the angles do not all have the same measure. Could you find the area of an irregular polygon using the method you used in this lesson? Explain your reasoning.
\qquad
\qquad
\qquad

Share and Show

MATH BOARD

Find the area of the regular polygon.

1. number of congruent triangles inside the figure: \qquad area of each triangle: $\frac{1}{2} \times$ \qquad \times \qquad $=$ \qquad cm^{2} area of octagon: \qquad \times \qquad $=$ \qquad cm^{2}

σ_{2}

\qquad

On Your Own

Find the area of the regular polygon.
4.

©3.

\qquad

Describe the information you must have about a regular polygon in order to find its area.
\qquad
5.

6. Marifingical (6) Explain A regular pentagon is divided into congruent triangles by drawing a line segment from each vertex to the center. Each triangle has an area of $24 \mathrm{~cm}^{2}$. Explain how to find the area of the pentagon.
\qquad
\qquad
7. THINKSMARTER Name the polygon and find its area.

Show your work.
\qquad
\qquad

Connect to Science

Regular Polygons in Nature

Regular polygons are common in nature. One of the bestknown examples of regular polygons in nature is the small hexagonal cells in honeycombs constructed by honeybees. The cells are where bee larvae grow. Honeybees store honey and pollen in the hexagonal cells. Scientists can measure the health of a bee population by the size of the cells.
8. Cells in a honeycomb vary in width. To find the average width of a cell, scientists measure the combined width of 10 cells, and then divide by 10 .

The figure shows a typical 10 -cell line of worker bee cells. What is the width of each cell?

\qquad
9. THINKSMARIER The diagram shows one honeycomb cell. Use your answer to Exercise 8 to find h, the height of the triangle. Then find the area of the hexagonal cell.
10. GПDEEPER

A rectangular honeycomb measures 35.1 cm by 32.4 cm . Approximately how many cells does it contain?

\qquad

Lesson 10.7

Name

\qquad

Composite Figures

Essential Question How can you find the area of composite figures?

A composite figure is made up of two or more simpler
figures, such as triangles and quadrilaterals.

Unlock the Problem

The new entryway to the fun house at Happy World Amusement Park is made from the shapes shown in the diagram. It will be painted bright green. Juanita needs to know the area of the entryway to determine how much paint to buy. What is the area of the entryway?

STEP 1 Find the area of the rectangles.
Write the formula.
Substitute the values for $/$ and w and evaluate.

$$
\begin{aligned}
& A=I w \\
& A=10 \times
\end{aligned}
$$

\qquad $=$ \qquad
Find the total area of two rectangles.
$2 \times$ \qquad $=$ \qquad ft^{2}

STEP 2 Find the area of the triangles.

Write the formula.	$A=\frac{1}{2} b h$
Substitute the values for b and h and evaluate.	$A=\frac{1}{2} \times 4 \times \ldots=$
Find the total area of two triangles.	$2 \times \ldots=\square$

STEP 3 Find the area of the square.
Write the formula.
$A=s^{2}$

Write the formula.	$A=s^{2}$
Substitute the value for s.	$A=(\quad)^{2}=\quad\left[\quad \mathrm{ft}^{2}\right.$

STEP 4 Find the total area of the composite figure.
Add the areas.
$A=80 \mathrm{ft}^{2}+$ \qquad $\mathrm{ft}^{2}+$ \qquad $\mathrm{ft}^{2}=$ \qquad ft^{2}

So, Juanita needs to buy enough paint to cover \qquad ft^{2}.

Example 1 Find the area of the composite figure shown.
STEP 1 Find the area of the triangle, the square, and the trapezoid.
area of triangle

$$
\begin{aligned}
A=\frac{1}{2} b h & =\frac{1}{2} \times 16 \times \\
& =\quad \mathrm{cm}^{2}
\end{aligned}
$$

area of square

$$
A=s^{2}=(\square)^{2}
$$

$$
=\ldots \mathrm{cm}^{2}
$$

area of trapezoid

$$
\begin{aligned}
& A=\frac{1}{2}\left(b_{1}+b_{2}\right) h=\frac{1}{2} \times(\ldots \\
&=\frac{1}{2} \times \ldots \\
&=\square \\
& \mathrm{cm}^{2}
\end{aligned}
$$

\qquad) \times \qquad

STEP 2 Find the total area of the figure.
total area

$$
\begin{aligned}
A & =\ldots \mathrm{cm}^{2}+ \\
& =\quad \mathrm{cm}^{2}
\end{aligned}
$$

\qquad $\mathrm{cm}^{2}+$ \qquad cm^{2}

So, the area of the figure is \qquad cm^{2}.

(1) Example 2
 Find the area of the shaded region.

STEP 1 Find the area of the rectangle and the square.
area of rectangle

$$
A=I w=
$$

\qquad \times \qquad
 ($1 \mathrm{ft}=12 \mathrm{in}$.)

$$
A=
$$

\qquad in. ${ }^{2}$
area of square

$$
A=s^{2}=(\square)^{2}
$$

$$
A=
$$

\qquad in. ${ }^{2}$

STEP 2 Subtract the area of the square from the area of the rectangle.
area of shaded region

$$
\begin{aligned}
& A=\quad \text { in. }^{2}- \\
& A=\quad \text { in. }^{2}
\end{aligned}
$$

\qquad in. ${ }^{2}$

So, the area of the shaded region is \qquad in. ${ }^{2}$
\qquad

Share and Show

1. Find the area of the figure. area of one rectangle
$A=l w$
$A=$ \qquad \times \qquad $=$ \qquad ft^{2}
area of two rectangles
$A=2 \times$ \qquad $=$ \qquad ft^{2}

length of base of triangle
$b=$ \qquad $\mathrm{ft}+$ \qquad $\mathrm{ft}+$ \qquad ft
$=$ \qquad ft
area of triangle
$A=\frac{1}{2} b h$
$A=\frac{1}{2} \times$ \qquad \times \qquad $=$ \qquad ft^{2}
area of composite figure
$A=$ \qquad $\mathrm{ft}^{2}+$ \qquad $\mathrm{ft}^{2}=$ \qquad ft^{2}

Find the area of the figure.

$\sigma 2$.

\qquad
83

On Your Own

Explain how to find the area of a composite figure.
4. Find the area of the figure.

5.
 the area of the shaded region.

Unlock the Problem

6. G■DEEPER Marco made the banner shown at the right. What is the area of the yellow shape?
a. Explain how you could find the area of the yellow shape if you knew the areas of the green and red shapes and the area of the entire banner .

c. What is the area of the red shape? What is the area of each green shape?
\qquad
d. What equation can you write to find A, the area of the yellow shape?
\qquad
e. What is the area of the yellow shape?
\qquad
7. There are 6 rectangular flower gardens each measuring 18 feet by 15 feet in a rectangular city park measuring 80 feet by 150 feet. How many square feet of the park are not used for flower gardens?

Personal Math Trainer
8. THINKSMARTER $\}$ Sabrina wants to replace the carpet in a few rooms of her house. Select the expression she can use to find the total area of the floor that will be covered. Mark all that apply.
(A) $8 \times 22+130+\frac{1}{2} \times 10 \times 9$
(B) $18 \times 22-\frac{1}{2} \times 10 \times 9$
(C) $18 \times 13+\frac{1}{2} \times 10 \times 9$
(D) $\frac{1}{2} \times(18+8) \times 22$

Name

Problem Solving • Changing Dimensions

Essential Question How can you use the strategy find a pattern to show how changing dimensions affects area?

Unlock the Problem

Jason has created a 3-in. by 4-in. rectangular design to be made into mouse pads. To manufacture the pads, the dimensions will be multiplied by 2 or 3 . How will the area of the design be affected?

Use the graphic organizer to help you solve the problem.

Read the Problem

What do I need to find?
I need to find how
will be affected by changing
the \qquad .

What information do I need to use?

I need to use \qquad of the original design and
\qquad
\qquad
\qquad .

So, when the dimensions are multiplied by 2 , the area is multiplied by \qquad .When the dimensions are multiplied
by 3 , the area is multiplied by \qquad .

(1) Try Another Problem

A stained-glass designer is reducing the dimensions of an earlier design. The dimensions of the triangle shown will be multiplied by $\frac{1}{2}$ or $\frac{1}{4}$. How will the area of the design be affected? Use the graphic organizer to help you solve the problem.

Read the Problem

What do I need to find?

What information do I need to use?

How will I use the information?

Read the Problem		
What do I need to find?	What information do I need to use?	How will I use the information?
Solve the Problem		
Sketch	Multiplier	Area
	1	$A=\frac{1}{2} \times 16 \times \ldots=\quad \mathrm{cm}^{2}$
	$\frac{1}{2}$	

So, when the dimensions are multiplied by $\frac{1}{2}$, the area is multiplied by
\qquad When the dimensions are multiplied by \qquad the area is

Name

Share and Show

MATH

BOARD

1. The dimensions of a $2-\mathrm{cm}$ by $6-\mathrm{cm}$ rectangle are multiplied by 5 . How is the area of the rectangle affected?

First, find the original area:

Next, find the new area:

So, the area is multiplied by \qquad .
2. THINKSMARTER What if the dimensions of the original rectangle in Exercise 1 had been multiplied by $\frac{1}{2}$? How would the area have been affected?
\qquad
\qquad
\qquad
\qquad
3. Evan bought two square rugs. The larger one measured 12 ft square. The smaller one had an area equal to $\frac{1}{4}$ the area of the larger one. What fraction of the side lengths of the larger rug were the side lengths of the smaller one?
4. HロDEEPER On Silver Island, a palm tree, a giant rock, and a buried treasure form a triangle with a base of 100 yd and a height of 50 yd . On a map of the island, the three landmarks form a triangle with a base of 2 ft and a height of 1 ft . How many times the area of the triangle on the map is the area of the actual triangle?

Unlock the Problem

$\sqrt{ }$ Plan your solution by deciding on the steps you will use.
\checkmark Find the original area and the new area, and then compare the two.
\checkmark Look for patterns in your results.

On Your Own

5. A square game board is divided into smaller squares, each with sides one-ninth the length of the sides of the board. Into how many squares is the game board divided?
6. THINKSMARIER Flynn County is a rectangle measuring 9 mi by 12 mi . Gibson County is a rectangle with an area 6 times the area of Flynn County and a width of 16 mi . What is the length of Gibson County?

7. Manimaical (4) Use Diagrams Carmen left her house and drove 10 mi north, 15 mi east, 13 mi south, 11 mi west, and 3 mi north. How far was she from home?
8. FDDEEPER Bernie drove from his house to his cousin's house in 6 hours at an average rate of 52 mi per hr. He drove home at an average rate of 60 mi per hr. How long did it take him to drive home?

Personal Math Trainer

9. THINKSMARTER $\}$ Sophia wants to enlarge a 5 -inch by 7 -inch rectangular photo by multiplying the dimensions by 3 .

Find the area of the original photo and the enlarged photo. Then explain how the area of the original photo is affected.
\qquad

Figures on the Coordinate Plane

Essential Question How can you plot polygons on a coordinate plane and find their side lengths?

Unlock the Problem

The world's largest book is a collection of photographs
from the Asian nation of Bhutan. A book collector models the rectangular shape of the open book on a coordinate plane. Each unit of the coordinate plane represents one foot. The book collector plots the vertices of the rectangle at $A(9,3)$, $B(2,3), C(2,8)$, and $D(9,8)$. What are the dimensions of the

- What two dimensions do you need open book?
to find?
\qquad

Ω
Plot the vertices and find the dimensions of the rectangle.
STEP 1 Complete the rectangle on the coordinate plane.
Plot points $C(2,8)$ and $D(9,8)$.
Connect the points to form a rectangle.
STEP 2 Find the length of the rectangle.
Find the distance between points $A(9,3)$ and $B(2,3)$.
The y-coordinates are the same, so the points lie on a \qquad line.

Think of the horizontal line passing through A and B as a number line.
\qquad ft Horizontal distance of B from $0:|2|=$ \qquad ft

Subtract to find the distance from A to B : \qquad - \qquad $=$ \qquad ft .

STEP 3 Find the width of the rectangle.
Find the distance between points $C(2,8)$ and $B(2,3)$.
The x-coordinates are the same, so the points lie on a \qquad line.

Think of the vertical line passing through C and B as a number line.
Vertical distance of C from $0:|8|=$ \qquad ft

Vertical distance of B from $0:|3|=$ \qquad ft

Subtract to find the distance from C to B : \qquad - \qquad $=$ \qquad ft .

So, the dimensions of the open book are \qquad ft by \qquad ft .

Explain how you know whether to add or subtract the absolute values to find the distance between the vertices of the rectangle.

CONNECT You can use properties of quadrilaterals to help you find unknown vertices. The properties can also help you graph quadrilaterals on the coordinate plane.
(1) Example find the unknown vertex, and then graph.

Three vertices of parallelogram $P Q R S$ are $P(4,2), Q\left(3,{ }^{-} 3\right)$, and $R\left({ }^{-} 3,{ }^{-} 3\right)$. Give the coordinates of vertex S and graph the parallelogram.

STEP 1

Plot the given points on the coordinate plane.

STEP 2

The opposite sides of a parallelogram are \qquad .

They have the same \qquad .

Since the length of side $\overline{R Q}$ is \qquad units, the length of
side \qquad must also be \qquad units.

STEP 3
Start at point P. Move horizontally \qquad units to the to find the location of the remaining vertex, S. Plot a point at this location.

STEP 4

Draw the parallelogram. Check that opposite sides are parallel and congruent.

So, the coordinates of the vertex S are \qquad -

1. mathematical 6 Attend to Precision Explain why vertex S must be to the left of vertex P rather than to the right of vertex P.
\qquad
\qquad
2. Describe how you could find the area of parallelogram $P Q R S$ in square units.
\qquad
\qquad
\qquad

Share and Show

MATH

BOARD

1. The vertices of triangle $A B C$ are $A\left({ }^{-} 1,3\right), B\left({ }^{-} 4,{ }^{-} 2\right)$, and $C(2,-2)$. Graph the triangle and find the length of side $\overline{B C}$.

Horizontal distance of B from $0:\left.\right|^{-} 4 \mid=$ \qquad units

Horizontal distance of C from $0:|2|=$ \qquad units

The points are in different quadrants, so add to find the distance from B to C : \qquad $+$ \qquad $=$ \qquad units.

Give the coordinates of the unknown vertex of rectangle JKLM, and graph.

On Your Own

4. Give the coordinates of the unknown vertex of rectangle $P Q R S$, and graph.

5.

5. The vertices of pentagon PQRST are $P(9,7)$, $Q(9,3), R(3,3), S(3,7)$, and $T(6,9)$. Graph the pentagon and find the length of side $\overline{P Q}$.

Problem Solving • Applications

The map shows the location of some city landmarks. Use the map for 6-7.
6. GDDEEPER A city planner wants to locate a park where two new roads meet. One of the new roads will go to the mall and be parallel to Lincoln Street which is shown in red. The other new road will go to City Hall and be parallel to Elm Street which is also shown in red. Give the coordinates for the location of the park.
7. Each unit of the coordinate plane represents 2 miles. How far will the park be from City Hall?
8. THINK SMARIER $\overline{P Q}$ is one side of right triangle $P Q R$. In the triangle, $\angle P$ is the right angle, and the length of side $\overline{P R}$ is 3 units. Give all the possible coordinates for vertex R.

9.

Use Math Vocabulary Quadrilateral $W X Y Z$ has vertices with coordinates $W\left({ }^{-} 4,0\right)$, $X(-2,3), Y(2,3)$, and $Z(2,0)$. Classify the
 quadrilateral using the most exact name possible and explain your answer.
10. THINKSMARTER Kareem is drawing parallelogram $A B C D$ on the coordinate plane.

Find and label the coordinates of the fourth vertex, D, of the parallelogram. Draw the parallelogram.

What is the length of side $C D$? How do you know?

\qquad

(V) Chapter 10 Review/Test

1. Find the area of the parallelogram.

The area is \qquad in. ${ }^{2}$.
2. A wall tile is two different colors. What is the area of the white part of the tile? Explain how you found your answer.

3. The area of a triangle is $36 \mathrm{ft}^{2}$. For numbers 3a-3d, select Yes or No to tell if the dimensions could be the height and base of the triangle.

3a. $h=3 \mathrm{ft}, b=12 \mathrm{ft}$$\bigcirc$ No
3b. $h=3 \mathrm{ft}, b=24 \mathrm{ft}$
O Yes
○ No
3c. $h=4 \mathrm{ft}, b=18 \mathrm{ft}$
O Yes
○ No
3d. $h=4 \mathrm{ft}, b=9 \mathrm{ft}$
O Yes
\bigcirc No
4. Mario traced this trapezoid. Then he cut it out and arranged the trapezoids to form a rectangle. What is the area of the rectangle? 8 in.
\qquad in. ${ }^{2}$

5. The area of the triangle is $24 \mathrm{ft}^{2}$. Use the numbers to label the height and base of the triangle.

6. A rectangle has an area of $50 \mathrm{~cm}^{2}$. The dimensions of the rectangle are multiplied to form a new rectangle with an area of $200 \mathrm{~cm}^{2}$. By what number were the dimensions multiplied?
7. Sami put two trapezoids with the same dimensions together to make a parallelogram.

The formula for the area of a trapezoid is
 $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$. Explain why the bases of a trapezoid need to be added in the formula.
\square
8. A rectangular plastic bookmark has a triangle cut out of it. Use the diagram of the bookmark to complete the table.

Area of Rectangle	Area of Triangle	Square Inches of Plastic in Bookmark	

Name
9. A trapezoid has an area of 32 in. ${ }^{2}$. If the lengths of the bases are 6 in . and 6.8 in., what is the height?
\qquad in.
10. A pillow is in the shape of a regular pentagon. The front of the pillow is made from 5 pieces of fabric that are congruent triangles. Each triangle has an area of $22 \mathrm{in}^{2}$. What is the area of the front of the pillow?
\qquad in. ${ }^{2}$
11. Which expressions can be used to find the area of the trapezoid? Mark all that apply.

(A) $\frac{1}{2} \times(5+2) \times 4.5$
(C) $\frac{1}{2} \times(5+4.5) \times 2$
(B) $\frac{1}{2} \times(2+4.5) \times 5$
(D) $\frac{1}{2} \times(6.5) \times 5$
12. Name the polygon and find its area. Show your work.

polygon: \qquad area:
\square
13. A carpenter needs to replace some flooring in a house.

Select the expression that can be used to find the total area of the flooring to be replaced. Mark all that apply.
(A) 19×14
(C) $19 \times 24-\frac{1}{2} \times 10 \times 12$
(B) $168+12 \times 14+60$
(D) $7 \times 24+12 \times 14+\frac{1}{2} \times 10 \times 12$
14. Ava wants to draw a parallelogram on the coordinate plane. She plots these 3 points.

Part A

Find and label the coordinates of the fourth vertex, K, of the parallelogram. Draw the parallelogram.

Part B

What is the length of side $J K$? How do you know?

15. Joan wants to reduce the area of her posters by one-third. Draw lines to match the original dimensions in the left column with the correct new area in the right column. Not all dimensions will have a match.

16. Alex wants to enlarge a 4 -ft by 6 -ft vegetable garden by multiplying the dimensions of the garden by 2 .

Part A

Find each area.
Area of original garden: \qquad
Area of enlarged garden: \qquad

Part B

Explain how the area of the original garden will be affected.
\square
17. Suppose the point $(3,2)$ is changed to $(3,1)$ on this rectangle. What other point must change so the figure remains a rectangle? What is the area of the new rectangle?

Point : \qquad would change to \qquad .

The area of the new rectangle is \qquad square units.
18. Look at the figure below. The area of the parallelogram and the areas of the two congruent triangles formed by a diagonal are related. If you know the area of the parallelogram, how can you find the area of one of the triangles?

\square
19. The roof of Kamden's house is shaped like a parallelogram. The base of the roof is 13 m and the area is $110.5 \mathrm{~m}^{2}$. Choose a number and unit to make a true statement.

The height of the roof is \begin{tabular}{|c|}
\hline 123.5

97.5

17

8.5

\hline
\end{tabular}

20. Eliana is drawing a figure on the coordinate grid. For numbers 20a-20d, select True or False for each statement.

20a. The point $(-1,1)$ would be the fourth vertex of a square.

20b. The point $(1,1)$ would be the fourth vertex of a trapezoid.

True

O False
True
\bigcirc False

20c. The point $(2,-1)$ would be the fourth vertex of a trapezoid.

20d. The point $\left(-1,{ }^{-} 1\right)$ would be the fourth vertex of a square.
TrueFalse

Show What You Know

Check your understanding of important skills.
Name \qquad
Estimate and Find Area Multiply to find the area.
1.

2.

\qquad
\qquad

Area of Squares, Rectangles, and Triangles Find the area.
3.

$A=s^{2}$

Area $=$ \qquad
4.

$$
A=l w
$$

Area $=$ \qquad
5.

$A=\frac{1}{2}(b \times h)$

Area $=$ \qquad

Evaluate Expressions Evaluate the expression.

6. $3 \times(2+4)$
7. $6+6 \div 3$
8. $4^{2}+4 \times 5-2$

Jerry is building an indoor beach volleyball court. He has ordered 14,000 cubic feet of sand.
The dimensions of the court will be 30 feet by 60 feet.
Jerry needs to have a 10 -foot boundary around the court for safety. Be a math detective and determine how deep the sand will be if Jerry uses all the sand.

Vocabulary Builder

Visualize It

Complete the bubble map. Use the review terms that name solid figures.

Review Words

base
cube
lateral face
polygon
polyhedron
prism
pyramid
vertex
edge

Preview Words
net
solid figure
surface area
volume

Understand Vocabulary

Complete the sentences using the preview words.

1. A three-dimensional figure having length, width, and height is called a(n) \qquad .
2. A two-dimensional pattern that can be folded into a
three-dimensional figure is called $\mathrm{a}(\mathrm{n})$ \qquad .
3. \qquad is the sum of the areas of all the faces, or surfaces, of a solid figure.
4. \qquad is the measure of space a solid figure occupies.
\qquad

Three-Dimensional Figures and Nets

Essential Question How do you use nets to represent three-dimensional figures?
A solid figure is a three-dimensional figure because it has three dimensions-length, width, and height. Solid figures can be identified by the shapes of their bases, the number of bases, and the shapes of their lateral faces.

Triangular Prism

Unlock the Problem

A designer is working on the layout for the cereal box shown. Identify the solid figure and draw a net that the designer can use to show the placement of information and artwork on the box.

- How many bases are there?
- Are the bases congruent? \qquad
- What shape are the bases? \qquad

0Identify the solid figure.

Recall that a prism is a solid figure with two congruent, parallel bases. Its lateral faces are rectangles. It is named for the shape of its bases.

Is the cereal box a prism? \qquad
What shape are the bases? \qquad
So, the box is a \qquad .

Draw a net for the figure.

A net is a two-dimensional figure that can be folded into a solid figure.

STEP 1

Make a list of the shapes you will use.
top and bottom bases: \qquad
left and right faces: \qquad
front and back faces: \qquad

STEP 2

Draw the net using the shapes you listed in Step 1. One possible net is shown.

A pyramid is a solid figure with a polygon-shaped base and triangles for lateral faces. Like prisms, pyramids are named by the shape of their bases. A pyramid with a rectangle for a base is called a rectangular pyramid.

(1) Example 1 Identify and draw a net for the solid figure.

Describe the base of the figure.

Describe the lateral faces.

The figure is a \qquad .

Shapes to use in the net:
Net:
base: \qquad
lateral faces: \qquad

1. Example 2 Identify and sketch the solid figure

 that could be formed by the net.The net has only \qquad triangles, so it cannot be a
\qquad .

The triangles must be the \qquad for a
\qquad .
-

\qquad
\qquad
\qquad
\qquad

Share and Show

Identify and draw a net for the solid figure.

1.

Net:
base: \qquad
lateral faces: \qquad
figure: \qquad
8.

Identify and sketch the solid figure that could be formed by the net.
3.

On Your Own

Identify and draw a net for the solid figure.
4.

Math

Mathematical Practices
Describe the characteristics of a solid figure that you need to consider when making its net.
5.

6.

Problem Solving • Applications

Solve.

7. The lateral faces and bases of crystals of the mineral galena are congruent squares. Identify the shape of a galena crystal.

8. THINKSMARTER Rhianon draws the net below and labels each square. Can Rhianon fold her net into a cube that has letters A through G on its faces? Explain.

9.

Describe A diamond crystal is shown. Describe the figure in terms of the solid figures you have seen in this lesson.

10. IHINKSMARTER Sasha makes a triangular prism from paper.

Name

Explore Surface Area Using Nets

Essential Question What is the relationship between a net and the surface area of a prism?
connect The surface area of a solid figure is the sum of the areas of all the faces or surfaces of the figure. Surface area is measured in square units. You can use a net to help you find the surface area of a solid figure.

Investigate

Materials \quad centimeter grid paper, ruler, scissors
A box is shaped like a rectangular prism. The box is 8 cm long, 6 cm wide, and 4 cm high. What is the surface area of the box?

Find the surface area of the rectangular prism.
A. Draw a net of the prism on centimeter grid paper.
B. Cut out the net.
C. Fold the net to confirm that it represents a rectangular prism measuring 8 cm by 6 cm by 4 cm .
D. Count the grid squares on each face of the net.

So, the surface area of the box is \qquad cm^{2}.

Draw Conclusions

1. Explain how you used the net to find the surface area of the box.

ERROR Alert

Make sure you include all surfaces in the net of a three-dimensional figure, not just the surfaces you can see in the diagram of the figure.
2. THINKSMARTER Describe how you could find the area of each face of the prism without counting grid squares on the net.

Make Connections

You can also use the formula for the area of a rectangle to find the surface area of the box.

Find the surface area of the box in the Investigate, which measures 8 cm by 6 cm by 4 cm .

STEP 1 Label the rectangles in the net A through F. Then label the dimensions.

STEP 2 Find the area of each face of the prism.
Think: I can find the area of a rectangle by multiplying the rectangle's \qquad
times its \qquad .

Record the areas of the faces below.
Face A: $4 \times 8=32 \mathrm{~cm}^{2}$
Face B: \qquad cm^{2}

Face C: \qquad cm^{2}

Face D: \qquad cm^{2}

Face E: \qquad cm^{2}

Face F: \qquad cm^{2}

STEP 3 Add the areas to find the surface area of the prism.
The surface area of the prism is \qquad cm^{2}.
3. Matifichicical 2 Use Reasoning Identify any prism faces that have equal areas. How could you use that fact to simplify the process of finding the surface area of the prism?

Compare the surface area you found by adding the areas of the faces to the surface area you found by counting grid squares. Explain your results.
\qquad
\qquad
\qquad
4. Describe how you could find the surface area of a cube.
\qquad
\qquad

Share and Show

Use the net to find the surface area of the prism.
1.

Face A: \qquad cm^{2}

Face B: \qquad cm^{2} m^{2}

Face C: \qquad cm^{2}

Surface area: \qquad cm^{2}

Find the surface area of the rectangular prism.
$\sigma 2$

© 3

Problem Solving • Applications

5. A cereal box is shaped like a rectangular prism. The box is 20 cm long by 5 cm wide by 30 cm high. What is the surface area of the cereal box?
6.

Martinamica
Darren is painting a wooden block as part of his art project.
The block is a rectangular prism that is 12 cm long by 9 cm wide by
5 cm high. Describe the rectangles that make up the net for the prism.
\qquad
\qquad
7. GDDEEPER

In Exercise 6, what is the surface area, in square meters, that Darren has to paint?

What's the Error?

8. THINKSMARTER Emilio is designing the packaging for a new MP3 player. The box for the MP3 player is 5 cm by 3 cm by 2 cm . Emilio needs to find the surface area of the box.

Look at how Emilio solved the problem. Find his error.

STEP 1 Draw a net.

STEP 2 Find the areas of all the faces and add them.

Face A: $3 \times 2=6 \mathrm{~cm}^{2}$
Face B: $3 \times 5=15 \mathrm{~cm}^{2}$
Face C: $3 \times 2=6 \mathrm{~cm}^{2}$
Face D: $3 \times 5=15 \mathrm{~cm}^{2}$
Face $\mathrm{E}: 3 \times 5=15 \mathrm{~cm}^{2}$
Face F: $3 \times 5=15 \mathrm{~cm}^{2}$
Surface area: $72 \mathrm{~cm}^{2}$

Correct the error. Find the surface area of the prism.

So, the surface area of the prism is \qquad .
9. THINKSMARTER For numbers 9a-9d, select True or False for each statement.

9a. The area of face A is $10 \mathrm{~cm}^{2}$.
○ True
O False
9b. The area of face B is $10 \mathrm{~cm}^{2}$.False

9c. The area of face C is $40 \mathrm{~cm}^{2}$.TrueFalse

9d. The surface area of the
○ TrueFalse

Surface Area of Prisms

Essential Question How can you find the surface area of a prism?
You can use a net to find the surface area of a

Geometry-6.G. 4
Also 6.EE.2c
MATHEMATICAL PRACTICES MP.2, MP.4, MP. 8 solid figure, such as a prism.

- What is the shape of each face?
- What are the dimensions of each face?

Alex is designing wooden boxes for his books. Each box measures 15 in . by 12 in . by 10 in . Before he buys wood, he needs to find the surface area of each box. What is the surface area of each box?

Use a net to find the surface area.

STEP 1 Find the area of each lettered face.

Face A: $12 \times 10=120$ in. 2
Face B: $15 \times 10=$ \qquad in. ${ }^{2}$

Face C: \qquad \times \qquad $=$ \qquad in. ${ }^{2}$

Face D: \qquad \times \qquad $=$ \qquad in. ${ }^{2}$

Face E: \qquad \times \qquad $=$ \qquad in. ${ }^{2}$

Face F : \qquad \times \qquad $=$ \qquad in. ${ }^{2}$

STEP 2 Find the sum of the areas of the faces. \qquad
So, the surface area of each box is \qquad .

Describe What do you notice about the opposite faces of the box that could help you find its surface area?

(1) Example 1 Use a net to find the surface area of the triangular prism.

The surface area equals the sum of the areas of the three rectangular faces and two triangular bases. Note that the bases have the same area.

10 in.
 area of bases A and $E: A=\frac{1}{2} b h=\frac{1}{2} \times 12 \times$ \qquad $=$ \qquad
area of face $\mathrm{B}: ~ A=I w=5 \times 10=$ \qquad area of face C : $A=I w=$ \qquad \times \qquad $=$ \qquad area of face $D: A=I w=$ \qquad \times \qquad $=$ \qquad

Surface area: $2 \times$ \qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad
So, the surface area of the triangular prism is \qquad .

(I) Example 2 Find the surface area of the cube.

(One Way use a net.

STEP 1 Find the area of each face.
All of the faces are squares with a side length of \qquad , so the areas of all the squares are the same.

Area of one face: $A=$ \qquad \times \qquad $=$ \qquad

STEP 2 Find the sum of the areas of all \qquad faces.

$+$ \qquad $+$ \qquad $+$ \qquad
\qquad $+$ \qquad
\qquad

(1) Another Way use a formula.

You can also find the surface area of a cube using the formula $S=6 s^{2}$, where S is the surface area and s is the side length of the cube.
Write the formula.

$$
S=6 s^{2}
$$

Replace s with 5.

$$
S=6(\square \quad)^{2}
$$

Simplify.

$$
S=6\left(_\quad\right)=
$$

\qquad
The surface area of the cube is \qquad .
\qquad

Share and Show

MATH BOARD

Use a net to find the surface area.

1.

area of each face: \qquad \times \qquad $=$ \qquad

\qquad
$\checkmark 2$.

\qquad

On Your Own

Use a net to find the surface area.

4.

5.
\qquad
6. Marimaical (6) Attend to Precision Calculate the surface area of the cube in Exercise 5 using the formula $S=6 s^{2}$. Show your work.
3.

Explain how to find the surface area of a rectangular prism with a length of 8 ft , a width of 2 ft , and a height of 3 ft . Then find the surface area.

Unlock the Problem

7. THINKSMARTER The Vehicle Assembly Building at Kennedy Space Center is a rectangular prism. It is 218 m long, 158 m wide, and 160 m tall. There are four 139 m tall doors in the building, averaging 29 in width. What is the building's outside surface area when the doors are open?
a. Draw each face of the building, not including the floor.
b. What are the dimensions of the 4 walls?
\qquad
\qquad
c. What are the dimensions of the roof?
\qquad
8. G■DEEPER A rectangular prism is $1 \frac{1}{2} \mathrm{ft}$ long, $\frac{2}{3} \mathrm{ft}$ wide, and $\frac{5}{6} \mathrm{ft}$ high. What is the surface area of the prism in square inches?
d. Find the building's surface area (not including the floor) when the doors are closed.
e. Find the area of the four doors.
f. Find the building's surface area (not including the floor) when the doors are open.
\qquad
9. THINKSMARIER A gift box is a rectangular prism. The box measures 8 inches by 10 inches by 3 inches. What is its surface area?
\qquad

Surface Area of Pyramids

Essential Question How can you find the surface area of a pyramid?
Most people think of Egypt when they think of pyramids, but there are ancient pyramids throughout the world. The Pyramid of the MATHEMATICAL PRACTICES MP.4, MP.5, MP. 6 Sun in Mexico was built around 100 C.E. and is one of the largest pyramids in the world.

Unlock the Problem
Cara is making a model of the Pyramid of the Sun for a history project. The base is a square with a side length of 12 in . Each triangular face has a height of 7 in . What is the surface area of Cara's model?

Find the surface area of the square pyramid.

STEP 1

Label the dimensions on the net of the pyramid.

STEP 2

Find the area of the base and each triangular face.
Base:
Write the formula for the area of a square.

$$
A=s^{2}
$$

Substitute \qquad for s and simplify.

$$
A=
$$

\qquad $=$ \qquad in. ${ }^{2}$

Face:
Write the formula for the area of a triangle.

$$
A=\frac{1}{2} b h
$$

Substitute \qquad for b and \qquad for h and simplify. -
-品
$A=\frac{1}{2}($ \qquad)()
$=$ \qquad in. ${ }^{2}$

STEP 3

Add the areas to find the surface area of the pyramid.
$S=$ \qquad $+4 \times$ \qquad $=$ \qquad $+$ \qquad $=$ \qquad in. ${ }^{2}$

So, the surface area of Cara's model is \qquad .

Sometimes you need to find the total area of the lateral faces of a solid figure, but you don't need to include the area of the base. The lateral area L of a solid figure is the sum of the areas of the lateral faces.

(1) Example Kwan is making a tent in the shape of a triangular pyramid. The three sides of the tent are made of fabric, and the bottom will be left open. The faces have a height of 10 ft and a base of 6 ft . What is the area of the fabric Kwan needs to make the tent?

Find the lateral area of the triangular pyramid.

STEP 1

Draw and label a net for the pyramid.

STEP 2

Shade the lateral area of the net.

STEP 3

Find the area of one of the lateral faces of the pyramid.
Write the formula for the area of a triangle

$$
A=\frac{1}{2} b h
$$

Substitute \qquad for b and \qquad for h.
$A=\frac{1}{2}($ \qquad $)(\square)$

Simplify
$A=$ \qquad ft^{2}

STEP 4

To find the lateral area, find the area of all three lateral faces of the pyramid.
$L=3 \times$ \qquad $=$ \qquad ft^{2}

So, the area of fabric Kwan needs is \qquad -.

1. Mathematical PRACTICE Compare Explain the difference between finding the surface area and the lateral area of a three-dimensional figure.
\qquad
\qquad
2. Explain how you could find the amount of fabric needed if

Kwan decided to make a fabric base for the tent.
The height of the triangular base is about 5 ft .
\qquad
\qquad
\qquad

Share and Show

1. Use a net to find the surface area of the square pyramid.

Base: $A=$ \qquad $=$ \qquad cm^{2}

Face: $A=\frac{1}{2}($ \qquad $)($ \qquad $)=$ \qquad cm^{2}

Surface area of pyramid: $S=$ \qquad $+4 \times$ \qquad
$=$ \qquad $+$ \qquad $=$ \qquad cm^{2}
2. A triangular pyramid has a base with an area of $43 \mathrm{~cm}^{2}$ and lateral faces with bases of 10 cm and heights of 8.6 cm . What is the surface area of the pyramid?
3. A square pyramid has a base with a side length of 3 ft and lateral faces with heights of 2 ft . What is the lateral area of the pyramid?
\qquad

On Your Own

Explain how to find the surface area of a square pyramid if you know the height of each face and the perimeter of the base.

Use a net to find the surface area of the square pyramid.
4.

5.

6.

7. The Pyramid Arena is located in Memphis, Tennessee. It is in the shape of a square pyramid, and the lateral faces are made almost completely of glass. The base has a side length of about 600 ft and the lateral faces have a height of about 440 ft . What is the total area of the glass in the Pyramid Arena?

Problem Solving • Applications

Use the table for 8-9.

8. The Great Pyramids are located near Cairo, Egypt. They are all square pyramids, and their dimensions are shown in the table. What is the lateral area of the Pyramid of Cheops?

9. THINKSMARTER Write an expression for the surface area of the square pyramid shown.

3 ft
11.

Mastimatical (3) Make Arguments A square pyramid has a base with a side length of 4 cm and triangular faces with a height of 7 cm . Esther calculated the surface area as $(4 \times 4)+4(4 \times 7)=128 \mathrm{~cm}^{2}$. Explain Esther's error and find the correct surface area.
\qquad
\qquad
\qquad
12. THINK SMARTER Jose says the lateral area of the square pyramid is $260 \mathrm{in} .^{2}$ Do you agree or disagree with Jose? Use numbers and words to support your answer.

Personal Math Trainer

\qquad

\qquad

Mid-Chapter Checkpoint

Vocabulary

Choose the best term from the box to complete the sentence.

1. \qquad is the sum of the areas of all the faces, or surfaces, of a solid figure. (p. 435)
2. A three-dimensional figure having length, width, and height is

Vocabulary

lateral area

net
solid figure
surface area called a(n) \qquad . (p. 439)
3. The \qquad of a solid figure is the sum of the areas of its lateral faces. (p. 448)

Concepts and Skills

4. Identify and draw a net for the solid figure. (6.G.4)

5. Use a net to find the lateral area of the square pyramid. (6.G.4)

6. Use a net to find the surface area of the prism. (6.G.4)

7. A machine cuts nets from flat pieces of cardboard. The nets can be folded into triangular pyramids used as pieces in a board game. What shapes appear in the net? How many of each shape are there? (6.G.4)
8. Fran's filing cabinet is 6 feet tall, $1 \frac{1}{3}$ feet wide, and 3 feet deep. She plans to paint all sides except the bottom of the cabinet. Find the area of the sides she intends to paint. (6.G.4)
9. A triangular pyramid has lateral faces with bases of 6 meters and heights of 9 meters. The area of the base of the pyramid is 15.6 square meters. What is the surface area of the pyramid? (6.G.4)
10. What is the surface area of a storage box that measures 15 centimeters by 12 centimeters by 10 centimeters? (6.G.4)
11. A small refrigerator is a cube with a side length of 16 inches.

Use the formula $S=6 s^{2}$ to find the surface area of the cube. (6.EE.2c)

Fractions and Volume

Essential Question What is the relationship between the volume and the edge lengths of a prism with fractional edge lengths?

CONNECT Volume is the number of cubic units needed to occupy a given space without gaps or overlaps. You can find the volume of a rectangular prism by seeing how many unit cubes it takes to fill the prism. Recall that a unit cube is a cube with a side length of 1 .

Investigate

Materials net of a rectangular prism, cubes, scissors, tape
A jewelry box has a length of $3 \frac{1}{2}$ units, a width of $1 \frac{1}{2}$ units, and a height of 2 units. What is the volume of the box in cubic units?
A. Each of the cubes in this activity has a side length of $\frac{1}{2}$ unit.

How many cubes with side length $\frac{1}{2}$ does it take to form
a unit cube? \qquad

So, each smaller cube represents \qquad of a unit cube.
B. Cut out the net. Then fold and tape the net into a rectangular prism. Leave one face open so you can pack the prism with cubes.
C. Pack the prism with cubes.

How many cubes with side length $\frac{1}{2}$ does it take to fill the prism?

D. To find the volume of the jewelry box in cubic units, determine how many unit cubes you could make from the smaller cubes you used to pack the prism.

Think: It takes 8 smaller cubes
to make 1 unit cube.
Divide the total number of smaller cubes by 8 . Write the remainder as a fraction. \qquad $\div 8=$ \qquad $=$ \qquad So, the volume of the jewelry box is \qquad cubic units. how many cubes with side length $\frac{1}{2}$ it takes to form a unit cube.

Draw Conclusions

1. Mantingical 8 Draw Conclusions Could you use the method of packing cubes to find the volume of a triangular prism? Explain.
\qquad
\qquad
\qquad

\qquad
2. THINK SMARTER How many cubes with a side length of $\frac{1}{2}$ unit do you need to form 3 unit cubes? Explain how you know.
\qquad
\qquad
\qquad

Make Connections

You can use the formula for the volume of a rectangular prism to find the volume of the jewelry box.

STEP 1 Write the formula you will use.

$$
V=l \times w \times h
$$

STEP 2 Replace the variables using the values
you know.

$$
V=3 \frac{1}{2} x \quad x
$$

STEP 3 Write the mixed numbers as fractions greater than 1.

$$
V=-\times \frac{3}{2} \times 2
$$

STEP 4 Multiply.

$$
V=\square
$$

STEP 5 Write the fraction as a mixed number.

$$
V=\quad \frac{2}{4}=
$$

So, the volume of the jewelry box is \qquad cubic units.

The volume of a rectangular prism is the product of the length, the width, and the height: $V=I \times w \times h$.

Tell how the volume you found by using the formula compares to the volume you found by packing the prism with cubes.

Share and Show

1. A prism is filled with 38 cubes with a side length of $\frac{1}{2}$ unit. What is the volume of the prism in cubic units?
$38 \div 8=$ \qquad $=$ \qquad
volume $=$ \qquad cubic units
2. A prism is filled with 58 cubes with a side length of $\frac{1}{2}$ unit. What is the volume of the prism in cubic units?
\qquad

Find the volume of the rectangular prism.
3.

4.

5. $\operatorname{G\square DEEPER}$ Theodore wants to put three flowering plants in his window box. The window box is shaped like a rectangular prism that is 30.5 in . long, 6 in . wide, and 6 in . deep. The three plants need a total of $1,200 \mathrm{in}^{3}{ }^{3}$ of potting soil to grow well. Is the box large enough? Explain.

6. WRITE Math Explain how use the formula $V=l \times w \times h$ to verify that a cube with a side length of $\frac{1}{2}$ unit has a volume of $\frac{1}{8}$ of a cubic unit.

Problem Solving • Applications (wanld

Use the diagram for 7-10.

7. Karyn is using a set of building blocks shaped like rectangular prisms to make a model. The three types of blocks she has are shown at right. What is the volume of an A block? (Do not include the pegs on top.)
\qquad
8. How many A blocks would you need to take up the same amount of space as a C block?
9. FIDEEPER Karyn puts a B block, two C blocks, and three A blocks together. What is the total volume of these blocks?
10. THINK SMARTER Karyn uses the blocks to make a prism that is 2 units long, 3 units wide, and $1 \frac{1}{2}$ units high. The prism is made of two C blocks, two B blocks, and some A blocks. What is the total volume of A blocks used?
\qquad

11.

MATHEMATICAL 3 VRACIC: Verify the Reasoning of Others Jo says that
Pren you can use $V=l \times w \times h$ or $V=h \times w \times l$ to find the volume of a rectangular prism. Does Jo's statement make sense? Explain.
\qquad
\qquad
\qquad
12. THINKSMARTER A box measures 5 units by 3 units by $2 \frac{1}{2}$ units. For numbers 12a-12b, select True or False for the statement.

12a. The greatest number of cubes with a side length of $\frac{1}{2}$ unit that can be packed inside the box is 300 .

12b. The volume of the box is $37 \frac{1}{2}$ cubic units.
True False

Name

Volume of Rectangular Prisms

Essential Question How can you find the volume of rectangular prisms with fractional edge lengths?

You can use the formula $V=l \times w \times h$ to find the volume of a rectangular prism when you know the length, width, and height of the prism.

Unlock the Problem

An obento is a single-portion meal that is common in Japan. The meal is usually served in a box. A small obento box is a rectangular prism that is 5 inches long, 4 inches wide, and $2 \frac{1}{2}$ inches high. How much food fits in the box?

- Underline the sentence that tells you what you are trying to find.
- Circle the numbers you need to use.

Find the volume of a rectangular prism
You can use the formula $V=l \times w \times h$ to find the volume of a rectangular prism when you know the length, width, and height of the prism.

STEP 1
Sketch the rectangular prism.

STEP 2 Identify the value for each variable.
The length / is 5 in .
The width w is \qquad in.

The height h is \qquad in.

STEP 3 Evaluate the formula.
Write the formula.

$$
V=I \times w \times h
$$

Replace / with 5, w with

$$
V=
$$

\qquad \times \qquad \times \qquad
\qquad , and h with \qquad .

$$
V=\ldots \quad \text { in }^{3}
$$

Multiply.
So, \qquad in. ${ }^{3}$ of food fits in the box. units to use for the volume of the box.

Connect You know that the volume of a rectangular prism is the product of its length, width, and height. Since the product of the length and width is the area of one base, the volume is also the product of the area of one base and the height.

Volume of a Prism

Volume $=$ area of one base \times height $\mid V=B h$

(1) Example 1 Find the volume of the prism.

STEP 1 Identify the value for each variable.

The height h is \qquad in.

The area of the base B is \qquad in. ${ }^{2}$

STEP 2 Evaluate the formula.
Write the formula.

$$
V=B h
$$

Replace B with \qquad and h with \qquad .

Write the mixed number as a fraction greater than 1.

Multiply and write the product as a mixed number.

$$
\begin{aligned}
& V=x \\
& V=\quad \times \frac{\square}{4} \\
& V=\quad=\quad \frac{1}{4} \mathrm{in} .^{3}
\end{aligned}
$$

So, the volume of the prism is \qquad .

(1) Example 2
 Find the volume of the cube.

Write the formula. The area of the square
base is s^{2}. The height of a cube is also s, so $V=B h=s^{3}$.

Substitute \qquad for s.

Write the mixed number as a fraction greater than 1 . Then use repeated multiplication.

Simplify.

$$
\begin{aligned}
& V=s^{3} \\
& V=\left(\left.\quad\right|^{3}\right.
\end{aligned}
$$

$$
\begin{aligned}
& v=()^{3}=(\mid) \mid \\
& V=\frac{}{8}=42 \frac{\mathrm{ft}^{3}}{8}
\end{aligned}
$$

So, the volume of the cube is \qquad .
© Houghton Mifflin Harcourt Publishing Company
\qquad

Share and Show

MATH BOARD

Find the volume.

2.

On Your Own

Find the volume of the prism.

3.

4.

5.

6. GПDEEPER Wayne's gym locker is a rectangular prism with a width and height of $14 \frac{1}{2}$ inches. The length is 8 inches greater than the width. What is the volume of the locker?
7. THINKSMARIER Abraham has a toy box that is in the shape of a rectangular prism.

The volume is | $33 \frac{3}{4} \mathrm{ft}^{3}$. |
| :---: |
| $35 \frac{1}{2} \mathrm{ft}^{3}$. |
| $64 \frac{1}{2} \mathrm{ft}^{3}$. |

Connect to Science

Aquariums

Large public aquariums like the Tennessee Aquarium in Chattanooga have a wide variety of freshwater and saltwater fish species from around the world. The fish are kept in tanks of various sizes.

The table shows information about several tanks in the aquarium. Each tank is a rectangular prism.
Find the length of Tank 1.

	Length	Width	Height	Volume
Tank 1		30 cm	35 cm	$52,500 \mathrm{~cm}^{3}$
Tank 2	12 m		4 m	$384 \mathrm{~m}^{3}$
Tank 3	18 m	12 m		$2,160 \mathrm{~m}^{3}$
Tank 4	72 cm	55 cm	40 cm	

So, the length of Tank 1 is \qquad .

Solve.
8. Find the width of Tank 2 and the height of Tank 3.
9. THINKSMARTER To keep the fish healthy, there should be the correct ratio of water to fish in the tank. One recommended ratio is 9 L of water for every 2 fish. Find the volume of Tank 4 . Then use the equivalencies $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$ and $1,000 \mathrm{~mL}=1 \mathrm{~L}$ to find how many fish can be safely kept in Tank 4.

10.

Maritichical 2 Use Reasoning Give another set of dimensions for a tank that would have the same volume as Tank 2. Explain how you found your answer.
\qquad
\qquad

Problem Solving • Geometric Measurements

Essential Question How can you use the strategy use a formula to solve
Lesson 11.7 problems involving area, surface area, and volume?

Geometry-6.G. 4 Also 6.G.1,6.G.2
MATHEMATICAL PRACTICES
MP.1, MP. 2

Unlock the Problem

Shedd Aquarium in Chicago has one of the country's few full-scale animal hospitals linked to an aquarium. One tank for sick fish is a rectangular prism measuring 75 cm long, 60 cm wide, and 36 cm high along the outside. The glass on the tank is 2 cm thick. How much water can the tank hold? How much water is needed to fill the tank?

Use the graphic organizer to help you solve the problem.

Read the Problem

What do I need to find?

I need to find \qquad and
\qquad .

What information do I need to use?

I need to use \qquad and

How will I use the information?

First I will decide \qquad .
\qquad I can
use to calculate the measure. Finally, I will substitute the values for the \qquad ,
and I will \qquad the formula.

So, the volume of the tank is \qquad .

Solve the Problem

- Choose the measure that specifies the amount of water that will fill a tank.
- Choose an appropriate formula.
- Subtract the width of the glass twice from the length and width and once from the height to find the inner dimensions.

Find the length. $\quad 75 \mathrm{~cm}-4 \mathrm{~cm}=$ \qquad cm

Find the width. $\quad 60 \mathrm{~cm}-4 \mathrm{~cm}=$ \qquad cm

Find the height. $\quad 36 \mathrm{~cm}-2 \mathrm{~cm}=$ \qquad cm

- Substitute and evaluate.
$V=71 \times$ \qquad $=$ \qquad $=$ \qquad cm^{3}

Explain why volume is the correct measure to use to solve the problem.

1. Try Another Problem

Alexander Graham Bell, the inventor of the telephone, also invented a kite made out of "cells" shaped like triangular pyramids.

A kite is made of triangular pyramid-shaped cells with fabric covering one face and the base of the pyramid. The face and base both have heights of 17.3 cm and side lengths of 20 cm . How much fabric is needed to make one pyramid cell?

20 cm

Read the Problem

What do I need to find?

What information do I need to use?

How will I use the information?

So, \qquad cm^{2} of fabric is needed.

- Explain how you knew which units to use for your answer.

Explain how the strategy of using a formula helped you solve the problem.

Name

Share and Show

MATH
BOARD

1. An aquarium tank in the shape of a rectangular prism is 60 cm long, 30 cm wide, and 24 cm high. The top of the tank is open, and the glass used to make the tank is 1 cm thick. How much water can the tank hold?

First identify the measure and choose an appropriate formula.

Next find the inner dimensions and replace the variables with the correct values.

Finally, evaluate the formula.
\qquad

So, the tank can hold \qquad of water.
2. THINKSMARTER What if, to provide greater strength, the glass bottom were increased to a thickness of 4 cm ? How much less water would the tank hold?
3. An aquarium tank in the shape of a rectangular prism is 40 cm long, 26 cm wide, and 24 cm high. If the top of the tank is open, how much tinting is needed to cover the glass on the tank? Identify the measure you used to solve the problem.
4. The Louvre Museum in Paris, France, has a square pyramid made of glass in its central courtyard. The four triangular faces of the pyramid have bases of 35 meters and heights of 27.8 meters. What is the area of glass used for the four triangular faces of the pyramid?
alve

Unlock the Problem
 \ Draw a diagram.
 \checkmark Identify the measure needed.
 \checkmark Choose an appropriate formula.

The Louvre Museum in Paris, France

On Your Own

5.

A rectangular-prism-shaped block of wood measures 3 m by $1 \frac{1}{2} \mathrm{~m}$ by $1 \frac{1}{2} \mathrm{~m}$. How much of the block must a carpenter carve away to obtain a prism that measures 2 m by $\frac{1}{2} \mathrm{~m}$ by $\frac{1}{2} \mathrm{~m}$?
\qquad
6. H®DEEPER The carpenter (Problem 5) varnished the outside of the $^{\text {a }}$ smaller piece of wood, all except for the bottom, which measures $\frac{1}{2} \mathrm{~m}$ by $\frac{1}{2} \mathrm{~m}$. Varnish costs $\$ 2.00$ per square meter. What was the cost of varnishing the wood?
\qquad
7. A wax candle is in the shape of a cube with a side length of $2 \frac{1}{2} \mathrm{in}$. What volume of wax is needed to make the candle?
8. Mary panaical (1) Describe A rectangular prism-shaped box measures 6 cm by 5 cm by 4 cm . A cube-shaped box has a side length of 2 cm . How many of the cube-shaped boxes will fit into the rectangular prismshaped box? Describe how you found your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
Personal Math Trainer
9. THINKSMARTER Justin is covering the outside of an open shoe box with colorful paper for a class project. The shoe box is 30 cm long, 20 cm wide, and 13 cm high. How many square centimeters of paper are needed to cover the outside of the open shoe box? Explain your strategy.

(V) Chapter 11 Review/Test

1. Elaine makes a rectangular pyramid from paper.

2. Darrell paints all sides except the bottom of the box shown below.

Select the expressions that show how to find the surface area that Darrell painted. Mark all that apply.
(A) $240+240+180+180+300+300$
(B) $2(20 \times 12)+2(15 \times 12)+(20 \times 15)$

C $(20 \times 12)+(20 \times 12)+(15 \times 12)+(15 \times 12)+(20 \times 15)$
(D) $20 \times 15 \times 12$
3. A prism is filled with 44 cubes with $\frac{1}{2}$-unit side lengths. What is the volume of the prism in cubic units?
\qquad cubic units
4. A triangular pyramid has a base with an area of 11.3 square meters, and lateral faces with bases of 5.1 meters and heights of 9 meters.

Write an expression that can be used to find the surface area of the triangular pyramid.
5. Jeremy makes a paperweight for his mother in the shape of a square pyramid. The base of the pyramid has a side length of 4 centimeters, and the lateral faces have heights of 5 centimeters. After he finishes, he realizes that the paperweight is too small and decides to make another one. To make the second pyramid, he doubles the length of the base in the first pyramid.

For numbers 5a-5c, choose Yes or No to indicate whether the statement is correct.

5a. The surface area of the second
O Yes
O No pyramid is $144 \mathrm{~cm}^{2}$.

5b. The surface area doubled from the
O YesNo first pyramid to the second pyramid.

5c. The lateral area doubled from the
O Yes

O No first pyramid to the second pyramid.
6. Identify the figure shown and find its surface area. Explain how you found your answer.

7. Dominique has a box of sewing buttons that is in the shape of a rectangular prism.

The volume of the box is $2 \frac{1}{2} \mathrm{in} . \times 3 \frac{1}{2} \mathrm{in} . \times$\begin{tabular}{|c|}
\hline 2 in.

$2 \frac{1}{2} \mathrm{in}$.

$3 \frac{1}{2} \mathrm{in}$.

$=$

\hline $8 \mathrm{in} .^{3}$

$17 \frac{1}{2} \mathrm{in} .{ }^{3}$

$35 \mathrm{in}^{3}$
\end{tabular}

Name

8. Emily has a decorative box that is shaped like a cube with a height of 5 inches. What is the surface area of the box?
\qquad in. ${ }^{2}$
9. Albert recently purchased a fish tank for his home. Match each question with the geometric measure that would be most appropriate for each scenario.

10. Select the expressions that show the volume of the rectangular prism. Mark all that apply.

(A) $2\left(2\right.$ units $\times 2 \frac{1}{2}$ units $)+2\left(2\right.$ units $\times \frac{1}{2}$ unit $)+2\left(\frac{1}{2}\right.$ unit $\times 2 \frac{1}{2}$ units $)$
(B) $2\left(2\right.$ units $\times \frac{1}{2}$ unit $)+4\left(2\right.$ units $\times 2 \frac{1}{2}$ units)
(C) 2 units $\times \frac{1}{2}$ unit $\times 2 \frac{1}{2}$ units
(D) 2.5 cubic units
11. For numbers 11a-11d, select True or False for the statement.

11a. The area of face A is 8 square units.TrueFalse

11b. The area of face B is 10 square units.TrueFalse

11c. The area of face C is 8 square units.TrueFalse

11d. The surface area of the prismTrue
False is 56 square units.
12. Stella received a package in the shape of a rectangular prism. The box has a length of $2 \frac{1}{2}$ feet, a width of $1 \frac{1}{2}$ feet, and a height of 4 feet.

Part A

Stella wants to cover the box with wrapping paper. How much paper will she need? Explain how you found your answer.
\square

Part B

Can the box hold 16 cubic feet of packing peanuts? Explain how you know.
\square
13. A box measures 6 units by $\frac{1}{2}$ unit by $2 \frac{1}{2}$ units.

For numbers 13a-13b, select True or False for the statement.
13a. The greatest number of cubes
O True
\bigcirc False with a side length of $\frac{1}{2}$ unit that can be packed inside the box is 60 .

13b. The volume of the box is
O True
\bigcirc False $7 \frac{1}{2}$ cubic units.
14. Bella says the lateral area of the square pyramid is $1,224 \mathrm{in} .{ }^{2}$ Do you agree or disagree with Bella? Use numbers and words to support your answer. If you disagree with Bella, find the correct answer.

15. Lourdes is decorating a toy box for her sister. She will use self-adhesive paper to cover all of the exterior sides except for the bottom of the box. The toy box is 4 feet long, 3 feet wide, and 2 feet high. How many square feet of adhesive paper will Lourdes use to cover the box?
16. Gary wants to build a shed shaped like a rectangular prism in his backyard. He goes to the store and looks at several different options. The table shows the dimensions and volumes of four different sheds.

Use the formula $V=l \times w \times h$ to complete the table.

	Length (ft)	Width (ft)	Height (ft)	Volume (ft)
Shed 1		10	8	960
Shed 2	18		10	2,160
Shed 3	12	4		288
Shed 4	10	12	10	

17. Tina cut open a cube-shaped microwave box to see the net. How many square faces does this box have?
\qquad square faces
18. Charles is painting a treasure box in the shape of a rectangular prism.

Which nets can be used to represent Charles' treasure box?
Mark all that apply.
(A)

(C)

(B)

(D)

19. Julianna is lining the inside of a basket with fabric. The basket is in the shape of a rectangular prism that is 29 cm long, 19 cm wide, and 10 cm high. How much fabric is needed to line the inside of the basket if the basket does not have a top? Explain your strategy.
\square

Data Displays and Measures of Center

Show What You Know

Check your understanding of important skills
Name \qquad
Read a Bar Graph Use the bar graph to answer the questions.

1. Who has the highest test score?
2. Who has a score between 70 and 80 ?
3. What is the difference between the highest and lowest scores?

Division Find the quotient.

4. $3 5 \longdiv { 9 8 0 }$
5. $1 6 \longdiv { 3 5 2 }$
6. $2 4 \longdiv { 3 , 4 5 6 }$
7. $4 2 \longdiv { 3 , 2 7 6 }$

Compare Decimals Compare. Write $<,>$, or $=$.
8. 2.482.53
9. 0.30.04
10. 4.63
 4.3
11. 1.7

Kayla scored 110 in the first game she bowled, but she can't remember her score from the second game. The average of the two scores is 116. Be a Math Detective and help her figure out what her second score was.

Vocabulary Builder

Visualize It

Sort the review words into the chart.

Review Words
bar graph line graph

Preview Words
dot plot
frequency
histogram
mean
median
mode
outlier
statistical question

Understand Vocabulary

Complete the sentences using the preview words.

1. $\mathrm{A}(\mathrm{n})$ \qquad is a bar graph that shows the frequency of data in specific intervals.
2. The \qquad is the middle value when a data set with an odd number of values is ordered from least to greatest.
3. $A(n)$ \qquad is a value that is much less or much greater than the other values in a data set.
4. $\mathrm{A}(\mathrm{n})$ \qquad is a number line with dots that show the \qquad of the values in a data set.
5. You can calculate the \qquad of a data set by adding the values and then dividing the sum by the number of values.
6. The item(s) that occurs most often in a data set is called the
\qquad of the data.

Name

\qquad

Recognize Statistical Questions

Essential Question How do you identify a statistical question?

If you measure the heights of your classmates, you are collecting data. A set of data is a set of information collected about people or things. A question that asks about a set of data that can vary is called a statistical question.
"What are the heights of my classmates on July 1 ?" is a statistical question because height usually varies in a group of people. "What is Sasha's height on July 1 ?" is not a statistical question because it asks for only one piece of information at one time.

Unlock the Problem

The New England Aquarium in Boston is home to over 80 penguins. Which of the following is a statistical question a biologist could ask about the penguins? Explain your reasoning.

A How much does the penguin named Pip weigh this morning?
B How much does the penguin named Pip weigh each morning on 30 different days?

\square
Identify the statistical question.

Question A asks for Pip's weight at \qquad time(s), so it \qquad ask about a set of data that varies.

Question A \qquad a statistical question.

Question B asks for Pip's weight at \qquad time(s), and it is
likely that Pip's weight \qquad vary during this period.

Question B asks about a set of data that can vary, so it \qquad a statistical question.

- Another biologist asks how old the penguin named Royal Pudding is. Is this a statistical question? Explain your reasoning.

A statistical question can ask about an entire set of data that can vary or a value that describes that set of data. For example, "What is the height of the tallest person in my class?" is a statistical question because it will tell you the greatest value in a set of data that can vary. You will learn other ways to describe a set of data later in this chapter.

1. Example

Bongos are a kind of antelope that live in central Africa. Bongos are unusual because both males and females have horns. Write two statistical questions a biologist could ask about a group of bongos.

1. What is the \qquad in inches of the horns on the
bongo that has the \qquad horns in the group?

Different bongos will have different horn lengths. This question asks about a value in a set of data that \qquad
vary, so it \qquad a statistical question.
2. What is the weight of the \qquad bongo in the group?

Different bongos will have different weights. This question asks

Mathematical Practices
Give a different statistical question you could ask about the heights of students in your class.

Try This! Write a statistical question you could ask in the situations described below.

A researcher knows the amount of electricity used in 20 different homes on a Monday.

B A museum director records the number of students in each tour group that visits the museum during one week.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Share and Show

Identify the statistical question. Explain your reasoning.

1. A. What was the low temperature in Chicago each day in March?
B. What was the low temperature in Chicago on March 7 ?

Question A asks for the low temperature at \qquad time(s), and it is likely the temperature \qquad .

Question B asks for the low temperature at \qquad time(s).

Question \qquad is a statistical question.
2. A. How long did it take you to get to school this morning?
B. How long did it take you to get to school each morning this week?

Write a statistical question you could ask in the situation.
3. A student recorded the number of pets in the households of 50 sixth-graders.
\qquad

On Your Dwn

Identify the statistical question. Explain your reasoning.
4. A. How many gold medals has Finland won at each of the last 10 Winter Olympics?
B. How many gold medals did Finland win at the 2008 Winter Olympics?
\qquad

Write a statistical question you could ask in the situation.
5. A wildlife biologist measured the length of time that 17 grizzly bears hibernated.
6. A doctor recorded the birth weights of 48 babies.

Problem Solving • Applications

Use the table for 7 and 8.

7. Give a statistical question that you could ask about the data recorded in the table.
\qquad
\qquad
8. THINKSMARTER What statistical question could " $92 \mathrm{mi} / \mathrm{hr}$ " be the answer to?

9. Mantinalical (6) Explain A video game company will make a new game. The manager must choose between a roleplaying game and an action game. He asks his sales staff which of the last 10 released games sold the most copies. Explain why this is a statistical question.
\qquad
\qquad
\qquad
10. GПDEEPER Think of a topic. Record a set of data for the topic. Write a statistical question that you could ask about your data.
11. THINKSMARIER For numbers 1la-11d, choose Yes or No to indicate whether the question is a statistical question.

11a. How many minutes did it take Ethan to completeYes his homework last night?

11b. How many minutes did it take Madison to\bigcirc No complete her homework each night this week?

11c. How many more minutes did Andrew spend on
\bigcirc Yes
\bigcirc No homework on Tuesday than on Thursday?

11d. What was the longest amount of time Abigail\bigcirc No spent on homework this week?

Describe Data Collection

Essential Question How can you describe how a data set was collected?

Unlock the Problem

One way to describe a set of data is by stating the number of observations, or measurements, that were made. Another way is by listing the attributes that were measured. An attribute is a property or characteristic of the item being measured, such as its color or length.

Jeffrey's hobby is collecting rocks and minerals. The chart gives data on garnets he found during a recent mineral-hunting trip. Identify:

- The attribute being measured
- The unit of measure
- The likely means by which measurements were made
- The number of observations

(1) Describe the data set.
 (1) Describe the data set.

Think: What property or characteristic of the garnets did Jeffrey measure?

- The attribute Jeffrey measured was the \qquad of the garnets.
- The unit used to measure the mass of the garnets was \qquad .

Garnet Data			
Garnet	Mass (g)	Garnet	Mass (g)
1	7.2	7	4.6
2	3.5	8	5.6
3	4.0	9	9.0
4	3.9	10	3.6
5	5.2	11	3.8
6	5.8	12	4.3

- To measure mass in grams, Jeffrey probably used a \qquad .
- The number of observations Jeffrey made was \qquad .

1. Would Jeffrey likely have gotten the same data set if he had measured a different group of garnets? Explain.
\qquad
\qquad
2. What other attributes of the garnets could Jeffrey have measured?

() Activity colleta atat set

Materials \quad ruler
In this activity, you will work with other students to collect data on the length of the students' index fingers in your group. You will present the data in a chart.

- Describe the attribute you will measure. What unit will you use?
\qquad
\qquad
- Describe how you will make your measurements.
\qquad
\qquad
\qquad
- Describe the data you will record in your chart.
\qquad
\qquad
\qquad
- In the space at the right, make a chart of your data.
- How many observations did you make?
\qquad
\qquad
\qquad

3.

Make Arguments One of your classmates made 3 observations and another made 10 observations to answer a statistical question. Who do you think arrived at a better answer to the statistical question? Explain.
\qquad
\qquad
\qquad
\qquad

Share and Show

MATH BOARD

Describe the data set by listing the attribute measured, the unit of measure, the likely means of measurement, and the number of observations.

1. Greg's 100 -meter race results
attribute: \qquad
unit of measure: \qquad
likely means by which measurements were taken: \qquad number of observations: \qquad
2. The Andrews family's water use

On Your Own

3. Practice: Copy and Solve Collect data on one of the topics listed below. You may wish to work with other students. Make a chart of your results. Then describe the data set.

- Weights of cereal boxes, soup cans, or other items
- Numbers of family members
- Lengths of time to multiply two two-digit numbers
- Numbers of pets in families

100-Meter Run Data			
Race	Time (sec)	Race	Time (sec)
1	12.8	5	13.5
2	12.5	6	13.7
3	12.9	7	12.6
4	13.4		

Daily Water Use (gal)				
153.7	161.8	151.5	153.7	160.1
161.9	155.5	152.3	166.7	158.3
155.8	167.5	150.8	154.6	

Mathematical Practices
Explain why it is important to make more than one observation when attempting to answer a statistical question.

- Lengths of forearm (elbow to fingertip)
- Numbers of pages in books

4. IHINKSMARTER Describe the data set by writing the attribute measured, the unit of measure, the likely means of measurement, and the number of observations in the correct location on the chart.

Heights of $6^{\text {th }}$ Graders (in.)						
50	58	56	60	58	52	50
53	54	61	48	59	48	59
55	59	62	49	57	56	61

Attribute	Unit of Measure	Likely Means of Measurement	Number of Observations
\square	\square	\square	\square

Connect tol Reading

Summarize

When you summarize a reading passage, you restate the most important information in a shortened form. This allows you to understand more easily what you have read. Read the followng passage:
A biologist is studying green anacondas. The green anaconda is the largest snake in the world. Finding the length of any snake is difficult because the snake can curl up or stretch out while being measured. Finding the length of a green anaconda is doubly difficult because of the animal's great size and strength. The standard method for measuring a green anaconda is to calm the snake, lay a piece of string along its entire length, and then measure the length of the string. The table at the right gives data collected by the biologist using the string method.
5. सaryinilical (1) Analyze Summarize the passage in your own words.
\qquad
\qquad
\qquad
\qquad
6. THINKSMARTER Use your summary to name the attribute the biologist was measuring. Describe how the biologist measured this attribute.
\qquad
\qquad
\qquad
7. Give any other information that is important for describing the data set.
\qquad
\qquad
8. G■DEEPER Write the greatest green anaconda length that the biologist measured in feet. Round your answer to the nearest foot. (Hint: 1 foot is equal to about 30 centimeters.)

Name

Dot Plots and Frequency Tables

Essential Question How can you use dot plots and frequency tables to display data?

Statistics and Probability-

 6.SP. 4mathematical practices MP.4, MP.5, MP. 6

A dot plot is a number line with marks that show the frequency of data. Frequency is the number of times a data value occurs.

Unlock the Problem

Hannah is training for a walkathon. The table shows the number of miles she walks each day. She has one day left in her training. How many miles is she most likely to walk on the last day?
\square
Make a dot plot.
STEP 1
Draw a number line with an appropriate scale.
Numbers vary from \qquad to \qquad so use a scale from 0 to 10.

STEP 2

For each piece of data, plot a dot above the number that corresponds to the number of miles Hannah walked.

Complete the dot plot by making the correct number of dots above the numbers 5 through 10 .

The number of miles Hannah walked most often is the value with the tallest stack of dots. The tallest stack in this dot plot is for

So, the number of miles Hannah is most likely to walk on the last day of her training is

- What do you need to find?

Distance Hannah Walked (mi)				
4	2	9	3	3
5	5	1	6	2
5	2	5	4	5
4	9	3	2	4

\qquad $-$

Math Idea

A dot plot is sometimes called a line plot.

- Matifnatical (5 Communicate Explain why a dot plot is useful for solving this problem.

A frequency table shows the number of times each data value or range of values occurs. A relative frequency table shows the percent of time each piece of data or group of data occurs.

1. Example 1

Jill kept a record of her workout times. How many of Jill's workouts lasted exactly 90 minutes?

Make a frequency table.

STEP 1

List the workout times in the first column.

STEP 2

Record the frequency of each time in the Frequency column.

Complete the frequency table.
So, \qquad of Jill's workouts lasted exactly 90 minutes.

Jill's Workout Times (minutes)						
30	60	30	90	60	30	60
90	60	120	30	60	90	90
60	120	60	60	60	30	30
120	30	120	60	120	60	120

Jill's Workout Times	
Minutes	Frequency
30	7
60	
90	
120	

1. Example 2

The table shows the number of laps Ricardo swam each day. What percent of the days did Ricardo swim 18 or more laps?

Make a relative frequency table.

Ricardo's Lap Swimming				
10	10	15	5	12
12	5	19	3	19
16	14	17	18	13
6	17	16	11	8

STEP 1

Determine equal intervals for the data. List the intervals in the first column.

STEP 2

Count the number of data values in each interval. Record this in the Frequency column.

STEP 3

Ricardo's Lap Swimming		
Number of Laps	Frequency	Relative Frequency
$3-7$	4	20%
$8-12$	6	30%
$13-17$	7	
18	There are 20 data values. $\frac{4}{20}=0.2=20 \%$ $\frac{6}{20}=0.3=30 \%$	
$18-22$	3	

Divide each frequency by the total number of data values. Write the result as a percent in the Relative Frequency column.

Complete the relative frequency table.
So, Ricardo swam 18 or more laps on \qquad of the days.

Math

Talk
Explain how you could find the percent of days on which Ricardo swam 13 or more laps.

Name

Share and Show

MATH BOARD

For 1-4, use the data at right.

1. Complete the dot plot.

2. What was the most common distance Lionel biked? How do you know?

\qquad
3. Make a frequency table. Use the intervals $1-3 \mathrm{~km}, 4-6 \mathrm{~km}, 7-9 \mathrm{~km}$, and $10-12 \mathrm{~km}$.
4. Make a relative frequency table. Use the same intervals as in Exercise 3.

On Your Dwn

Practice: Copy and Solve For 5-9, use the table.

5. Make a dot plot of the data.
6. Make a frequency table of the data with three intervals.
7. Make a relative frequency table of the data with three intervals.
8. Martinaical (1) Describe how you decided on the intervals for the frequency table.

Gloria's Daily Sit-Ups				
13	3	14	13	12
12	13	4	15	12
15	13	14	3	11
13	13	12	14	15
11	14	13	15	11

\qquad
9. IHINKSMARTER Could someone use the information in the frequency table to make a dot plot? Explain.

Unlock the Problem

10. THINKSMARTER The manager of a fitness center asked members to rate the fitness center. The results of the survey are shown in the frequency table. What percent of members in the survey rated the center as excellent or good?

a. What do you need to find?

Fitness Center Survey	
Response	Frequency
Excellent	18
Good	15
Fair	21
Poor	6

b. How can you use relative frequency to help you solve the problem?
\qquad
\qquad
c. Show the steps you use to solve the problem.
d. Complete the sentences.

The percent of members who rated the center as excellent is \qquad .

The percent of members who rated the center as good is \qquad .

The percent of members who rated the center as excellent or good is \qquad -
11. GDDEEPER

Use the table above. What is the difference in percent of the members in the survey that rated the fitness center as poor versus excellent?
\qquad
Personal Math Trainer
12. THINKSMARTER Julie kept a record of the number of minutes she spent reading for 20 days. Complete the frequency table by finding the frequency and the relative frequency (\%).

Julie's Reading Times (min)				
15	30	15	30	30
30	60	15	60	45
15	45	30	45	15
60	45	30	30	30

Julie's Reading Times		
Minutes	Frequency	Relative Frequency (\%)
15	5	25
30		
45		
60		

Name

Histograms

Essential Question How can you use histograms to display data?
When there is a large number of data values, it is helpful to group

Statistics and Probability6.SP. 4

MATHEMATICAL PRACTICES
MP.4, MP. 6 the data into intervals. A histogram is a bar graph that shows the frequency of data in intervals. Unlike a bar graph, there are no gaps between the bars in a histogram.

Unlock the Problem

The histogram shows the ages of winners of the Academy Award for Best Actor from 1990 to 2009. How many winners were under 40 years old?
(f) Interpret the histogram.

The height of each bar shows how many data values are in the interval the bar represents.

How many winners were 20-29 years old?

Ages of Best Actor Winners, 1990-2009

Which other bar represents people under 40 ?

How many winners were 30-39 years old? \qquad
To find the total number of winners who were under 40 years old, add the frequencies for the intervals 20-29 and 30-39.
\qquad $+$ \qquad $=$ \qquad
So, \qquad of the winners were under 40 years old.

1. Matimaical (4) Use Graphs Explain whether it is possible to know from the histogram if any winner was 37 years old.

1. Example

The table shows the ages of winners of the Academy Award for Best Actress from 1986 to 2009. How many of the winners were under 40 years old?

Make a histogram.

Ages of Best Actress Winners					
45	21	41	26	80	42
29	33	36	45	49	39
34	26	25	33	35	35
28	30	29	61	32	33

STEP 1

Make a frequency table using intervals of 10.

Interval	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$
Frequency	7			0			1

STEP 2

Set up the intervals along the axis of the graph. The intervals must be all the same size. In this case, every interval includes 10 years.

Write a scale for the frequencies on the \qquad axis.

STEP 3

Graph the number of winners in each interval.

STEP 4

Give the graph a title and label
the axes.
Complete the histogram by drawing the bars for the intervals 60-69, 70-79, and 80-89.

To find the number of winners who were under 40 years old, add the frequencies for the intervals 20-29 and 30-39.
\qquad $+$ \qquad $=$ \qquad
So, \qquad of the winners were under 40 years old.
2.

Explain how you can tell from the histogram which age group has the most winners.
\qquad
\qquad

Share and Show

For 1-3, use the data at right.

1. Complete the frequency table for the age data in the table at right.

Interval	$10-19$	$20-29$	$30-39$	$40-49$
Frequency	2			

2. Complete the histogram for the data.
3. Use your histogram to find the number of people at the health club who are 30 or older.
4. GПDEEPER Use your histogram to determine the percent of the people at the health club who are 20-29 years old.

Ages of People at a Health Club (yr)				
21	25	46	19	33
38	18	22	30	29
26	34	48	22	31

Ages of People at a Health Club

Ages

On Your Own

Math
Talk
Mathematical Practices
Explain whether you could use the histogram to find the number of people who are 25 or older.

Weights of Dogs (Ib)				
16	20	15	24	32
33	26	30	15	21
21	12	19	21	37
10	39	21	17	35

7. Mantinaital (6) Compare Explain how using different intervals changed the appearance of your histogram.
\qquad
\qquad
\qquad

Practice: Copy and Solve For 5-7, use the table.
5. Make a histogram of the data using the intervals $10-19$, 20-29, and 30-39.
6. Make a histogram of the data using the intervals $10-14$, 15-19, 20-24, 25-29, 30-34, and 35-39.

Problem Solving • Applications

The histogram shows the hourly salaries, to the nearest dollar, of the employees at a small company. Use the histogram to solve 8-11.
8. How many employees make less than $\$ 20$ per hour?
9. GПDEEPER How many employees work at the company? Explain how you know.
10.

Pose a Problem
Write and solve a new problem that uses the histogram.

What does this tell you about the salaries at the company?
\qquad
\qquad
12. THINKSMARTER The frequency table shows the TV ratings for the show American Singer. Complete the histogram for the data.
Personal Math Train

TV ratings	
Rating	Frequency
$14.1-14.5$	2
$14.6-15.0$	6
$15.1-15.5$	6
$15.6-16.0$	5
$16.1-16.5$	1

\qquad

Mid-Chapter Checkpoint

Vocabulary

Choose the best term from the box to complete the sentence.

1. A \qquad is a kind of bar graph that shows the frequency of data grouped into intervals. (p. 485)
2. A question that asks about a set of data that varies is called a
\qquad . (p. 473)

Concepts and Skills

3. A sports reporter records the number of touchdowns scored each week during the football season. What statistical question could the reporter ask about the data? (6.SP.1)
\qquad
\qquad
4. Flora records her pet hamster's weight once every week for one year.

How many observations does she make? (6.SP.5a)
\qquad
5. The number of runs scored by a baseball team in 20 games is given below. Draw a dot plot of the data and use it to find the most common number of runs scored in a game. (6.SP.4)

Runs Scored									
3	1	4	3	4	2	1	7	2	3
5	3	2	9	4	3	2	1	1	4

6. Write a statistical question you could ask about a set of data that shows the times visitors arrived at an amusement park. (6.SP.1)
7. A school principal is trying to decide how long the breaks should be between periods. He plans to time how long it takes several students to get from one classroom to another. Name a tool he could use to collect the data. (6.SP.5b)
8. The U.S. Mint uses very strict standards when making coins. On a tour of the mint, Casey asks, "How much copper is in each penny?" Lenny asks, "What is the value of a nickel?" Who asked a statistical question? (6.SP.1)
9. Chen checks the temperature at dawn and at dusk every day for a week for a science project. How many observations does he make? (6.SP.5a)
10. The table shows the lengths of the songs played by a radio station during a 90 -minute period. Alicia is making a histogram of the data. What frequency should she show for the interval 160-169 seconds? (6.5P.4)

Song Lengths (sec)				
166	157	153	194	207
150	175	168	209	206
151	201	187	162	152
209	194	168	165	156

Mean as Fair Share and Balance Point

Essential Question How does the mean represent a fair share and balance point?

Investigate

Materials ■ counters
On an archaeological dig, five students found 1, 5, 7, 3, and 4 arrowheads. The students agreed to divide the arrowheads evenly. How many arrowheads should each student get?
A. Use counters to show how many arrowheads each of the five students found. Use one stack of counters for each student.
B. Remove a counter from the tallest stack and move it to the shortest. Keep moving counters from taller stacks to shorter stacks until each stack has the same height.
C. Count the number of counters in each stack.

The number of counters in each stack is the mean, or average, of the data. The mean represents the number of arrowheads each student should get if the arrowheads are shared equally.

There are 5 stacks of \qquad counters.

So, each student should get \qquad arrowheads.

Draw Conclusions

1. Explain what is "fair" about a fair share of a group of items.
2. IHINKSMARTER How could you find the fair share of arrowheads using the total number of arrowheads and division?

Make Connections

The mean can also be seen as a kind of balance point.
Ms. Burnham's class holds a walk-a-thon to help raise money to update the computer lab. Five of the students walked $1,1,2,4$, and 7 miles. The mean distance walked is 3 miles.

Complete the dot plot of the data set.

Circle the number that represents the mean.
Complete the table to find the distances of the data points from the mean.

	Values Less than the Mean		Values Greater than the Mean		
Data point	1 mi	1 mi	mi	4 mi	mi
Distance from the mean	2 mi	mi	mi	mi	mi

The total distance from the mean for values less than the mean is:
2 miles +2 miles +1 mile $=$ \qquad miles

The total distance from the mean for values greater than the mean is:
\qquad mile + \qquad miles $=$ \qquad miles

The total distance of the data values less than the mean is \qquad the total distance of the data values greater than the mean. The mean represents a balance point for data values less than the mean and greater than the mean.
3. Explain how you found the distance of each data value from the mean.
4.

Marinimacal 8 Generalize Can all of the values in a data set be greater than the mean? Explain why or why not.
\qquad
\qquad

Name

Share and Show

Use counters to find the mean of the data set.

1. On the first day of a school fundraiser, five students sell $1,1,2,2$, and 4 gift boxes of candy.

Make \qquad stacks of counters with heights $1,1,2,2$, and 4 .

Rearrange the counters so that all \qquad stacks have the same height.

After rearranging, every stack has \qquad counters.

So, the mean of the data set is \qquad .

Make a dot plot for the data set and use it to check whether

 the given value is a balance point for the data set.2. Rosanna's friends have $0,1,1,2,2$, and 12 pets at home. Rosanna says the mean of the data is 3 . Is Rosanna correct?

The total distance from 3 for data values less than 3 is \qquad .

The total distance from 3 for data values greater than 3 is \qquad .

The mean of 3 \qquad a balance point.

So, Rosanna \qquad correct.

Problem Solving • Applications

3. GПDEEPER Four people go to lunch, and the costs of their orders are $\$ 6, \$ 9, \$ 10$, and $\$ 11$. They want to split the bill evenly. Find each person's fair share. Explain your work.
\qquad
\qquad
\qquad

Use the table for 4-6.

4. A grocer is preparing fruit baskets to sell as holiday presents. If the grocer rearranges the apples in baskets A, B, and C so that each has the same number, how many apples will be in each basket? Use counters to find the fair share.
5.

Make Arguments Can the pears be rearranged so that there is an equal whole number of pears in each basket? Explain why or why not.
\qquad
\qquad
\qquad
\qquad
6. THINKSMARTER Use counters to find the mean of the number of pears originally in baskets B and C. Draw a dot plot of the data set. Use your plot to explain why the mean you found is a balance point.
\qquad

\qquad

7. IHINKSMARTER Four friends go to breakfast and the costs of their breakfasts are $\$ 5, \$ 8, \$ 9$, and $\$ 10$. Select True or False for each statement.

7a. The mean of the cost of the breakfasts can be found by adding each of the costs and dividing that total by 4 .

7b. The mean cost of the four breakfasts is $\$ 10$.TrueFalse
7c. The difference between the greatest cost True False and the mean is $\$ 2$.

7d. The difference between the least cost
O True False and the mean is $\$ 2$.

MP.3, MP.6, MP. 7

2

Statistics and Probability-6.SP.5c
Also 6.SP.2, 6.SP. 3
MATHEMATICAL PRACTICES

A measure of center is a single value used to describe the middle of a data set. A measure of center can be a useful way to summarize a data set, especially when the data set is large.

Unlock the Problem

Kara made a paper airplane. She flew her airplane 6 times and recorded how long it stayed in the air during each flight. The times in seconds for the flights are 5.8, 2.9, 6.7 , $1.6,2.9$, and 4.7. What are the mean, median, and mode of the data?

What unit of time is used in the problem?

How many flight times are given?

0
Find the mean, median, and mode.

Mean $=\frac{5.8+2.9+6.7+1.6+2.9+4.7}{\square}=$

Order the values from least to greatest.
1.6, 2.9, 2.9, 4.7, 5.8, 6.7

The data set has an \qquad number of values, so the median is the mean of the two middle values. Circle the two middle values of the data set.

Now find the mean of the two middle values.

\qquad occurs twice, and all the other values occur once.

The mean is the sum of the data
items divided by the number of data items.

The median is the middle value when the data are written in order. If the number of data items is even, the median is the mean of the two middle values. of

The mode is the data value or values that occur most often.

Measures of Center

Essential Question How can you describe a set of data using mean, median, and mode?
is the mode.
\qquad

Try This! In 2009, an engineer named Takuo Toda set a world record for flight time for a paper airplane. His plane flew for 27.9 sec . If Toda's time was included in Kara's set of times, what would the median be?

Explain how you could use a dot plot and the idea of a balance point to check your answer for the mean.
\qquad

(1) Example 1
 Mrs. O'Donnell's class has a

fundraiser for a field trip to a wildlife preservation. Five of the donations are $\$ 15, \$ 25, \$ 30, \$ 28$, and $\$ 27$. Find the mean, median, and mode of the donations.

Order the data from least to greatest to find the median.
\qquad , \qquad , \qquad , \qquad , \qquad
Median $=$ \qquad
If all of the values in a data set occur with equal frequency, then the data set has no mode.

The data set has no repeated values, so there is no \qquad .

(1) Example 2 Keith surveys his classmates about how

 many brothers and sisters they have. Six of the responses were $1,3,1,2,2$, and 0 . Find the mean, median, and mode of the data.

Order the data from least to greatest to find the median.
\qquad
\qquad , \qquad , \qquad , \qquad , \qquad

The number of data values is even, so find the mean of the two middle values.

The data values \qquad and \qquad appear twice in the set. If two or more values appear in the data set the most number of times, then the data set has two or more modes.

Modes = \qquad and \qquad

Share and Show

MATH

BOARD

1. Terrence records the number of e-mails he receives per day. During one week, he receives $7,3,10,5,5,6$, and 6 e-mails. What are the mean, median, and mode of the data?

Mean = \qquad Median = \qquad

$$
\operatorname{Mode}(\mathrm{s})=
$$

Juice Prices		
$\$ 0.95$	$\$ 1.09$	$\$ 0.99$
$\$ 1.25$	$\$ 0.99$	$\$ 1.99$

$\operatorname{Mode}(\mathrm{s})=$ \qquad
Mean $=$ \qquad

$$
\text { Median }=
$$

On Your Own

3. T.J. is training for the 200 -meter dash event for his school's track team. Find the mean, median, and mode of the times shown in the table.

T.J.'s Times (sec)		
22.3	22.4	23.3
24.5	22.5	

Mean $=$ \qquad Median = \qquad Mode(s) $=$ \qquad
4. Manitamical (6) Make Connections Algebra The values of a data set can be represented by the expressions $x, 2 x, 4 x$, and $5 x$. Write the data set for $x=3$ and find the mean.
\qquad
5. $\mathrm{H} \square$ DEEPER In the last six months, Sonia's family used $456,398,655,508$, 1,186 , and 625 minutes on their cell phone plan. To save money, Sonia's family wants to keep their mean cell phone usage below 600 minutes per month. By how many minutes did they go over their goal in the last six months?

Problem Solving • Applications eraild

THINK SMARTER
 Sense or Nonsense?

6. Jeremy scored $85,90,72,88$, and 92 on five math tests, for a mean of 85.4.

On the sixth test he scored a 95 . He calculates his mean score for all 6 tests as shown below, but Deronda says he is incorrect. Whose answer makes sense? Whose answer is nonsense? Explain your reasoning.

Jeremy's Work

The mean of my first 5 test scores was 85.4, so to find the mean of all 6 test scores, I just need to find the mean of 85.4 and 95.

Mean $=\frac{85.4+95}{2}=\frac{180.4}{2}=90.2$
So, my mean score for all 6 tests is 90.2 .

Deronda's Work

To find the mean of all 6 test scores, you need to add up all 6 scores and divide by 6 .

Mean $=\frac{85+90+72+88+92+95}{6}$

$$
=\frac{522}{6}=87
$$

So, Jeremy's mean score for all 6 tests is 87 .
\qquad
\qquad
\qquad
\qquad
7. THINKSMARTER Alex took a standardized test 4 times. His test scores were $16,28,24$, and 32 .

Effects of Outliers

Essential Question How does an outlier affect measures of center?
An outlier is a value that is much less or much greater than the other values in a data set. An outlier may greatly affect the mean of a data set. This may give a misleading impression of the data.

Unlock the Problem

The table gives the number of days that the 24 members of the Garfield Middle School volleyball team were absent from school last year.

Volleyball Team Absences (days)							
4	6	7	4	5	5	3	6
6	7	3	5	8	16	5	4
5	6	5	7	6	4	5	4

Does the data set contain any outliers?
(U) Use a dot plot to find the outlier(s).

STEP 1 Plot the data on the number line.

\squareExample The high temperatures for the week in Foxdale, in degrees Fahrenheit, were $43,43,45,42,26,43$, and 45 . The mean of the data is $41^{\circ} \mathrm{F}$, and the median is $43^{\circ} \mathrm{F}$. Identify the outlier and describe how the mean and median are affected by it.
STEP 1 Draw a dot plot of the data and identify the outlier.

High Temperatures (${ }^{\circ}$ F)
The outlier is \qquad ${ }^{\circ} \mathrm{F}$.

STEP 2 Find the mean and median of the temperatures without the outlier.

$$
=\frac{}{6}=\quad \quad{ }^{\circ} \mathrm{F}
$$

Values ordered least to greatest: 42, \qquad , \qquad , \qquad , \qquad , Median $=\frac{43+}{2}=\square \quad{ }^{\circ} \mathrm{F}$

The mean with the outlier is \qquad ${ }^{\circ} \mathrm{F}$, and the mean without the outlier is \qquad ${ }^{\circ} \mathrm{F}$.

The outlier made the mean \qquad .

The median with the outlier is \qquad ${ }^{\circ} \mathrm{F}$, and the median without the outlier is \qquad ${ }^{\circ} \mathrm{F}$.

The outlier \qquad affect the median.
2. Marifnaical (2) Use Reasoning Explain why the mean without the outlier could be a better description of the data set than the mean with the outlier.
\qquad
\qquad
\qquad
3. If the outlier had been $59^{\circ} \mathrm{F}$ rather than $26^{\circ} \mathrm{F}$, how would the mean have been affected by the outlier? Explain your reasoning.
\qquad
\qquad

Name

Share and Show

1. Find the outlier by drawing a dot plot of the data.

Foul Shots Made						
2	3	1	3	2	2	1
15	2	1	3	1	3	

The outlier is \qquad .
2. The prices of the $\mathrm{X}-40$ Laser Printer at five different stores are $\$ 99, \$ 68, \$ 98, \$ 105$, and $\$ 90$. The mean price is $\$ 92$, and the median price is $\$ 98$. Identify the outlier and describe how the mean and median are affected by it.

The outlier is \qquad .
without the outlier: Mean = \$ \qquad
Median $=\$$ \qquad

On Your Own

The mean of a certain data set is much greater than the median. Explain how this can happen.
3. Identify the outlier in the data set of melon weights. Then describe the effect the outlier has on the mean and median.

The outlier is \qquad oz.

Melon Weights (oz)					
47	45	48	45	49	47
14	45	51	46	47	

\qquad
\qquad
4. Maryimatical 2 Use Reasoning In a set of Joanne's test scores, there is an outlier. On the day of one of those tests, Joanne had the flu. Do you think the outlier is greater or less than the rest of her scores? Explain.
\qquad
\qquad

Problem Solving • Applications eraild

Use the table for 5-7.

5. Which player's number of stolen bases is an outlier?
6. GIDDEPPR What effect does the outlier have on the median of the data set?
\qquad
\qquad
7. THINKSMARIER Miguel wrote that the mean of the data set is 992.6 . Is this the mean with or without the outlier? Explain how you can tell without doing a calculation.

8. THINKSMARIER Does an outlier have any effect on the mode of a data set? Explain.
\qquad
\qquad
\qquad
9. THINKSMARTER The prices of mesh athletic shorts at five different stores are $\$ 9, \$ 16, \$ 18, \$ 20$, and $\$ 22$. The mean price is $\$ 17$ and the median price is $\$ 18$. Identify the outlier and describe how the mean and median are affected by it.

MP.1, MP.4, MP. 5

Essential Question How can you use the strategy draw a diagram to solve problems involving data?

Number of Aunts and Uncles

4	3	2	4	5	7	0	3
1	4	2	4	6	3	5	1
2	5	0	6	3	2	4	5
4	1	3	0	4	2	8	3

Read the Problem

What do I need to find?

I need to find the
\qquad number of aunts and uncles among students in the club.

The most common number in the data is the \qquad .

What information do I need to use?

I need to use the number
of \qquad each
student has from the table.

Solve the Problem

- Make a dot plot of the data.

Check: Are there the same number of dots on
the plot as there are data values?

How will I use the information?

I can draw a diagram that shows
the \qquad of each value in the data set. A good way to show the frequency of each value in a data set is a \qquad .

- Use the plot to determine the mode. The mode is the data value with the \qquad dots. The data value with the most dots is \qquad .

Number of Aunts and Uncles

So, the most common number of aunts and uncles is \qquad .

Explain why displaying the data in a dot plot is a better choice for solving this problem than displaying the data in a histogram.

(1) Try Another Problem

The table shows the attendance for the Pittsburgh Pirates' last 25 home games of the 2009 baseball season. What percent of the games were attended by at least 25,000 people?

Attendance at 25 Pittsburgh Pirates Games (in thousands)				
12	13	23	33	21
17	17	24	15	27
19	15	18	11	26
20	24	13	16	16
16	19	36	27	17

Read the Problem		
What do I need to find?	What information do I need to use?	How will I use the information?

Solve the Problem

So, \qquad of the last 25 home games were attended by at least 25,000 people.

Name

Share and Show

MATH BOARD

1. The table shows the number of goals scored by the Florida Panthers National Hockey League team in the last 20 games of the 2009 season. What was the most common number of goals the team scored?

Goals Scored									
1	3	3	2	1	1	2	2	2	1
4	5	1	3	3	3	0	2	4	2

First, draw a dot plot of the data.
Next, use the plot to find the mode of the data: The value \qquad appears \qquad times.

So, the most common number of goals the Panthers scored was \qquad .
2. Draw a histogram of the hockey data. Use it to find the percent of the games in which the Panthers scored more than 3 goals.
t, draw adot potof - \qquad .

Unlock the Problem

$\sqrt{ }$ Read the question carefully to be sure you understand what you need to find.
$\sqrt{ }$ Check that you plot every data value exactly once.
\checkmark Check that you answered the question.
3. Mandinimical (5) Use Appropriate Tools If you needed to find the mean of a data set, which data display-dot plot or histogram-would you choose? Explain your reasoning.

On Your Own

4. THINKSMARTER Corey collected data on the ages of the parents of his classmates. Make a data display and use it to find the percent of parents at least 30 years old but under 50 years old.
$42,36,35,49,52,43,41,32,45,39,50,38,27$,
29, 37, 39

5. What is the mode of the data in Exercise 4?
6. Marimicilcal (6) Explain An online retail store sold 500 electronic devices in one week. Half of the devices were laptop computers and 20% were desktop computers. The remaining devices sold were tablets. How many tablets were sold? Explain how you found your answer.
7. G■DEEPER A recipe for punch calls for apple juice and cranberry juice. The ratio of apple juice to cranberry juice is $3: 2$. Tyrone wants to make at least 20 cups of punch, but no more than 30 cups of punch. Describe two different ways he can use apple juice and
 cranberry juice to make the punch.
8. THINKSMARTER The data set shows the total points scored by the middle school basketball team in the last 14 games. What is the most common number of points scored in a game? Explain how to find the answer using

Total Points Scored						
42	36	35	49	52	43	41
32	45	39	50	38	37	39

\qquad

(V) Chapter 12 Review/Test

1. The data set shows the total number of sandwiches sold each day for 28 days. What is the most common number of sandwiches sold in a day?

Number of sandwiches sold each day						
10	14	11	12	19	13	24
12	12	18	9	17	15	20
20	21	10	13	13	16	19
21	22	18	13	15	14	10

2. Michael's teacher asks, "How many items were sold on the first day of the fund raiser?" Explain why this is not a statistical question.
\square
3. Describe the data set by writing the attribute measured, the unit of measure, the likely means of measurement, and the number of observations in the correct location on the chart.

Daily Temperature (${ }^{\circ}$ F)						
64	53	61	39	36	43	48

7 7||c||c| \begin{tabular}{|l|c|}

\hline thermometer \& | degrees |
| :---: |
| Fahrenheit |

\hline
\end{tabular}

Attribute	Unit of Measure	Likely Means of Measurement	Number of Observations

4. The numbers of points scored by a football team in 7 different games are $26,38,33,20,27,3$, and 28 . For numbers 4a-4c, select True or False to indicate whether the statement is correct.

4a The outlier in the data set is 3 .TrueFalse

4b. The difference between the
TrueFalse outlier and the median is 24 .

4c. The outlier in this set of dataTrueFalse affects the mean by increasing it.
5. Mr. Jones gave a quiz to his math class. The students' scores are listed in the table. Make a dot plot of the data.

Math Test Scores				
100	90	40	70	70
90	80	50	70	60
90	70	60	80	100
70	50	80	90	90
80	70	80	90	70

6. Melanie scored $10,10,11$, and 13 points in her last 4 basketball games.

The mode of the test scores is | 10. |
| :---: |
| 11. |
| no mode. |

Name

7. The Martin family goes out for frozen yogurt to celebrate the last day of school. The costs of their frozen yogurts are $\$ 1, \$ 1, \$ 2$, and $\$ 4$. Select True or False for each statement.

7a. The mean cost for the frozen
O True
\bigcirc False
yogurts can be found by adding each cost and dividing that total by 4 .

7b. The mean cost of the four frozen
O True
○ False yogurts is $\$ 2$.

7c. The difference between the
○ True
○ False greatest cost and the mean is $\$ 1$.

7d. The difference between the least
O True
\bigcirc False cost and the mean is $\$ 1$.
8. The histogram shows the amount of time students spent on homework for the week. For numbers 8a-8d, choose True or False to indicate whether the statement is correct.

8a. The number of students
O True
\bigcirc False that spent between 30 minutes and 59 minutes on homework is 2 .
8 b . The greatest number of students spent between 90 minutes and 119 minutes on homework.
8c. Five of the students spent less ○ True \bigcirc False than 60 minutes on homework for the week.
8 d . Six of the students spent 60 minutes or more on homework for the week.
9. The dot plot shows how many games of chess 8 different members of the chess club played in one month. If Jackson is a new member of the chess club, how many games of chess is he likely to play in one month? Explain how the dot plot helped you find the answer.

Number of Games Played in One Month

10. Larry is training for a bicycle race. He records how far he rides each day. Find the mode of the data.

Miles Larry Rides each Day						
Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
15	14	12	16	15	15	

11. The amounts of money Connor earned each week from mowing lawns for 5 weeks are $\$ 12, \$ 61, \$ 71, \$ 52$, and $\$ 64$. The mean amount earned is $\$ 52$ and the median amount earned is $\$ 61$. Identify the outlier and describe how the mean and median are affected by it.
\square
12. The frequency table shows the height, in inches, of 12 basketball players. What fraction of the players are 70 inches or taller?

Heights of Basketball Players

Inches	Frequency
$60-69$	3
$70-79$	6
$80-89$	3

Name
13. A teacher surveys her students to find out how much time the students spent eating lunch on Monday.

She uses \begin{tabular}{|c|c|c|c|c|c|}

\hline \multicolumn{2}{	c	}{	hours
minutes			
seconds	} 		

\hline

 as the unit of measure.

\hline 15 \& 18 \& 18

\hline 15 \& 20 \& 16

\hline 15 \& 19 \& 15

\hline
\end{tabular}

14. For numbers 14a-14d, choose Yes or No to indicate whether the question is a statistical question.

14a. What are the heights of the trees in the park?

14b. How old are the trees in the park?
14c. How tall is the cypress tree onYes the north side of the lake this morning?

14d. What are the diameters of the treesin the park?
15. Five friends have $8,6,5,2$, and 4 baseball cards to divide equally among themselves.

16. The data set shows the ages of the members of the cheerleading squad. What is the most common age of the members of the squad? Explain how to find the answer using a dot plot.

Ages of Cheerleaders (years)				
8	11	13	12	14
12	10	11	9	11

17. The band director kept a record of the number of concert tickets sold by 20 band members.
Complete the frequency table by finding the frequency and the relative frequency.

Number of Concert Tickets Sold				
4	6	6	7	7
8	8	9	9	9
8	11	12	11	13
15	14	18	20	19

Number of Concert Tickets Sold		
Number of Tickets Sold	Frequency	Relative Frequency (\%)
$1-5$	1	5
$6-10$		
$11-15$		
$16-20$		

18. Gilbert is training for a marathon by running each week. The table shows the distances, in miles, that he ran each week during the first 7 weeks.

Week	1	2	3	4	5	6	7
Distance (miles)	8	10	9	10	15	18	21

Part A

Gilbert set a goal that the mean number of miles he runs in 7 weeks is at least 14 miles. Did Gilbert reach his goal? Use words and numbers to support your answer.
\square

Part B

Suppose Gilbert had run 18 miles during week 5 and 22 miles during week 6 . Would he have reached his goal? Use words and numbers to support your answer.
\square
 \title{
Voriability and
 \title{
Voriability and Dota Distributions
} Dota Distributions
}

Show What You Know

Check your understanding of important skills.
Name \qquad
Place the First Digit Tell where to place the first digit. Then divide.

1. $4 \longdiv { 8 7 2 }$ \qquad place
2. $8 \longdiv { 2 5 6 }$ \qquad place

Order of Operations Evaluate the expression.

3. $9+4 \times 8$
4. $2 \times 7+5$
5. $2^{3} \times(22 \div 2)$
6. $(8-2)^{2}-9$
\qquad
7. $6 \div(3-2)$
8. $\left(9-2^{3}\right)+8$
9. $(27+9) \div 3$
\qquad
10. $\left(12-3^{2}\right) \times 5$
\qquad

Mean Find the mean for the set of data.

11. $285,420,345,390$ \qquad 12. $0.2,0.23,0.16,0.21,0.2$ \qquad
12. $\$ 33, \$ 48, \$ 55, \$ 52$ \qquad

Raina watched two of her friends play a game of darts. She has to pick one of them to be her partner in a tournament. Be a Math Detective and help her figure out which of her friends is a more consistent dart player.
14. 8.1, 7.2, 8.4 \qquad

Vocabulary Builder

Visualize It

Sort the review words into the chart.

Review Words

histogram
mean
median
mode

Preview Words
boxplot
lower quartile
interquartile range
measure of
variability
range
upper quartile

Understand Vocabulary

Complete the sentences using the preview words.

1. The median of the upper half of a data set is the
\qquad .
2. The \qquad is the difference between the greatest value and the least value in a data set.
3. $\mathrm{A}(\mathrm{n})$ \qquad is a graph that shows the median, quartiles, least value, and greatest value of a data set.
4. A data set's \qquad is the difference between its upper and lower quartiles.
5. You can describe how spread out a set of data is using a(n)
\qquad $-$

Name

connect Seeing data sets in graphs, such as dot plots and histograms, can help you find and understand patterns in the data.

Unlock the Problem

Many lakes and ponds contain freshwater fish species such as bass, pike, bluegills, and trout. Jacob and his friends went fishing at a nearby lake. The dot plot shows the sizes of the fish that the friends caught. What patterns do you see in the data?

Fish Caught

(f) Analyze the dot plot.

A gap is an interval that contains no data.

Does the dot plot contain any gaps?
If so, where? \qquad -

Patterns in Data

Essential Question How can you describe overall patterns in a data set? the dat.
caught
fo, where?

So, there were no fish from \qquad to \qquad inches long, and there were two clusters of fish measuring from \qquad
A cluster is a group of data points that lie within a small interval.

There is a cluster from \qquad to \qquad and another cluster from \qquad to \qquad .

$$
\begin{aligned}
& \text { Circle any spaces with no data. } \\
& \text { Place a box around any groups } \\
& \text { of data. }
\end{aligned}
$$

to \qquad inches long and from \qquad to \qquad inches long.

1. Summarize the information shown in the dot plot.
to

What is the mode(s) of the data? Explain how you know.
2. Marinamical 8 Draw Conclusions What conclusion can you draw about why the data might have this pattern?

You can also analyze patterns in data that are displayed in histograms. Some data sets have symmetry about a peak, while others do not.

(1) Example Analyze a histogram.

Erica made this histogram to show the weights of the pumpkins grown at her father's farm in October. What patterns do you see in the data?

STEP 1 Identify any peaks in the data.
The histogram has \qquad peak(s).

The interval representing the greatest number of pumpkins is for weights between \qquad and \qquad pounds.

STEP 2 Describe how the data changes across the intervals.
The number of pumpkins increases from 0 to \qquad pounds and \qquad from 30 to 50 pounds.

STEP 3 Describe any symmetry the graph has.
If I draw a vertical line through the interval for \qquad to
\qquad pounds, the left and right parts of the histogram are very close to being mirror images. The histogram \qquad line symmetry.

Remember

A geometric figure has line symmetry if you can draw a line through it so that the two parts are mirror images of each other.

So, the data values increase to one peak in the interval for \qquad to
\qquad pounds and then decrease. The data set \qquad line symmetry about the peak.

Name

Share and Show

MATH
 BOARD

For 1-3, use the dot plot.

1. The dot plot shows the number of paintings students in the art club displayed at the art show. Does the dot plot contain any gaps?

If so, where? \qquad
2. Identify any clusters in the data.

3. Summarize the information in the dot plot.

On Your Own

4. GПDEEPER What patterns do you see in the histogram data?
\qquad
\qquad
\qquad
\qquad
\qquad
5. THINKSMARTER The dot plot shows the number of errors made by a baseball team in the first 16 games of the season. For numbers 7a-7e, choose Yes or No to indicate whether the statement is correct.

7a. There is a gap from 4 to 5.
O Yes
O No
7b. There is a peak at 0 .
O Yes
\bigcirc No

Errors per Game

7c. The dot plot has line symmetry.Yes
O No
7d. There are two modes.
O Yes
O No
7e. There is one cluster.
Yes
O No

Connect to Science

Big Cats

There are 41 species of cats living in the world today. Wild cats live in places as different as deserts and the cold forests of Siberia, and they come in many sizes. Siberian tigers may be as long as 9 feet and weigh over 2,000 pounds, while bobcats are often just 2 to 3 feet long and weigh between 15 and 30 pounds.

You can find bobcats in many zoos in the United States. The histogram below shows the weights of several bobcats. The weights are rounded to the nearest pound.

Use the histogram for 6 and 7.
6.

Marimaical (7) Look for a Pattern Describe the overall shape of the histogram.
\qquad
\qquad
\qquad
\qquad
7. THINKSMARTER Sense or Nonsense? Sunny says that the graph might have a different shape if it was redrawn as a bar graph with one bar for each number of pounds. Is Sunny's statement sense or nonsense? Explain.

Standards Practice Book
\qquad

Box Plots

Essential Question How can you use box plots to display data?
Statistics and Probability6.SP. 4
MATHEMATICAL PRACTICES MP.3, MP.4, MP. 6

The median is the middle value, or the mean of the two middle values, when data is written in order. The lower quartile is the median of the lower half of a data set, and the upper quartile is the median of the upper half of a data set.

Unlock the Problem

In 1885, a pair of jeans cost $\$ 1.50$. Today, the cost of jeans varies greatly. The chart lists the prices of jeans at several different stores. What are the median, lower quartile, and upper quartile of the data?

Prices of Jeans								
$\$ 35$	$\$ 28$	$\$ 42$	$\$ 50$	$\$ 24$	$\$ 75$	$\$ 47$	$\$ 32$	$\$ 60$

Ω
Find the median, lower quartile, and upper quartile.
STEP 1 Order the numbers from least to $\quad \$ \quad \$ 24 \quad \$ 28$ \$32 $\quad \$ 35$ \$42 $\quad \$ 47$ \$50 $\quad \$ 60$ \$75 greatest.

STEP 2 Circle the middle number, the The median is \$ \qquad . median.

STEP 3 Calculate the upper and lower quartiles.
Find the median of each half of the data set.

Think: If a data set has an even number of values, the median is the mean of the two middle values.

$\frac{\$ 28+\$ 32}{2}=\frac{\$}{2}=\$ \quad \frac{\$ \quad+\$}{2}=\frac{\$}{2}=\$$ \qquad

So, the median is $\$$ \qquad , the lower quartile is $\$$ \qquad , and the upper quartile is $\$$ \qquad .

ERROR Alert

When a data set has an odd number of values, do not include the median when finding the lower and upper quartiles.

A box plot is a type of graph that shows how data are distributed by using the least value, the lower quartile, the median, the upper quartile, and the greatest value. Below is a box plot showing the data for jean prices from the previous page.

(1) Example make a box plot.

The data set below represents the ages of the top ten finishers in a 5 K race. Use the data to make a box plot.

Ages of Top 10 Runners (in years)									
33	18	21	23	35	19	38	30	23	25

STEP 1 Order the data from least to greatest. Then find the median and the lower and upper quartiles.

18, \qquad , \qquad

Median $=\frac{+}{2}=$ \qquad years

Lower quartile $=$ \qquad years

The lower quartile is the median of the lower half of the data set, which goes from 18 to 23 .

Upper quartile = \qquad years

The upper quartile is the median of the upper half of the data set, which goes from 25 to 38 .

STEP 2 Draw a number line. Above the number line, plot a point for the least value, the lower quartile, the median, the upper quartile, and the greatest value.

STEP 3 Draw a box from the lower to upper quartile. Inside the box, draw a vertical line segment through the median. Then draw line segments from the box to the least and greatest values.
\qquad

Share and Show

Find the median, lower quartile, and upper quartile of the data.

1. the scores of 11 students on a geography quiz:
$87,72,80,95,86,80,78,92,88,76,90$
Order the data from least to greatest. $\quad 72,76,78,80,80,86,87,88,90,92,95$ median: \qquad lower quartile: \qquad upper quartile: \qquad
2. the lengths, in seconds, of 9 videos posted online:
$50,46,51,60,62,50,65,48,53$
median: \qquad lower quartile: \qquad upper quartile: \qquad
3. Make a box plot to display the data set in Exercise 2.

On Your Own

Mathematical Practices
How are box plots and dot plots similar? How are they different?

Find the median, lower quartile, and upper quartile of the data.
5. $61,23,49,60,83,56,51,64,84,27$
median: \qquad
lower quartile: \qquad
upper quartile: \qquad

7. Mantimaical (1) Analyze Eric made this box plot for the data set below. Explain his error.

Number of Books Read								
5	13	22	8	31	37	25	24	10

Problem Solving • Applications

THINKSMARTER
 Pose a Problem

8. The box plots show the number of flights delayed per day for two different airlines. Which data set is more spread out?

Find the distance between the least and greatest values for each data set.

Airline A: greatest value - least value $=$
\qquad - \qquad $=$ \qquad

Flights Delayed: Airline A

Flights Delayed: Airline B

Solve Your Problem
Pose a Problem
Write a new problem that can be solved using the data in the box plots.
\square

9. THINKSMARTER The data set shows the cost of the dinner specials at a restaurant on Friday night.

Cost of Dinner Specials (\$)										
30	24	24	16	24	25	19	28	18	19	26

The median is \begin{tabular}{|c|}
\hline 19.

24.

25.

\hline

 The lower quartile is

\hline 16.

18.

19.

\hline

 The upper quartile is

\hline 26.

28.

30.

\hline
\end{tabular}

\qquad

Mean Absolute Deviation

Essential Question How do you calculate the mean absolute deviation of a data set?

Statistics and Probability6.SP.5c

MATHEMATICAL PRACTICES
MP.2, MP.4, MP.6, MP. 8

One way to describe a set of data is with the mean. However, two data sets may have the same mean but look very different when graphed. When interpreting data sets, it is important to consider how far away the data values are from the mean.

Investigate

Materials $■$ counters, large number line from 0-10
The number of magazine subscriptions sold by two teams of students for a drama club fundraiser is shown below. The mean number of subscriptions for each team is 4 .

Team A				
3	3	4	5	5

Team B					
0	1	4	7	8	

A. Make a dot plot of each data set using counters for the dots. Draw a vertical line through the mean.
B. Count to find the distance between each counter and
 the mean. Write the distance underneath each counter.

C. Find the mean of the distances for each data set.

Team A

Team B

Draw Conclusions

1. THINKSMARIER Which data set, Team A or B, looks more spread out in your dot plots? Which data set had a greater average distance from the mean? Explain how these two facts are connected.
\qquad
\qquad
2. Мани: the average distance from the mean for the heights of players on two basketball teams. Tell which set of heights is more spread out. Explain how you know.

Heights of Players	
Team	Average Distance from Mean (in.)
Chargers	2.8
Wolverines	1.5

Make Gonnections

The mean of the distances of data values from the mean of the data set is called the mean absolute deviation. As you learned in the Investigation, mean absolute deviation is a way of describing how spread out a data set is.

The dot plot shows the ages of gymnasts registered for the school team. The mean of the ages is 10 . Find the mean absolute deviation of the data.
STEP 1 Label each dot with its distance from the mean.

Is it possible for the mean absolute deviation of a data set to be zero? Explain.

STEP 2 Find the mean of the distances.

So, the mean absolute deviation of the data is \qquad years.

Share and Show

MATH
BOARD

Use counters or a dot plot to find the mean absolute deviation of the data.

1. Find the mean absolute deviation for both data sets. Explain which data set is more spread out.
the number of laps Shawna swam on 5 different days:
$5,6,6,8,10$
mean $=7$

mean absolute deviation $=$ \qquad laps laps
the number of laps Lara swam on 5 different days:

$$
\begin{aligned}
& 1,3,7,11,13 \\
& \text { mean }=7
\end{aligned}
$$

mean absolute deviation $=$ \qquad laps

The data set of \qquad laps is more spread out because the mean
absolute deviation of her data is \qquad .

Use the dot plot to find the mean absolute deviation of the data.

2. mean $=7$ books

mean absolute deviation $=$ \qquad
3. mean $=29$ pounds

mean absolute deviation = \qquad
4. WRITE Math The mean absolute deviation of the number of daily visits to Scott's website for February is 167.7. In March, the absolute mean deviation is 235.9. In which month did the number of visits to Scott's website vary more? Explain how you know.
 website visits are less spread out than they were in February. Use a to represent the mean absolute deviation for April. Write an inequality to describe the possible values of a.

Problem Solving • Applications (arald

6. GロDEEPER Use the table.

Days of Precipitation											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dev
10	12	13	18	10	8	7	6	16	14	8	10

The mean of the data is 11 . What is the mean absolute deviation of the data?
7. THINKSMARTER Suppose all of the players on a basketball team had the same height. Explain how you could use reasoning to find the mean absolute deviation of the players' heights.
\qquad
\qquad
\qquad
8. Mantinaical (6) Explain Tell how an outlier that is much greater than the mean would affect the mean absolute deviation of the data set. Explain your reasoning.
\qquad
\qquad
\qquad
9. THINKSMARTER The data set shows the number of soccer goals scored by players in 3 games.

For numbers 9a-9c, choose Yes or No to indicate whether the statement is correct.

Number of Goals Scored			
Player A	1	2	1
Player B	2	2	2
Player C	3	2	1

9a. The mean absolute deviation of Player A is 1 .
O Yes
O No

9 b . The mean absolute deviation of Player B is 0 .
O Yes
O No
9c. The mean absolute deviation of Player C is greater than the mean absolute deviation of Player A.
\bigcirc Yes
O No
connect A measure of variability is a single value used to describe how spread out a set of data values are. The mean absolute deviation is a measure of variability.

Unlock the Problem

In gym class, the students recorded how far they could jump. The data set below gives the distances in inches that Manuel jumped. What is the mean absolute deviation of the data set?

Manuel's Jumps (in inches)					
54	58	56	59	60	55

Find the mean absolute deviation.

STEP 1 Find the mean of the data set.

Add the data values and divide the sum

Measures of Variability

Essential Question How can you summarize a data set by using range, interquartile range, and mean absolute deviation?

-

by the number of data values.

STEP 2 Find the distance of each data value from the mean.

Subtract the lesser value from the greater value.

STEP 3 Add the distances.
STEP 4 Find the mean of the distances.

Divide the sum of the distances by the number of data values.

54+ $+$ $+$ $+$
\qquad inches.

Data Value	Subtract (Mean $=\mathbf{5 7}$)	Distance between data value and the mean
54	$57-54=$	3
58	$58-57=$	
56	$57-56=$	
59	$59-57=$	
60	$60-57=$	
55	$57-55=$	

\qquad $\div 6=$ \qquad

Mathematical Practices

Give an example of a data set that has a small mean absolute deviation. Explain how you know that the mean absolute deviation is small without doing any calculations.

Range is the difference between the greatest value and the least value in a data set. Interquartile range is the difference between the upper quartile and the lower quartile of a data set. Range and interquartile range are also measures of variability.

1 Example
 Use the range and interquartile

 range to compare the data sets.The box plots show the price in dollars of the handheld game players at two different electronic stores. Find the range and interquartile range for each data set. Then compare the variability of the prices of the handheld game players at the two stores.

Calculate the range.
Find the difference between the greatest and least values.

Calculate the interquartile range.

Find the difference between the upper quartile and lower quartile.

STORE A
$150-24=$ \qquad
The range for Store A is \qquad .
$72-48=$ \qquad

The interquartile range for Store A is \qquad .

STORE B
120 - \qquad $=$ \qquad
The range for Store B is \qquad .

100 - \qquad $=$ \qquad

The interquartile range for
Store B is \qquad . -

So, Store A has a greater \qquad , but

Store B has a greater \qquad .

Math

 TalkMathematical Practices
Explain how range and interquartile range are alike and how they are different.

Name

\qquad

Share and Show

1. Find the range and interquartile range of the data in the box plot.

For the range, find the difference between the greatest and least values.
\qquad $-$ \qquad $=$ \qquad
range: \$ \qquad
For the interquartile range, find the difference between the upper and lower quartiles.
\qquad - \qquad $=$ \qquad
interquartile range: \$ \qquad

Practice: Copy and Solve Find the mean absolute deviation for the data set.

2. heights in inches of several tomato plants:
$16,18,18,20,17,20,18,17$
mean absolute deviation: \qquad

On Your Own

Use the box plot for 4 and 5.

4. What is the range of the data? \qquad
5. What is the interquartile range of the data?
\qquad

Practice: Copy and Solve Find the mean absolute deviation for the data set.

6. times in minutes spent on a history quiz
$35,35,32,34,34,32,34,36$
mean absolute deviation: \qquad
7. number of excused absences for one semester:
$1,2,1,10,9,9,10,6,1,1$
mean absolute deviation: \qquad
8. The chart shows the price of different varieties of dog food at a pet store. Find the range, interquartile range, and the mean absolute deviation of the data set.
9. times in seconds for students to run one lap:
$68,60,52,40,64,40$
mean absolute deviation: \qquad

Problem Solving • Applications

9. GIDEEPER

Hyato's family began a walking program. They walked $30,45,25,35,40,30$, and 40 minutes each day during one week. At the right, make a box plot of the data. Then find the interquartile range.
10.

Mathinaitcal 6
Compare Jack recorded the number of minutes his family walked each day for a month. The range of the data is 15 . How does this compare to the data for Hyato's family?

11. THINKSMARTER Sense or Nonsense? Nathan claims that the interquartile range of a data set can never be greater than its range. Is Nathan's claim sense or nonsense? Explain.

\qquad
12. THINK SMARTER The box plot shows the heights of corn stalks from two different farms.

\qquad

(V) Mid-Chapter Checkpoint

Vocabulary

Choose the best term from the box to complete the sentence.

1. The \qquad is the difference between the upper quartile and the lower quartile of a data set. (p. 528)
2. A graph that shows the median, quartiles, and least and greatest values of a data set is called $a(n)$ \qquad . (p. 520)
3. The difference between the greatest value and the least value in a data set is the \qquad (p. 528)
4. The \qquad is the mean of the distances between the values of a data set and the mean of the data set. (p. 524)

Concepts and Skills

5. Make a box plot for this data set: $73,65,68,72,70,74$. (6.SP.4)

Find the mean absolute deviation of the data. (6.SP.5c)
6. $43,46,48,40,38$
7. $26,20,25,21,24,27,26,23$

Find the range and interquartile range of the data. (6.5P.5c)
9. $2,4,8,3,2$
10. $84,82,86,87,88,83,84$

8. $99,70,78,85,76,81$
11. $39,22,33,45,42,40,28$
12. Yasmine keeps track of the number of hockey goals scored by her school's team at each game. The dot plot shows her data.

Where is there a gap in the data? (6.SP.5c)
13. What is the interquartile range of the data shown in the dot plot with Question 12? (6.SP.5c)
14. Randall's teacher added up the class scores for the quarter and used a histogram to display the data. How many peaks does the histogram have? (6.SP.5c)

15. In a box plot of the data below, where would the box be drawn?
(6.SP.4)
$55,37,41,62,50,49,64$

Name

\qquad
Choose Appropriate Measures of Center and Variability
Essential Question How can you choose appropriate measures of center and variability to describe a data set?

Outliers, gaps, and clusters in a set of data can affect both the measures of center and variability. Some measures of center and variability may describe a particular set of data better than others.

Unlock the Problem

Thomas is writing an article for the school newsletter about a paper airplane competition. In the distance category, Kara's airplanes flew $17 \mathrm{ft}, 16 \mathrm{ft}, 18 \mathrm{ft}, 15 \mathrm{ft}$, and 2 ft . Should Thomas use the mean, median, or mode to best describe Kara's results? Explain your reasoning.

Find the mean, median, and mode and compare them.
Mean $=+\quad+\quad+\quad+\quad+$

$$
=\square=
$$

Order the data from least to greatest to find the median.
\qquad , \qquad , \qquad , \qquad , \qquad
Median = \qquad

Math Idea

The measures of center for some data sets may be very close together. If that is the case, you can list more than one measure as the best way to describe the data.

The data set has no repeated values so there is no \qquad .

The mean is \qquad than 4 of the 5 values, so it is not a good
description of the center of the data. The \qquad is closer to most of the values, so it is the best way to describe Kara's results.

So, Thomas should use the \qquad to describe Kara's results.

1. Explain why the two modes may be a better description than the mean
or median of the data set $2,2,2,2,7,7,7,7$. Make a box plot of the data. Then use the plot to find the range and interquartile range. Which measure better describes the data? Explain your reasoning.

STEP 1 Make a box plot.

Write the data in order from least to greatest.

Find the median of the data.

Find the lower quartile-the median of the lower half of the data.

Find the upper quartile-the median of the upper half of the data.
\qquad , \qquad , \qquad , \qquad ,

Prices of Book	
Site	Price (\$)
1	15
2	35
3	17
4	18
5	5
6	16
7	17

median $=$ \qquad
lower quartile = \qquad
upper quartile $=$ \qquad

Make the plot.

Describe a data set for which the range is a better description than the interquartile range.

STEP 2 Use the box plot to find the range and the interquartile range.
range $=$ \qquad - \qquad $=$ \qquad
interquartile range $=$ \qquad - \qquad $=$

Prices of Books (in dollars)

Share and Show

MATH BOARD

1. The distances in miles students travel to get to school are $7,1,6,8,9$, and 8 . Decide which measure(s) of center best describes the data set. Explain your reasoning.

$$
\begin{aligned}
& \text { mean }= \\
& \text { median }= \\
& \text { mode }= \\
&
\end{aligned}
$$

The \qquad is less than 4 of the 6 data points, and the \qquad describes only 2 of the data points. So, the \qquad best describes the data.
2.

Mapinmaical (4) Use Graphs The numbers of different brands of orange juice carried in several stores are $2,1,3,1,12,1,2,2$, and 5 . Make a box plot of the data and find the range and interquartile range. Decide which measure better describes the data set and explain your reasoning.

range $=$ \qquad
interquartile range $=$ \qquad

On Your Own

Explain how an outlier affects the range of a data set.
3. Martimatical (2) Use Reasoning The ages of students in a computer class are $14,13,14,15,14$, 35,14 . Decide which measure of center(s) best describes the data set. Explain your reasoning.
\qquad
mean $=$
median $=$ \qquad
mode $=$ \qquad
4. EПDEEPER Mateo scored 98, 85, 84, 80, 81, and 82 on six math tests. When a seventh math test score is added, the measure of center that best describes his scores is the median. What could the seventh test score be? Explain your reasoning.

Unlock the Problem

5. THINKSMARIER Jaime is on the community swim team. The table shows the team's results in the last 8 swim meets. Jaime believes they can place in the top 3 at the next swim meet. Which measure of center should Jaime use to persuade her team that she is correct? Explain.
a. What do you need to find?
\qquad
\qquad
\qquad
\qquad
b. What information do you need to solve the problem?
\qquad
\qquad
c. What are the measures of center?
d. Which measure of center should Jaime use? Explain.
\qquad
\qquad
\qquad
6. IHINKSMARTER The numbers of sit-ups students completed in one minute are $10,42,46,50,43$, and 49 . The mean of the data values is 40 and the median is 44.5 . Which measure of center better describes the data, the mean or median? Use words and numbers to support your answer.
\qquad
\qquad
\qquad

Apply Measures of Center and Variability

Essential Question What do measures of center and variability indicate about a data set?

Statistics and Probability-6.SP. 3
Also 6.SP. 2
MATHEMATICAL PRACTICES
MP.4, MP.6, MP. 7

Unlock the Problem

Julia is collecting data on her favorite sports teams for a report. The table shows the median and interquartile range of the heights of the players on her favorite baseball and basketball teams. How do the heights of the two teams compare?

0
Compare the medians and interquartile ranges of the

Sports Team Data			
	Median	Interquartile Range	
Baseball Team Heights	70 in.	6 in.	
Basketball Team Heights	78 in.	4 in.	

Median

The median of the \qquad players' heights is \qquad inches
greater than the median of the \qquad players' heights.

Interquartile Range

The interquartile range of the baseball team is \qquad the interquartile range of the basketball team, so the heights
of the baseball players vary \qquad the heights of the basketball team.

So, the players on the \qquad team are typically taller than the
players on the \qquad team, and the heights of the \qquad
team vary more than the those of the \qquad team.

1. Julia randomly picks one player from the basketball team and one player from the baseball team. Given data in the table, can you say that Explain your reasoning.

What if the mean of the heights of players on the baseball team is 75 in.? Explain what this could tell you about the data.

P Example

Kamira and Joey sold T-shirts during lunch to raise money for a charity. The table shows the number of T-shirts each student sold each day for two weeks. Find the mean and range of each data set, and use these measures to compare the data.

T-Shirts Sold	
Kamira	$5,1,2,1,3,3,1,4,5,5$
Joey	$0,1,2,13,2,1,3,4,4,0$

STEP 1 Find the mean of each data set.

Kamira:

Joey:

Mean

$$
=-=
$$

ERROR Alert

Make sure you include zeroes when you count the total number of data values.

STEP 2 Find the range of each data set.
$\begin{array}{ll}\text { Kamira: } & \text { Joey: } \\ \text { Range }=\quad-\quad=\quad & \text { Range }=\quad-\quad=\end{array}$
STEP 3 Compare the mean and range.
The mean of Joey's sales is \qquad the mean of Kamira's sales.

The range of Joey's sales is \qquad the range of Kamira's sales.

So, the typical number of shirts Joey sold each day was \qquad the
typical number of shirts Kamira sold. However, since the range of Joey's
data was \qquad than Kamira's, the number of shirts Joey sold
varied \qquad from day to day than the number of shirts Kamira sold.
2.

\qquad
\qquad

Share and Show

MATH BOARD

1. Zoe collected data on the number of points her favorite basketball players scored in several games. Use the information in the table to compare the data.

The mean of Player l's points is \qquad the mean of Player 2's points.

The interquartile range of Player 1's points is \qquad the interquartile range of Player 2's points.

So, Player 2 typically scores \qquad points than Player 1, but

Player 2's scores typically vary \qquad Player 1's scores.
2. Mark collected data on the weights of puppies at two animal shelters. Find the median and range of each data set, and use these measures to compare the data.
\qquad

Puppy Weight, in pounds
Shelter A:
7, 10, 5, 12, 15, 7, 7
Shelter B:
4, 11, 5, 11, 15, 5, 13

On Your Own

Kwan analyzed data about the number of hours musicians in her band practice each week. The table shows her results. Use the table for Exercises 3-5.
3. Which two students typically practiced the same amount each week, with about the same variation in practice times?
\qquad
4. Which two students typically practiced the same number of hours, but had very different variations in their practice times?
5. Which two students had the same variation in practice times, but typically practiced a different number of hours per week?
\qquad

Hours of Practice per Week		
	Mean	Range
Sally	5	2
Matthew	9	12
Tim	5	12
Jennifer	5	3

Problem Solving • Applications (acal

6.

(marinkaical 6) Compare The table shows the number of miles Johnny ran each day for two weeks. Find the median and the interquartile range of each data set, and use these measures to compare the data sets.

Miles Run
Week 1
$2,1,5,2,3,3,4$
Week 2
$3,8,1,8,1,3,1$

\qquad
\qquad
7. THINKSMARTER Sense or Nonsense? Yashi made the box plots at right to show the data he collected on plant growth. He thinks that the variation in bean plant growth was about the same as the variation in tomato plant growth. Does Yashi's conclusion make sense? Why or why not?

\qquad

Bean Plant Growth (inches)

Personal Math Trainer
8. THINK SMARTER Kylie's teacher collected data on the heights of boys and girls in a sixth grade class. Use the information in the table to compare the data.

Heights (in.)							
Girls	55	60	56	51	60	63	65
Boys	72	68	70	56	58	62	64

The mean of the boys' heights is | the same as |
| :---: |
| less than |
| greater than |

the mean of the girls' heights.

The range of the boys' heights is | the same as |
| :---: |
| less than |
| greater than | the range of the girls' heights.

\qquad

Describe Distributions

Essential Question How can you describe the distribution of a data set collected to answer a statistical question?

Statistics and Probability6.SP. 2

MATHEMATICAL PRACTICES
MP.1, MP.3, MP. 6

(1) Activity

Ask at least 20 students in your school how many pets they have. Record your results in a frequency table like the one shown.

Pet Survey	
Number of Pets	Frequency
0	
1	
2	
3	
4	

- What statistical question could you use your data to
 answer?
\qquad
\qquad

Unlock the Problem
You can graph your data set to see the center, spread, and overall shape of the data.

Make a dot plot or a histogram of your data.

- What type of graph will you use?
- How will you label your graph?
\qquad
\qquad
\qquad

Think about the overall distribution of your data.

- Are there any clusters?
- Are there gaps in the data?
- Are there peaks in the data?
- Does the graph have symmetry?

1. Миमा: of the data. Include information about clusters, gaps, peaks, and symmetry.
\qquad
\qquad

(1) Example Find the mean, median, mode, interquartile

range, and range of the data you collected.
STEP 1 Find the mean, median, and mode.
Mean: \qquad Median: \qquad
Model: \qquad
STEP 2 Draw a box plot of your data and use it to find the interquartile range and range.

Interquartile range: \qquad Range: \qquad
2. Which measure of center do you think best describes your data? Why?
\qquad
\qquad
3. Does the interquartile range or range best describe your data? Why?
\qquad
\qquad
4. What is the answer to the statistical question you wrote on the previous page?

Compare your data set to the data set of one of your classmates. Describe how the data sets are similar and how they are different.
\qquad

Share and Show

MATH
 BOARD

Connie asked people their ages as they entered the food court at the mall. Use the histogram of the data she collected for 1-5.

1. What statistical question could Connie ask about her data?
\qquad
\qquad

2. Describe any peak or gap in the data.
\qquad
\qquad
3. Does the graph have symmetry? Explain your reasoning.

On Your Own

4. The lower quartile of the data set is 16.5 years, and the upper quartile is 51.5 years. Find the interquartile range. Is it a better description of the data than the range? Explain your reasoning.

Mathematical Practices
Explain what, if any, information you would need to answer the statistical question you wrote in Exercise 1 and what calculations you would need to do.
5. Masinkaical (3) Make Arguments The mode of the data is 16 years old. Is the mode a good description of the center of the data? Explain.
\qquad
\qquad

Problem Solving • Applications (eald

Use the dot plot for 6-8.
6. (Marinnaical (1) Make Arguments Jason collected data about the number of songs his classmates bought online over the past 3 weeks. Does the data set have symmetry? Why or why not?

\qquad
\qquad
7. GपDEEPER Jason claims that the median is a good description of his data set, but the mode is not. Does his statement make sense?
Explain.
\qquad
\qquad
8. THINKSMARIER Trinni surveyed her classmates about how many siblings they have. A dot plot of her data increases from 0 siblings to a peak at 1 sibling, and then decreases steadily as the graph goes to 6 siblings. How is Trinnis dot plot similar to Jason's? How is it different?

\qquad
\qquad
\qquad
9. IHINKSMARTER Diego collected data on the number of movies seen last month by a random group of students.

Number of Movies Seen Last Month												
0	1	3	2	1	0	5	12	2	3	2	2	3

Draw a box plot of the data and use it to find the interquartile range and range.

Interquartile range \qquad
Range \qquad

Number of Movies Seen Last Month

Problem Solving•Misleading Statistics

Essential Question How can you use the strategy work backward to draw conclusions about a data set?

Lesson 13.8

Unlock the Problem

Mr. Owen wants to move to a town where the daily high temperature is in the 70s most days. A real estate agent tells him that the mean daily high temperature in a certain town is 72°. Other statistics about the town are given in the table. Does this location match what Mr. Owen wants? Why or why not?

Town Statistics for the Past Year (Daily High Temperature)	
Minimum	62°
Maximum	95°
Median	69°
Mean	72°

Use the graphic organizer to help you solve the problem.

Read the Problem

What do I need to find?

I need to decide if the daily high temperature in the town
\qquad -

What information do I need?

I need the \qquad in the table.

How will I use the information?

I will work backward from the statistics to draw conclusions
about the \qquad of data.

The minimum high temperature is \qquad .

The maximum high temperature is \qquad .

The median of the data set is \qquad .

Solve the Problem

Think: The high temperature is sometimes than 70°.

Think: The high temperature is sometimes than 80°.

Because the median is 69°, at least half of the days must have high temperatures less than or equal to 69°.

So, the location does not match what Mr. Owen wants. The median indicates that most days \qquad have a high temperature in the 70 s .

Explain why the mean temperature is misleading in this example.

(1) Try Another Problem

Ms. Garcia is buying a new car. She would like to visit a dealership that has a wide variety of cars for sale at many different price ranges. The table gives statistics about one dealership in her town. Does the dealership match Ms. Garcia's requirements? Explain your reasoning.

Statistics for New Car Prices	
Lowest Price	$\$ 12,000$
Highest Price	$\$ 65,000$
Lower Quartile Price	$\$ 50,000$
Median Price	$\$ 55,000$
Upper Quartile Price	$\$ 60,000$

Read the Problem

What do I need to find?

What information do I need?

How will I use the information?

New Car Prices (in thousands of dollars)

- What would the box plot look like for a dealership that does meet Ms. Garcia's requirements?
\qquad
\qquad
\qquad

Name

Share and Show

MATH BOARD

1. Josh is playing a game at the carnival. If his arrow lands on a section marked 25 or higher, he gets a prize. Josh will only play if most of the players win a prize. The carnival worker says that the average (mean) score is 28. The box plot shows other statistics about the game. Should Josh play the game? Explain your reasoning.

First, look at the median. The median is \qquad points.

Next, work backward from the statistics.
The median is the \qquad value of the data.

So, at least \qquad of the values are scores
less than or equal to \qquad .

Finally, use the statistics to draw a conclusion.
\qquad
\qquad
2. IHINKSMARTER What if a score of 15 or greater resulted in a prize? How would that affect Josh's decision? Explain.
\qquad
\qquad
3. FIDEEPER A store collects data on the sales of DVD players each week for 3 months. The manager determines that the data has a range of 62 players and decides that the weekly sales were very inconsistent. Use the statistics in the table to decide if the manager is correct. Explain your answer.

Weekly DVD Player Sales	
Minimum	16
Maximum	78
Lower quartile	58
Upper quartile	72

On Your Own

4. EIDEEPER Gerard is fencing in a yard that is 21 feet by 18 feet. How many yards of fencing material does Gerrard need? Explain how you found your answer.
\qquad
\qquad
5. THINKSMARTER Susanna wants to buy a fish that grows to be about 4 in . long. Mark suggests she buys the same type of fish he has. He has five of these fish with lengths of 1 in ., 1 in ., $6 \mathrm{in} ., 6 \mathrm{in}$., and 6 in ., with a mean length of 4 in . Should Susanna buy the type of fish that Mark suggests? Explain.

6. Maryinwical (7) Look for a Pattern The graph shows the number of stamps that Luciano collected over several weeks. If the pattern continues, how many stamps will Luciano collect in Week 8? Explain.

7. IHINKSMARTER The data set shows the number of hours Luke plays the piano each week. Luke says he usually plays the piano 3 hours per week. Why is Luke's statement misleading?

Hours Playing the Piano						
1	2	1	3	2	10	2

\qquad

Chapter 13 Review/Test

1. The dot plot shows the number of chin-ups done by a gym class.

For numbers la-1e, choose Yes or No to indicate whether the statement is correct.
1a There are two peaks.
Yes
O No
1b. There are no clusters.
O Yes
O No
1c. There is a gap between 6 and 8 .
Yes
O No
1d. The most chin-ups anyone didYesNo was 15 .
1e. The modes are 3,4 , and 9 .O No
2. The histogram shows the high temperatures in degrees Fahrenheit of various cities for one day in March.

Select the best word to complete each sentence.

3. The data set shows the scores of the players on the winning team of a basketball game.

Scores of Players on Winning Team												
0	17	47	13	4	1	22	0	5	6	9	1	30

The median is \begin{tabular}{|c|}
\hline 6.

9.

13.

\hline

\quad The lower quartile is

0.

1.

2.

\hline
\end{tabular}

The upper quartile is | 15 |
| :---: |
| 19.5 |
| 26 |

4. The data set shows the number of desks in 12 different classrooms.

Classroom Desks											
24	21	18	17	21	19	17	20	21	22	20	16

Find the values of the points on the box plot.

5. The box plot shows the number of boxes sold at an office supply store each day for a week.

For numbers 5a-5d, select True or False for each statement.
5a. The median is 18 .True
False
5b. The range is 15 .True
False
5c. The interquartile range is 9 .True
False
5d. The upper quartile is 18 .True
False

Name

6. The data set shows the number of glasses of water Dalia drinks each day for a week.

Glasses of Water						
6	7	9	9	8	7	1

Part A

What is the mean number of glasses of water Dalia drinks each day?

Part B

What is the mean absolute deviation of the number of glasses of water Dalia drinks each day? Round your answer to the nearest tenth. Use words and numbers to support your answer.
\square
7. The numbers of emails Megan received each hour are $9,10,9,8,7$, and 2 . The mean of the data values is 7.5 and the median is 8.5 . Which measure of center better describes the data, the mean or median? Use words and numbers to support your answer.

8. The number of miles Madelyn drove between stops was 182, 180, 181, 184,228 , and 185 . Which measure of center best describes the data?
(A) mean
(B) median
(C) mode
9. The histogram shows the weekly earnings of part-time workers. What interval(s) represents the most common weekly earnings?

10. Jordan surveyed a group of randomly selected smartphone users and asked them how many applications they have downloaded onto their phones. The dot plot shows the results of Jordan's survey. Select the statements that describe patterns in the data. Mark all that apply.

(A) The modes are 37 and 42 .
(B) There is a gap from 38 to 40 .
(C) There is a cluster from 41 to 44 .
(D) There is a cluster from 35 to 36 .

Name
11. Mrs. Gutierrez made a histogram of the birth month of the students in her class. Describe the patterns in the histogram by completing the chart.

Birth Month of Students

Identify any peaks.	Identify any increases across the intervals.	Identify any decreases across the intervals.

12. Ian collected data on the number of children in 13 different families.

Number of Children												
1	2	4	3	2	1	0	8	1	1	0	2	3

Draw a box plot of the data and use it to find the interquartile range and range.

Interquartile range: \qquad Range: \qquad
13. Gavin wants to move to a county where it rains about 5 inches every month. The data set shows the monthly rainfall in inches for a county. The mean of the data is 5 and the median is 4.35 . After analyzing the data, Gavin says that this county would be a good place to move. Do you agree or disagree with Gavin? Use words and numbers to support your answer.

Monthly Rainfall (in.)														
4.4	3.7	6	2.9	4.3	5.4	6.1	14.1	4.3	0.5	4.5	3.8			

\square
14. The data set shows the number of books Peyton reads each month. Peyton says she usually reads 4 books per month. Why is Peyton's statement misleading?

Books Read						
2	3	2	4	3	11	3

15. The data set shows the scores of three players for a board game.

Board Game Scores			
Player A	90	90	90
Player B	110	100	90
Player C	95	100	95

For numbers 15a-15d, choose Yes or No to indicate whether the statement is correct.
15a. The mean absolute deviationNo of Player B's scores is 0 .
15b. The mean absolute deviation
Yes of Player A's scores is 0 .
15c. The mean absolute deviation of O Yes
Player B's scores is greater than the mean absolute deviation of Player C's scores.

Pronunciation Key

ә the schwa, an unstressed vowel representing the sound spelled a in above, e in sicken, i in possible, o in melon, u in circus

Other symbols:

- separates words into syllables
indicates stress on a syllable
absolute value [ab'so•| $\overline{0}+\mathrm{t}$ val'yoo] valor absoluto The distance of an integer from zero on a number line (p. 119)
acute angle [ə•kyōt' ang'gal]
ángulo agudo An angle that has a measure less than a right angle (less than 90° and greater than 0°)
Example:

acute triangle [ə•ky $\overline{0_{0} \dagger^{\prime}}$ tri’ang•gal]
triángulo acutángulo A triangle that has three acute angles
addend [ad'end] sumando A number that is added to another in an addition problem
addition [ə•dish'ən] suma The process of finding the total number of items when two or more groups of items are joined; the inverse operation of subtraction

Addition Property of Equality [ə•dish'ən präp'ər•tē əv ē•kwôl'ə•tē] propiedad de suma de la igualdad The property that states that if you add the same number to both sides of an equation, the sides remain equal
additive inverse [ad'ə•tiv in'v ûrs] inverso aditivo The number which, when added to the given number, equals zero
 expresión algebraica An expression that includes at least one variable (p. 269)
Examples: $x+5$, $3 a-4$
angle [ang'gal] ángulo A shape formed by two rays that share the same endpoint Example:

area [âr'ē•ə] área The number of square units needed to cover a surface without any gaps or overlaps (p. 389)
array [ə॰rā’] matriz An arrangement of objects in rows and columns
Example:

Associative Property of Addition [ə•sō’shē•ə•āt•iv präp'ər•tē əv ə•dish'ən] propiedad asociativa de la suma The property that states that when the grouping of addends is changed, the sum is the same
Example: $(5+8)+4=5+(8+4)$

Associative Property of Multiplication

[ə•sō'shē•ə•tiv präp'ər•tē əv mul•†ə•pli•kā'shən] propiedad asociativa de la multiplicación The property that states that when the grouping of factors is changed, the product is the same Example: $(2 \times 3) \times 4=2 \times(3 \times 4)$

B

bar graph [bär graf] gráfica de barras A graph that uses horizontal or vertical bars to display countable data Example:

base [bās] (arithmetic) base A number used as a repeated factor (p. 261)
Example: $8^{3}=8 \times 8 \times 8$. The base is 8 .
base [bās] (geometry) base In two dimensions, one side of a triangle or parallelogram which is used to help find the area. In three dimensions, a plane figure, usually a polygon or circle, which is used to partially describe a solid figure and to help find the volume of some solid figures. See also height.
Examples:

benchmark [bench'märk] punto de referencia A familiar number used as a point of reference
billion [bil'yən] millardo 1,000 millions; written as 1,000,000,000
box plot [bäks plät] diagrama de caja A graph that shows how data are distributed using the median, quartiles, least value, and greatest value (p. 520)
Example:

C

capacity [kə•pas'iətē] capacidad The amount a container can hold (p. 233)
Examples: $\frac{1}{2}$ gallon, 2 quarts

Celsius (${ }^{\circ} \mathrm{C}$) [sel'sē•əs] Celsius (${ }^{\circ} \mathrm{C}$) A metric scale for measuring temperature
closed figure [klōzd fig'yər] figura cerrada A figure that begins and ends at the same point
coefficient [kō•ə•隦'ənt] coeficiente A number that is multiplied by a variable (p. 274) Example: 6 is the coefficient of x in $6 x$
common denominator [käm'ən dē•näm'ə•nāt•ər] denominador común A common multiple of two or more denominators
Example: Some common denominators for $\frac{1}{4}$ and $\frac{5}{6}$ are 12,24 , and 36 .
common factor [käm'ən fak'tər] factor común A number that is a factor of two or more numbers (p. 17)
common multiple [käm'ən mul'tə•pal] múltiplo común A number that is a multiple of two or more numbers

Commutative Property of Addition

[kə•myō̄t' ə•tiv präp'ər•就 əv ə•dish'ən] propiedad conmutativa de la suma The property that states that when the order of two addends is changed, the sum is the same
Example: $4+5=5+4$

Commutative Property of Multiplication

[kə•myō̄t'ə•tiv präp'ər•tē əv mul•tə•pli•kāsh'ən] propiedad conmutativa de la multiplicación The property that states that when the order of two factors is changed, the product is the same Example: $4 \times 5=5 \times 4$
compatible numbers [kəm•pat'ə॰bal num'bərz] números compatibles Numbers that are easy to compute with mentally
composite figure [kəm•päz'it fig'yər] figura compuesta A figure that is made up of two or more simpler figures, such as triangles and quadrilaterals (p. 415)
Example:

composite number [kəm•päz'it num'bər] número compuesto A number having more than two factors
Example: 6 is a composite number, since its factors are $1,2,3$, and 6 .
cone [kōn] cono A solid figure that has a flat, circular base and one vertex
Example:

congruent [kən•groo'ənt] congruente Having the same size and shape (p. 393)
Example:

conversion factor [kən•vûr'zhən fak'tər] factor de conversión A rate in which two quantities are equal, but use different units (p. 229)
coordinate plane [kō•ôrd'n•it plān] plano cartesiano A plane formed by a horizontal line called the x-axis and a vertical line called the y-axis ($p .127$) Example:

cube [kyoobb] cubo A solid figure with six congruent square faces
Example:

cubic unit [ky $\overline{o o}$ 'bik y $\overline{00}$ 'nit] unidad cúbica A unit used to measure volume such as cubic foot $\left(\mathrm{ft}^{3}\right)$, cubic meter $\left(\mathrm{m}^{3}\right)$, and so on

D

data [dāt'ə] datos Information collected about people or things, often to draw conclusions about them (p. 473)
decagon [dek'əəgän] decágono A polygon with 10 sides and 10 angles
Examples:

decimal [des'ə•məl] decimal A number with one or more digits to the right of the decimal point
decimal point [des'ə•məl point] punto decimal A symbol used to separate dollars from cents in money, and the ones place from the tenths place in decimal numbers
degree (${ }^{\circ}$) [di•grē'] grado (${ }^{\circ}$) A unit for measuring angles or for measuring temperature
degree Celsius (${ }^{\circ} \mathrm{C}$) [di•grē' sel'sē•əs] grado Celsius A metric unit for measuring temperature
degree Fahrenheit (${ }^{\circ}$ F) [di•grē' fâr'ən•hīt] grado Fahrenheit A customary unit for measuring temperature
denominator [de•näm'ə•nāt•ər] denominador The number below the bar in a fraction that tells how many equal parts are in the whole or in the group

Example: $\frac{3}{4} \leftarrow$ denominator
dependent variable [de•pen'dənt vâr'ée•ə•bal] variable dependiente A variable whose value depends on the value of another quantity (p. 357)
difference [dif'ər•əns] diferencia The answer to a subtraction problem
digit [dij ${ }^{i t}$] dígito Any one of the ten symbols 0,1 , $2,3,4,5,6,7,8,9$ used to write numbers
dimension [də•men'shən] dimensión A measure in one direction
distribution [dis॰tri-byoo'shən] distribución The overall shape of a data set

Distributive Property [di•strib'yōo॰tiv präp'ar॰tē] propiedad distributiva The property that states that multiplying a sum by a number is the same as multiplying each addend in the sum by the number and then adding the products (p .18) Example: $3 \times(4+2)=(3 \times 4)+(3 \times 2)$

$$
\begin{aligned}
3 \times 6 & =12+6 \\
18 & =18
\end{aligned}
$$

divide [də•vīd'] dividir To separate into equal groups; the inverse operation of multiplication
dividend [div'o•dend] dividendo The number that is to be divided in a division problem Example: $36 \div 6 ; 6 \longdiv { 3 6 }$ The dividend is 36 .
divisible [də•viz'ə•bal] divisible A number is divisible by another number if the quotient is a counting number and the remainder is zero
Example: 18 is divisible by 3 .
division [dəəvizh'ən] división The process of sharing a number of items to find how many groups can be made or how many items will be in a group; the operation that is the inverse of multiplication

Division Property of Equality [də•vizh'ən präp'ər•tē əv ē•kwôl'ə•tē] propiedad de división de la igualdad The property that states that if you divide both sides of an equation by the same nonzero number, the sides remain equal
divisor [də•vi'zər] divisor The number that divides the dividend
Example: $15 \div 3 ; 3 \longdiv { 1 5 }$ The divisor is 3 .
dot plot [dot plät] diagrama de puntos A graph that shows frequency of data along a number line (p. 481)
Example:

edge [ej] arista The line where two faces of a solid figure meet Example:

equation [i•kwā’zhən] ecuación An algebraic or numerical sentence that shows that two quantities are equal (p. 307)
equilateral triangle [ē•kwi•lat'ər•əl trī’ang•gal] triángulo equilátero A triangle with three congruent sides
Example:

equivalent [ē•kwiv'ə•年t] equivalente Having the same value
equivalent decimals [ē•kwiv'ə•lənt des'ə•məlz] decimales equivalentes Decimals that name the same number or amount Example: $0.4=0.40=0.400$
equivalent expressions [ē•kwiv'ə••ənt ek•spresh'ənz] expresiones equivalentes Expressions that are equal to each other for any values of their variables (p. 291)
Example: $2 x+4 x=6 x$
equivalent fractions [è-kwiv'əələnt frak'shənz] fracciones equivalentes Fractions that name the same amount or part
Example: $\frac{3}{4}=\frac{6}{8}$
equivalent ratios [ē॰kwiv'ə•|ənt rā'shē• $\bullet \bar{z}$] razones equivalentes Ratios that name the same comparison (p. 161)
estimate [es'tə•mit] noun estimación (s) A number close to an exact amount
estimate [es'tə•māt] verb estimar (v) To find a number that is close to an exact amount
evaluate [ē $\cdot v a l ' y \overline{0} \cdot \stackrel{\bar{a}}{ }+$] evaluar To find the value of a numerical or algebraic expression (p. 265)
even [é'vən] par A whole number that has a 0,2 , 4,6 , or 8 in the ones place
expanded form [ek•span'did fôrm] forma desarrollada A way to write numbers by showing the value of each digit Example: $832=800+30+2$
exponent [eks'pōn•ənt] exponente A number that shows how many times the base is used as a factor (p. 261)
Example: $10^{3}=10 \times 10 \times 10$;
3 is the exponent.

Word History
Exponent comes from the combination of the Latin roots ex ("out of") + ponere ("to place"). In the 17th century, mathematicians began to use complicated quantities. The idea of positioning a number by raising it "out of place" is traced to René Descartes.
expression [ek•spresh'ən] expresión A mathematical phrase or the part of a number sentence that combines numbers, operation signs, and sometimes variables, but does not have an equal or inequality sign

F

face [fās] cara A polygon that is a flat surface of a solid figure
Example:

fact family [fakt fam'ə•就] familia de operaciones A set of related multiplication and division, or addition and subtraction, equations

Example:

$$
7 \times 8=56 ; 8 \times 7=56
$$

$$
56 \div 7=8 ; 56 \div 8=7
$$

factor [fak'ter] factor A number multiplied by another number to find a product
factor tree [fak'tər trē] árbol de factores A diagram that shows the prime factors of a number
Example:

Fahrenheit (${ }^{\circ} \mathrm{F}$) [fâr’ən•hīt] Fahrenheit (${ }^{\circ} \mathrm{F}$) A customary scale for measuring temperature
formula [fôr'myō०॰.ə] fórmula A set of symbols that expresses a mathematical rule Example: $A=b \times h$
fraction [frak'shən] fracción A number that names a part of a whole or a part of a group
frequency [frē'kwən•sē] frecuencia The number of times an event occurs (p. 481)
frequency table [frē'kwən•sē tā’bal] tabla de frecuencia A table that uses numbers to record data about how often an event occurs (p. 482)

greatest common factor (GCF) [grāt'est käm'ən fak'tər] máximo común divisor (MCD) The greatest factor that two or more numbers have in common (p. 17)
Example: 6 is the GCF of 18 and 30.
grid [grid] cuadrícula Evenly divided and equally spaced squares on a figure or flat surface
height［hit］altura The length of a perpendicular from the base to the top of a plane figure or solid figure
Example：

hexagon［hek＇sə•gän］hexágono A polygon with six sides and six angles
Examples：

histogram［his＇tə•gram］histograma A type of bar graph that shows the frequencies of data in intervals．（p．485）
Example：

Heights of 6th Grade Students

horizontal［hôr•iezänt＇əl］horizontal Extending left and right
hundredth［hun＇dradth］centésimo One of one hundred equal parts
Examples： $0.56, \frac{56}{100}$ ，fifty－six hundredths

Identity Property of Addition［īden＇tə•tē präp＇ər・ナē əv ə•dish＇ən］propiedad de identidad de la suma The property that states that when you add zero to a number，the result is that number

Identity Property of Multiplication［ï•den＇tə•辰 präp＇ər•tē əv mul•tə•pli•kāsh＇ən］propiedad de identidad de la multiplicación The property that states that the product of any number and 1 is that number
independent variable［in•dē•pen＇dənt＇vâr＇ē•a•bol］ variable independiente A variable whose value determines the value of another quantity（ p .357 ）
inequality［in•ē•kwôl＇ə•tē］desigualdad A mathematical sentence that contains the symbol $<,>, \leq, \geq$ ，or \neq（p．357）
integers［in＇tə•jərz］enteros The set of whole numbers and their opposites（p．101）
interquartile range［in＇tûr \cdot kwôr＇tīl rānj］rango intercuartil The difference between the upper and lower quartiles of a data set（p．528）
intersecting lines［in•tər•sekt’ing linz］líneas secantes Lines that cross each other at exactly one point Example：

inverse operations［in＇vûrs äp•pə•rā＇shənz］ operaciones inversas Opposite operations， or operations that undo each other，such as addition and subtraction or multiplication and division（p．319）
key [kē] clave The part of a map or graph that explains the symbols
kite [kit] cometa A quadrilateral with exactly two pairs of congruent sides that are next to each other; no two sides are parallel
Example:

ladder diagram [lad'ər di'əə•gram] diagrama de escalera A diagram that shows the steps of repeatedly dividing by a prime number until the quotient is 1 (p. 10)
lateral area [lat'ər•əl âr'é•ə] área lateral The sum of the areas of the lateral faces of a solid
lateral face [lat'ər•əl fās] cara lateral Any surface of a polyhedron other than a base
least common denominator (LCD) [lēst käm'ən dē•näm'ə•nāt•ər] mínimo común denominador (m.c.d.) The least common multiple of two or more denominators
Example: The LCD for $\frac{1}{4}$ and $\frac{5}{6}$ is 12 .
least common multiple (LCM) [lēst käm'ən mul'tə•pal] mínimo común múltiplo (m.c.m.) The least number that is a common multiple of two or more numbers (p. 13)
like terms [lik tûrmz] términos semejantes Expressions that have the same variable with the same exponent (p. 287)
line [lin] línea A straight path in a plane, extending in both directions with no endpoints
Example:

line graph [lin graf] gráfica lineal A graph that uses line segments to show how data changes over time
line segment [lin seg'mənt] segmento A part of a line that includes two points called endpoints and all the points between them Example:

line of symmetry [lin əv sim’ə•trē] eje de simetría A line that divides a figure into two halves that are reflections of each other (p. 132)
line symmetry [līn sim'ə•rrē] simetría axial A figure has line symmetry if it can be folded about a line so that its two parts match exactly. (p. 132)
linear equation [lin'ē•ər ē•kwā’zhən] ecuación lineal An equation that, when graphed, forms a straight line (p. 375)
linear unit [lin'é•ər y $\overline{o o \prime}$ 'nit] unidad lineal A measure of length, width, height, or distance
lower quartile [lō'ər kwôr'till] primer cuartil The median of the lower half of a data set (p. 519)

M

mean [mēn] media The sum of a set of data items divided by the number of data items (p. 495)
mean absolute deviation [mēn ab'so•lōt dē•vē•ā'shən] desviación absoluta respecto a la media The mean of the distances from each data value in a set to the mean of the set (p. 524)
measure of center [mezh'ər əv sent'ər] medida de tendencia central A single value used to describe the middle of a data set (p. 495) Examples: mean, median, mode
measure of variability [mezh'ər əv vâr'ē•ə•bil'ə•†ē] medida de dispersión A single value used to describe how the values in a data set are spread out (p. 527)
Examples: range, interquartile range, mean absolute deviation
median [mē'dēən] mediana The middle value when a data set is written in order from least to greatest, or the mean of the two middle values when there is an even number of items (p. 495)
midpoint [mid'point] punto medio A point on a line segment that is equally distant from either endpoint
million [mil'yən] millón 1,000 thousands; written as 1,000,000
mixed number [mikst num'bər] número mixto A number that is made up of a whole number and a fraction
Example: $1 \frac{5}{8}$
mode [mōd] moda The value(s) in a data set that occurs the most often (p. 495)
multiple [mul'torpal] múltiplo The product of two counting numbers is a multiple of each of those numbers
multiplication [mul•tə•pli•kā'shən] multiplicación A process to find the total number of items made up of equal-sized groups, or to find the total number of items in a given number of groups; It is the inverse operation of division.

Multiplication Property of Equality

 [mul•tə•pliəkā'shən präp’əə•tē əv ē•kwôl'əətē] propiedad de multiplicación de la igualdad The property that states that if you multiply both sides of an equation by the same number, the sides remain equalmultiplicative inverse [mul'to pli-kāt•汶 in'vûrs] inverso multiplicativo A reciprocal of a number that is multiplied by that number resulting in a product of 1 (p. 78)
multiply [mul'to•plī] multiplicar When you combine equal groups, you can multiply to find how many in all; the inverse operation of division
negative integer [neg'əətiv in'tə• jər] entero negativo Any integer less than zero Examples: - 4, -5, and ${ }^{-} 6$ are negative integers.
net [net] plantilla A two-dimensional pattern that can be folded into a three-dimensional polyhedron (p. 435)
Example:

not equal to (\neq) [not é ékwal too] no igual a A symbol that indicates one quantity is not equal to another
number line [num'bar lin] recta numérica A line on which numbers can be located Example:

numerator [$n \overline{o o}$ 'mər $\cdot \bar{a}+\bullet \cdot r$] numerador The number above the bar in a fraction that tells how many equal parts of the whole are being considered
Example: $\frac{3}{4} \leftarrow$ numerator
numerical expression [nō•mer'i̊kəl ek•spresh'ən] expresión numérica A mathematical phrase that uses only numbers and operation signs (p. 265)
obtuse angle [äb•toos' ang'gal] ángulo obtuso An angle whose measure is greater than 90° and less than 180°
Example:

obtuse triangle [äb•tooss' tri’ang•gel] triángulo obtusángulo A triangle that has one obtuse angle
octagon [äk'tə•gän] octágono A polygon with eight sides and eight angles Examples:

odd [od] impar A whole number that has a 1, 3, 5,7 , or 9 in the ones place
open figure [ō'pən fig'yər] figura abierta A figure that does not begin and end at the same point
opposites [äp'əəzits] opuestos Two numbers that are the same distance, but in opposite directions, from zero on a number line (p. 101)
order of operations [ôr'dər əv äp•əərā'shənz] orden de las operaciones A special set of rules which gives the order in which calculations are done in an expression (p. 265)
ordered pair [ôr'dərd pâr] par ordenado A pair of numbers used to locate a point on a grid. The first number tells the left-right position and the second number tells the up-down position. (p. 127)
origin [ôr'əəjin] origen The point where the two axes of a coordinate plane intersect; $(0,0)$ (p. 127)
outlier [out'li•ər] valor atípico A value much higher or much lower than the other values in a data set (p. 499)
overestimate [ō'vər•es••əəmit] sobrestimar An estimate that is greater than the exact answer
parallel lines [pâr’əəlel linz] líneas paralelas Lines in the same plane that never intersect and are always the same distance apart
Example:

parallelogram [pâr•əəlel'ə•gram] paralelogramo A quadrilateral whose opposite sides are parallel and congruent (p. 389)
Example:

parentheses [pə•ren'thə•sēz] paréntesis The symbols used to show which operation or operations in an expression should be done first
partial product [pär'shəl präd'əkt] producto parcial A method of multiplying in which the ones, tens, hundreds, and so on are multiplied separately and then the products are added together
pattern [pat'ərn] patrón An ordered set of numbers or objects; the order helps you predict what will come next Examples: 2, 4, 6, 8, 10

pentagon [pen'tə•gän] pentágono A polygon with five sides and five angles Examples:

percent［per•sent＇］porcentaje The comparison of a number to 100；percent means＂per hundred＂（p．195）
perimeter［pə•rim＇ə•tər］perímetro The distance around a closed plane figure
period［pir＇é•əd］período Each group of three digits separated by commas in a multidigit number
Example：85，643，900 has three periods．
perpendicular lines［pər•pən•dik＇yoo•lər lînz］líneas perpendiculares Two lines that intersect to form four right angles Example：

pictograph［pik＇tə•graf］pictografía A graph that displays countable data with symbols or pictures Example：

place value［plās val＇yōo］valor posicional The value of each digit in a number based on the location of the digit
plane［plān］plano A flat surface that extends without end in all directions Example：

plane figure［plān fig＇yər］figura plana A figure that lies in a plane；a figure having length and width
point［point］punto An exact location in space
polygon［päli•gän］polígono A closed plane figure formed by three or more line segments Examples：

polyhedron［päl•••ēe＇drən］poliedro A solid figure with faces that are polygons（p．434） Examples：

positive integer［päz＇ə•tiv in＇tə•jər］entero positivo Any integer greater than zero
prime factor［prīm fak＇tər］factor primo A factor that is a prime number
prime factorization［prīm fak•tərə•rā＇shən］ descomposición en factores primos A number written as the product of all its prime factors （p．9）
prime number［prīm num＇bər］número primo A number that has exactly two factors： 1 and itself
Examples：2，3，5，7，11，13，17，and 19 are prime numbers． 1 is not a prime number．
prism［priz＇em］prisma A solid figure that has two congruent，polygon－shaped bases，and other faces that are all parallelograms Examples：

rectangular prism

triangular prism
product［präd＇əkt］producto The answer to a multiplication problem
pyramid [pir'ə•mid] pirámide A solid figure with a polygon base and all other faces as triangles that meet at a common vertex Example:

Word History

A fire is sometimes in the shape of a pyramid, with a point at the top and a wider base. This may be how pyramid got its name. The Greek word for fire was pura, which may have been combined with the Egyptian word mer.
quadrants [kwä'drents] cuadrantes The four regions of the coordinate plane separated by the x - and y-axes (p. 131)
quadrilateral [kwä•dri•lat'ər•əl] cuadrilátero A polygon with four sides and four angles Example:

quotient [kwō'shənt] cociente The number that results from dividing
Example: $8 \div 4=2$. The quotient is 2 .

R

range [rānj] rango The difference between the greatest and least numbers in a data set (p. 528)
rate [rāt] tasa A ratio that compares two quantities having different units of measure (p. 158)
ratio [rā'shē•ō] razón A comparison of two numbers, a and b, that can be written as a fraction $\frac{a}{b}$ (p. 153)
rational number [rash'əən•əl num'bar] número racional Any number that can be written as a ratio $\frac{a}{b}$ where a and b are integers and $b \neq 0$. (p. 109)
ray [rā] semirrecta A part of a line; it has one endpoint and continues without end in one direction
Example:

reciprocal [ri•sip'rə•kel] recíproco Two numbers are reciprocals of each other if their product equals 1. (p. 78)
rectangle [rek'tang•gal] rectángulo A parallelogram with four right angles Example:

rectangular prism [rek•tang'gyə•居 priz'əm] prisma rectangular A solid figure in which all six faces are rectangles
Example:

reflection [rioflek'shən] reflexión A movement of a figure to a new position by flipping it over a line; a flip
Example:

regroup [rē•groop'] reagrupar To exchange amounts of equal value to rename a number Example: $5+8=13$ ones or 1 ten 3 ones
regular polygon [reg'yə•lar päli••gän] polígono regular A polygon in which all sides are congruent and all angles are congruent (p. 411)
relative frequency table [rel'əャtiv frē’kwən•sē tā'bal] tabla de frecuencia relativa A table that shows the percent of time each piece of data occurs (p. 482)
remainder [ri•mān'dər] residuo The amount left over when a number cannot be divided equally
rhombus [räm'bəs] rombo A parallelogram with four congruent sides Example:

Word History

Rhombus is almost identical to its Greek origin, rhombos. The original meaning was "spinning top" or "magic wheel," which is easy to imagine when you look at a rhombus, an equilateral parallelogram.
right triangle [rìt tri’ang•gel] triángulo rectángulo A triangle that has a right angle Example:

round [round] redondear To replace a number with one that is simpler and is approximately the same size as the original number
Example: 114.6 rounded to the nearest ten is 110 and to the nearest unit is 115 .
sequence [se’kwəns] secuencia An ordered set of numbers
simplest form [sim'pləst fôrm] mínima expresión A fraction is in simplest form when the numerator and denominator have only 1 as a common factor
simplify [sim'plo•fi] simplificar The process of dividing the numerator and denominator of a fraction or ratio by a common factor
solid figure [sä'lid fig'yar] cuerpo geométrico A three-dimensional figure having length, width, and height (p. 435)
solution of an equation [sə•|00'shən əv an ē•kwā’zhən] solución de una ecuación A value that, when substituted for the variable, makes an equation true (p. 307)
solution of an inequality [sə•loo'shən əv an in•ē•kwôl'ə•效] solución de una desigualdad A value that, when substituted for the variable, makes an inequality true (p. 337)
square [skwâr] cuadrado A polygon with four equal, or congruent, sides and four right angles
square pyramid [skwâr pir'ə•mid] pirámide cuadrada A solid figure with a square base and with four triangular faces that have a common vertex Example:

square unit [skwâr yōo'nit] unidad cuadrada A unit used to measure area such as square foot $\left(\mathrm{ft}^{2}\right)$, square meter $\left(\mathrm{m}^{2}\right)$, and so on
standard form [stan'dərd fôrm] forma normal A way to write numbers by using the digits 0-9, with each digit having a place value Example: $456 \leftarrow$ standard form
statistical question [stə•tis'tiokəl kwes'chən] pregunta estadística A question that asks about a set of data that can vary (p. 473) Example: How many desks are in each classroom in my school?

Substitution Property of Equality [sub•stə•too'shən präp'ər•tē əv ē•kwôl'ə•tē] propiedad de sustitución de la igualdad The property that states that if you have one quantity equal to another, you can substitute that quantity for the other in an equation
subtraction [seb•trak'shən] resta The process of finding how many are left when a number of items are taken away from a group of items; the process of finding the difference when two groups are compared; the inverse operation of addition

Subtraction Property of Equality [sab•trak'shən präp'ər•tē əv ē•kwôl'əətē] propiedad de resta de la igualdad The property that states that if you subtract the same number from both sides of an equation, the sides remain equal
sum [sum] suma o total The answer to an addition problem
surface area [sûr'fis âr'ē•ə] área total The sum of the areas of all the faces, or surfaces, of a solid figure (p. 439)
tally table [tal'ē tā'bal] tabla de conteo A table that uses tally marks to record data
tenth [tenth] décimo One of ten equal parts Example: $0.7=$ seven tenths
terms [tûrmz] términos The parts of an expression that are separated by an addition or subtraction sign (p. 274)
thousandth [thou'zendth] milésimo One of one thousand equal parts
Example: $0.006=$ six thousandths
three-dimensional [three də•men'shə•nəl] tridimensional Measured in three directions, such as length, width, and height
three-dimensional solid [three dəəmen'shə•nəl säl'id] figura tridimensional See solid figure
trapezoid [trap'ïzoid] trapecio A quadrilateral with exactly one pair of parallel sides (p. 401) Examples:

tree diagram [trē di’əə•gram] diagrama de árbol A branching diagram that shows all possible outcomes of an event
trend [trend] tendencia A pattern over time, in all or part of a graph, where the data increase, decrease, or stay the same
triangle [tri’ang•gel] triángulo A polygon with three sides and three angles Examples:

triangular prism [trīang'gyə•lər priz'əm] prisma triangular A solid figure that has two triangular bases and three rectangular faces
two-dimensional [t̄oo də•men'shə•nal] bidimensional Measured in two directions, such as length and width
two-dimensional figure [too də•men'shə•nəl fig'yər] figura bidimensional See plane figure
underestimate [un•dər•es'tə•mit] subestimar An estimate that is less than the exact answer
unit fraction [yōo'nit frak'shən] fraccion unitaria A fraction that has 1 as a numerator
unit rate [yōónit rāt] tasa por unidad A rate expressed so that the second term in the ratio is one unit (p. 158)
Example: 55 ml per hr
unlike fractions [un'lik frak'shənz] fracciones no semejantes Fractions with different denominators
upper quartile [up'ər kwôr'til] tercer cuartil The median of the upper half of a data set (p. 519)

V

variable [vâr'ē•ə•bal] variable A letter or symbol that stands for an unknown number or numbers (p. 269)

Venn diagram [ven di'ə•gram] diagrama de Venn A diagram that shows relationships among sets of things
Example:
WHOLE NUMBERS LESS THAN 20

vertex [vûr'teks] vértice The point where two or more rays meet; the point of intersection of two sides of a polygon; the point of intersection of three (or more) edges of a solid figure; the top point of a cone; the plural of vertex is vertices
Examples:

vertical [vûr'tiokal] vertical Extending up and down volume [väl'yoom] volumen The measure of the space a solid figure occupies (p. 453)

N

weight [wāt] peso How heavy an object is
whole number [hōl num'ber] número entero One of the numbers $0,1,2,3,4, \ldots$; the set of whole numbers goes on without end

\boldsymbol{x}-axis [eks ak'sis] eje de la \boldsymbol{x} The horizontal number line on a coordinate plane (p. 127)
x-coordinate [eks kō॰ôrd' n ०it] coordenada x The first number in an ordered pair; tells the distance to move right or left from $(0,0)$ (p. 127)
y－axis［wī ak＇sis］eje de la y The vertical number line on a coordinate plane（p．127）
y－coordinate［wī kō•ôrd＇•noit］coordenada y The second number in an ordered pair；tells the distance to move up or down from $(0,0)(p .127)$

Z

Zero Property of Multiplication［zē＇rō präp＇ər・ナ \bar{e} əv mul•tə•pli•kā＇shən］propiedad del cero de la multiplicación The property that states that when you multiply by zero，the product is zero

Standards You MY\| Learn		Student Edition Lessons
Mathematical Practices		
MP. 1	Make sense of problems and persevere in solving them.	Lessons 1.1, 2.6, 2.9, 6.1, 6.3, 6.5, 12.8, 13.4, 13.7
MP. 2	Reason abstractly and quantitatively.	$\begin{aligned} & \text { Lessons 1.2, 1.8, 1.9, 7.3, 7.4, 7.6, } \\ & 12.5,12.7,13.5 \end{aligned}$
MP. 3	Construct viable arguments and critique the reasoning of others.	```Lessonss 1.7, 2.4, 3.5, 6.4, 7.8, 8.3, 13.5, 13.7, 13.8```
MP. 4	Model with mathematics.	$\begin{aligned} & \text { Lessons 1.4, 2.5, 2.8, 5.6, 6.2, 7.6, } \\ & \text { 12.8, 13.2, } 13.3 \end{aligned}$
MP. 5	Use appropriate tools strategically.	$\begin{aligned} & \text { Lessons 2.8, 3.1, 3.2, 6.4, 7.5, 7.7, } \\ & 12.3,12.8,13.1 \end{aligned}$
MP. 6	Attend to precision.	$\begin{aligned} & \text { Lessons 1.6, 2.9, 3.7, 7.4, 7.9, 8.1, } \\ & 13.6,13.7,13.8 \end{aligned}$
MP. 7	Look for and make use of structure.	Lessons 1.2, 2.7, 3.1, 5.2, 6.5, 8.7, 13.1, 13.4, 13.6
MP. 8	Look for and express regularity in repeated reasoning.	Lessons 1.9, 2.7, 3.2, 4.5, 5.2, 6.2, 12.5, 13.1, 13.3
Domain: Ratios and Proportional Relationships		
Understand ratio concepts and use ratio reasoning to solve problems.		
6.RP. 1	Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, "The ratio of wings to beaks in the bird house at the zoo was 2:1, because for every 2 wings there was 1 beak." "For every vote candidate A received, candidate C received nearly three votes."	Lessons 4.1, 4.2
6.RP. 2	Understand the concept of a unit rate a / b associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship. For example, "This recipe has a ratio of 3 cups of flour to 4 cups of sugar, so there is $3 / 4$ cup of flour for each cup of sugar." "We paid $\$ 75$ for 15 hamburgers, which is a rate of \$5 per hamburger."	Lessons 4.2, 4.6

Standards You WHII Learn

Domain: Ratios and Proportional Relationships (Continued)
6.RP. 3 Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
a. Make tables of equivalent ratios relating quantities with wholenumber measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.
b. Solve unit rate problems including those involving unit pricing and constant speed. For example, if it took 7 hours to mow 4 lawns, then at that rate, how many lawns could be mowed in 35 hours? At what rate were lawns being mowed?
c. Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means 30/100 times the quantity); solve problems involving finding the whole, given a part and the percent.
d. Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.

Lessons 4.3, 4.4, 4.5, 4.8

Lessons 4.6, 4.7

Lessons 5.1, 5.2, 5.3, 5.4, 5.5, 5.6

Lessons 6.1, 6.2, 6.3, 6.4, 6.5

Domain: The Number System
Apply and extend previous understandings of multiplications and division to divide fractions by fractions.

6.NS. 1	Interpret and compute quotients of fractions, and solve word problems involving division of fractions by fractions, e.g., by using visual fraction models and equations to represent the problem. For example, create a story context for (2/3) $\div(3 / 4)$ and use a visual fraction model to show the quotient; use the relationship between multiplication and division to explain that $(2 / 3) \div(3 / 4)-8 / 9$ because $3 / 4$ of $8 / 9$ is $2 / 3$. (In general, $(a / b) \div(c / d)=a d / b c$.) How much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 3/4-cup servings are in $2 / 3$ of a cup of yogurt? How wide is a rectangular strip of land with length 3/4 mi and area 1/2 square mi?	Lessons 2.5, 2.6, 2.7, 2.8, 2.9, 2.10
Compute fluently with multi-digit numbers and find common factors and multiples.		
6.NS. 2	Fluently divide multi-digit numbers using the standard algorithm.	Lesson 1.1
6.NS. 3	Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.	Lessons 1.6, 1.7, 1.8, 1.9
6.NS. 4	Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers 1-100 with a common factor as a multiple of a sum of two whole numbers with no common factor. For example, express $36+8$ as $4(9+2)$.	Lessons 1.2, 1.3, 1.4, 1.5, 2.3, 2.4

Standards You WHII Learn

Apply and extend previous understandings of numbers to the system of rational numbers.

6.NS. 5	Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/ below sea level, credits/ debits, positive/negative electric charge); use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.	Lesson 3.1
6.NS. 6	Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.	
	a. Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself, e.g., $-(-3)=3$, and that 0 is its own opposite.	Lessons 3.1, 3.3
	b. Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.	Lesson 3.8
	c. Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.	Lessons 2.1, 2.2, 3.3, 3.7

Apply and extend previous understandings of numbers to the system of rational numbers. (Continued)
6.NS. 7 Understand ordering and absolute value of rational numbers.
a. Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram. For example, interpret $-3>-7$ as a statement that -3 is located to the right of -7 on a number line oriented from left to right.
b. Write, interpret, and explain statements of order for rational numbers in real-world contexts. For example, write $-3^{\circ} \mathrm{C}>-7^{\circ} \mathrm{C}$ to express the fact that $-3^{\circ} \mathrm{C}$ is warmer than $-7^{\circ} \mathrm{C}$.
c. Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation. For example, for an account balance of -30 dollars, write $|-30|=30$ to describe the size of the debt in dollars.
d. Distinguish comparisons of absolute value from statements about order. For example, recognize that an account balance less than -30 dollars represents a debt greater than 30 dollars.
6.NS. $8 \quad$ Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.

Lessons 3.2, 3.4

Lessons 3.2, 3.4

Lesson 3.5

Lesson 3.6

Lessons 3.9, 3.10

Standards You WHII Learn

Domain: Expressions and Equations

Apply and extend previous understandings of arithmetic to algebraic expressions.

6.EE. 1	Write and evaluate numerical expressions involving whole-number exponents.	Lessons 7.1, 7.2
6.EE. 2	Write, read, and evaluate expressions in which letters stand for numbers. a. Write expressions that record operations with numbers and with letters standing for numbers. For example, express the calculation "Subtract y from 5" as 5-y. b. Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity. For example, describe the expression $2(8+7)$ as a product of two factors; view $(8+7)$ as both a single entity and a sum of two terms. c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). For example, use the formulas $V=s^{3}$ and $A=6 s^{2}$ to find the volume and surface area of a cube with sides of length $s=1 / 2$.	Lesson 7.3 Lesson 7.4 Lessons 7.5, 10.1, 10.5, 10.6, 10.7, 11.3, 11.4, 11.6
6.EE. 3	Apply the properties of operations to generate equivalent expressions. For example, apply the distributive property to the expression $3(2+x)$ to produce the equivalent expression $6+3 x$; apply the distributive property to the expression $24 x+18 y$ to produce the equivalent expression $6(4 x+3 y)$; apply properties of operations to $y+y+y$ to produce the equivalent expression $3 y$.	Lessons 7.7, 7.8

Apply and extend previous understandings of arithmetic to algebraic expressions. (Contiuned)

6.EE. 4	Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they name the same number regardless of which number y stands for.	Lesson 7.9

Reason about and solve one-variable equations and inequalities.

6.EE. 5	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	Lessons 8.1, 8.8
6.EE. 6	Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.	Lesson 7.6
6.EE. 7	Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q and x are all nonnegative rational numbers.	$\begin{aligned} & \text { Lessons 8.2, 8.3, 8.4, 8.5, 8.6, } \\ & 8.7,10.1 \end{aligned}$
6.EE. 8	Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.	Lessons 8.9, 8.10

Standards You WHII Learn

Represent and analyze quantitative relationships between dependent and independent variables.

6.EE. 9	Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. For example, in a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d-65 t$ to represent the relationship between distance and time.	Lessons 9.1, 9.2, 9.3, 9.4, 9.5
Domain: Geometry		
Solve real-world and mathematical problems involving area, surface area, and volume.		
6.G. 1	Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving real-world and mathematical problems.	$\begin{aligned} & \text { Lessons 10.1, 10.2, 10.3, 10.4, 10.5, } \\ & 10.6,10.7,10.8,11.7 \end{aligned}$
6.G. 2	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=I w h$ and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.	Lessons 11.5, 11.6, 11.7

Solve real-world and mathematical problems involving area, surface area, and volume. (Continued)

6.G. 3	Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.	Lesson 10.9
6.G. 4	Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.	Lessons 11.1, 11.2, 11.3, 11.4, 11.7
Domain: Statistics and Probability		
Develop understanding of statistical variability.		
6.SP. 1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers. For example, "How old am I?" is not a statistical question, but "How old are the students in my school?" is a statistical question because one anticipates variability in students' ages.	Lesson 12.1
6.SP. 2	Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	$\begin{aligned} & \text { Lessons 12.6, 13.1, 13.4, 13.6, } \\ & 13.7,13.8 \end{aligned}$
6.SP. 3	Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	Lessons 12.6, 13.4, 13.6

Standards You WHII Learn

Summarize and describe distributions.

6.SP. 4	Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	Lessons 12.3, 12.4, 12.8, 13.2
6.SP. 5	Summarize numerical data sets in relation to their context, such as by:	
	a. Reporting the number of observations.	Lesson 12.2
	b. Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.	Lesson 12.2
	c. Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.	Lessons 12.5, 12.6, 13.1, 13.3, 13.4
	d. Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	Lessons 12.7, 13.5

A

Absolute value, 119-122
compare, 123-126
defined, 100, 119
Activity, 69, 78, 81, 123, 132, 153, 389, 411, 478, 541

Addition

Addition Property of Equality, 306, 320
Associative Property of, 291
Commutative Property of, 291
decimals, 27-30
Distributive Property, 291-294
equations model and solve, 315-318 solution, 307-310
Identity Property of, 291
order of operations, 28-29, 265
properties of, 291
Addition Properties, 259
Addition Property of Equality, 306, 320
Algebra
algebraic expressions
combine like terms, 287-290
defined, 269
equivalent
generate, 291-294
identifying, 295-298
evaluating, 277-280, 305, 387
exponents, 261-264
identifying, 273-276
simplifying, 287-290
terms of, 274
translating between tables and, 276-277
translating between words and, 269-272
use variables to solve problems, 283-286
variable in, 269, 283-286
writing, 269-272
area
composite figures, 415-418
defined, 388
parallelograms, 389-392
rectangles, 389-392
regular polygons, 411-414
squares, 389-392
surface area, 439-442, 443-446, 447-450
trapezoids, 401-404, 405-408
triangles, 393-396, 397-400
distance, rate, and time formulas, 247-250
equations
addition, 315-322
defined, 306
division, 327-330
with fractions, 331-334
multiplication, 323-326, 327-330
solution of, 306, 307-310
subtraction, 319-322
write from word sentence, 312-313
writing, 311-314
equivalent ratios
graph to represent, 183-186
to solve problems, 165-168
evaluate, 87
integers
absolute value, 119-122
compare and order, 105-108
defined, 100, 101, 117
opposites, 100
order of operations, 28, 29, 32, 33, 37, 41,
60, 61, 79, 87, 265, 266, 277, 513
inverse operations, 7
least common multiple, 15
patterns
divide mixing patterns, 87
proportions, equivalent ratios to solve, 169-172
reasoning, 137
finding least common multiple, 15
finding the missing number, 121
surface area, 439-442, 443-446, 447-450
unit rates to solve problems, 179-182
volume, 457-460

Algebraic expressions

combine like terms, 287-290
defined, 269
equivalent
generate, 291-294
identifying, 295-298
evaluating, 277-280, 305, 387
exponents, 261-264
identifying parts, 273-276
like terms, 287-290
simplifying, 287-288
terms of, 274
translating between tables and, 276-277
translating between words and, 270-271
use variables to solve problems, 283-286
variables in, 283-286
writing, 269-272
Area
composite figures, 415-418
defined, 388
finding, 433
of parallelograms, 389-392
of rectangles, 433
of regular polygons, 411-414
of squares, 389-392, 433
surface area, 439-442, 443-446, 447-450
of trapezoids, 401-404, 405-408
of triangles, 393-396, 397-400, 433
Art. Connect to, 206
Associative Property
of Addition, 291
of Multiplication, 291

B

Balance point
mean as, 491-494
Bar graph
reading, 471
Bar model, 180-181, 209, 213, 215
Base
of a number, 260
of solid figure, 435-438
Basic fact, 9
Benchmark, 50, 60
Benchmark fractions, 49
Box plots, 519-522
defined, 514, 519
for finding interquartile range, 528-529, 534
for finding range, 528-529, 534
Bubble map, 50, 152, 194, 260, 356, 388, 434

California Common Core State Standards, H17-H26
Capacity
converting units of, 233-236
customary units of, 233
defined, 228
metric units of, 234
Cause and effect, 364
Centigrams, 238, 253
Centiliter, 234
Centimeters, 230
Chapter Review/Test, 43-48, 93-98, 143-148, 187-192, 221-226, 251-256, 299-304, 349-354, 379-384, 427-432, 465-470, 507-512, 549-554

Checkpoint, Mid-Chapter. See Mid-Chapter Checkpoint

Code Number Rules, 12
Coefficient, 260, 274
Combine like terms, 287-290
Common denominator, 55, 67, 100
Common factor, 4, 17
Commutative Property
addition, 259, 291
multiplication, 291, 305
Compare
absolute values, 123-126
decimals, 99
fractions, 99
integers, 105-108
and order fractions and decimals, 55
and order whole numbers, 49
rational numbers, 113-116
whole numbers, 49
Comparing eggs, 30
Compatible numbers
defined, 39, 50, 73
estimate quotients, 73-76
Composite figures, 388
area of, 415-418
defined, 415
perimeter, 415-418
Concepts and Skills, 25-26, 67-68, 117-118, 173-174, 207-208, 241-242, 281-282, 335-336, 369-370, 409-410, 451-452, 489-490, 531-533
Congruent, 388, 393

Connect

to Art, 206
to Health, 62
to Reading, 126, 156, 246, 344, 364, 480
to Science, 30, 42, 264, 414, 460, 518
Conversion factor, 229
Conversions
capacity, 233-236
conversion factor, 228
length, 229-232
mass, 237-240
weight, 237-240
Coordinate Grid
identify points, 355
Coordinate plane, 100
defined, 127
diagram to solve problems on, 139-142
distance, 135-138
figures, 423-426
horizontal line, 135-138
linear equations, 375-378
ordered pair relationships, 131-134
problem solving, 139-142
rational numbers, 127-130
vertical line, 135-138
Correlations,
California Common Core State Standards, H17-H26

Cross-Curricular Connections

Connect to Art, 206
Connect to Health, 62
Connect to Reading, 126, 156
Connect to Science, 30, 42, 264, 414, 460, 518
Cube, 434
net, 437
surface area, 440, 444
volume, 458
Cup, 233
Customary units of measure
capacity, 233-236
converting, 229-240
length, 229-232
weight, 237-240

D

Data collection

description, 477-480
frequency table, 481-484, 486, 487, 488, 508, 510
graphs
choose an appropriate graph, 505
histogram, 485-488
mean, 472, 491-494, 495
median, 472, 495
mode, 472, 495
range, 528
relative frequency table, 481-484

Data sets

box plots, 519-522
collection, 477-480
distributions, 541-548
dot plots, 481-484
frequency tables, 481-484
graphs, histogram, 485-488
interquartile range, 528-530
mean, 472, 491-494, 495, 498
mean absolute deviation, 523-526
measure of variability, 527-530
measures of center, 495-498, 537-540
median, 495
outliers, 499-502
patterns, 515-518
problem solving, 503-506
range, 527-529
relative frequency table, 481-484
statistical question, 473-476

Decagon, 412
Decigrams, 238, 253
Deciliter, 234
Decimal Places
counting, 32
Decimals, 4
addition, 27-30
compare, 471
fractions and, 55-58
rational numbers, 113-116
converting to fractions, 51-54
division
estimate with compatible numbers, 39-42
multi-digit numbers, 5-8
by whole numbers, 35-38
fractions, 55-58
model, 193
multiplication, 31-34
Distributive Property, 18, 19
estimate, 31-35
whole numbers, 193
order
fractions, 55-58
rational numbers, 113-116
percent written as, 199-202
place value, 27
placing zeros, 28
round, 3, 31
subtraction, 27-30
write as percent, 203-206
Decimeter, 230
Dekaliter, 234
Dekameter, 230
Denominator, 50
Dependent variable, 356, 357-360
Diagrams
ladder diagram, 10
tree, 306
Venn diagrams, 13, 17, 20, 44
Distance
coordinate plane, 135-137
distance, rate, and time formulas, 247-250

Distribution

data set, 541-544
Distributive Property
addition, 18, 19, 23
multiplication, 18, 292
Dividends, 4
Divisibility
rules for, 9, 10
Divisible, 4

Division

decimals
estimate with compatible numbers, 39-42 whole numbers, 35-38
Division Property of Equality, 327
equations, 327-330
to find equivalent fractions, 151
finding quotient, 471
fractions, 77-80
estimate quotients with compatible numbers, 73-76
mixed numbers, 50, 51, 81-84
model, 68-72
reciprocal and multiplicative inverse, 78
as inverse operation, 7
mixed numbers, 85-88
Model Mixed Number Division, 81-84
multi-digit numbers, 5-8
order of operations, 265
Division Property of Equality, 327
Divisors, 4
Dot plots, 472
defined, 481
finding mean absolute deviation, 525
finding outliers, 499-502
Double number line, 217
Draw Conclusions, 70, 82, 154, 156, 196, 316, 324,
394, 402, 439, 454, 491, 524

E

Equations
addition, 319-322
addition, models to solve, 315-318
defined, 306
division, 327-330
with fractions, 331-334
linear, 356
multiplication, 323-326, 327-330
to represent dependent and independent variable, 357-360
solution, 306, 307-310
subtraction, 319-322
translate between graphs and, 375-378
translating between tables and, 361-364
writing, 311-314

Equivalent

defined, 55
expressions, 291-294, 295-298
fractions, 99, 100
Equivalent algebraic expressions
defined, 291
identifying, 295-298
writing, 291-294

Equivalent fractions, 50, 67, 99, 152
defined, 55, 194
divide to find, 151
multiply to find, 151
Equivalent ratios, 161-164, 183-186
defined, 152
finding
by multiplication table, 161-162
by unit rate, 175-178
graph to represent, 183-186
to solve problems, 165-168
use, 169-172
Error Alert, 40, 64, 135, 162, 204, 230, 278, 312, 358, 439, 519, 538
Estimation, 4
decimals
addition and subtraction, 27-30
division, 35-38
multiplication, 31-34
fractions
division, 77-80
multiplication, 59-62
quotients, 73-76
using compatible numbers, 5-6, 73-76
Evaluate, 260, 265
Exponents, 261-264
defined, 261
order of operations, 265
write repeated multiplication, 261-264

Expressions

algebraic, 269-272
equivalent, 291-294, 295-298
evaluate, 277-280, 355, 433
identifying parts, 273-276
numerical, 265-268
terms, 274
writing, 269-272

Factor, 3, 4, 19
common, 4, 17
defined, 17
greatest common factor, 17-20
least common multiple, 4
prime, 10
prime factorization, 9-12, 13-16
simplify, 63-66
Factorization, prime. See Prime factorization
Factor tree, 9-12, 43
Fair share
mean, 491-494

Feet, 229
Flow map, 4, 100
Fluid ounces, 233
Foot. See Feet
Formula
distance, 247-250
rate, 247-250
time, 247-250
Fractions
compare, 99
decimals and, 55-58
rational numbers, 113-116
converting to decimals, 51-54
denominator of, 51
division, 77-80
mixed number, 85-88
model, 69-72
problem solving, 81-89
reciprocals and multiplicative inverses, 78-80
equations with, 331-334
equivalent, 50, 67, 99
mixed numbers
converting to decimals, 51-54
defined, 51
division, 81-84
multiplication, 59-61
model fraction division, 69-72
multiplication, 49
estimate products, 59-62
simplifying before, 63-66
whole numbers, 49
operations, 89-92
order
decimals, 55-58
percent written as, 199-202
problem solving, fraction operations, 89-92
product of two, 59
rates, 158-160
ratios written as, 157
in simplest form, 51, 53
unlike, 55-56
volume, 453-456
write as percent, 203-206
writing, 51
writing as decimal, 52
Frequency, 481
Frequency tables, 481-484

Functions

cause and effect, 364
graphing, 371-374
linear equations, 375-378

Gallon, 228
GCF. See Greatest common factor (GCF)
Generalization, Make, 344
Geometric measurements, 461-464
Geometry
area
composite figures, 415-418
defined, 389
parallelogram, 389-392
rectangles, 389-392
regular polygon, 411-414
squares, 389-392
trapezoids, 401-404, 405-408
triangles, 393-396, 397-400
composite figures
area, 415-418
perimeter, 415-418
figures on coordinate plane, 423-426
solid figures
defined, 435
nets, 435-438
pyramid, 435-438
rectangular pyramid, 435-438
triangular prism, 435-438
volume, 458
surface area, 439-442, 447-450
volume
defined, 453
prism, 457-460
rectangular prisms, 453-456, 457-460
Go Deeper, In some Student Edition lessons. Some examples are: 15, 264, 506

Grams

as metric unit, 238
solving problems, 238-239

Graphic organizer

Bubble Map, 50, 152, 194, 260, 356, 388, 434
Chart, 472, 514
Flow map, 4, 100
Tree diagram, 306
Venn diagram, 13, 17, 20, 44, 228
Graph relationships, 371-374
Graphs, 183-186
bar, 471
box plots, 519-522
equations and, 375-378
equivalent ratios, 183-186
histogram, 472, 485-488, 516
inequalities, 345-348
linear equations, 375-378
points on coordinate plane, 131-134
relationships, 371-374
to represent equivalent ratios, 183-186

Greatest common factor (GCF), 4, 17-20, 25, 43
defined, 17
to express sum as a product, 19
problem solving, 21-24

H

Health. Connect to, 62
Hectograms, 238, 253
Hectoliter, 234
Hectometer, 230
Hexagon, 387
Histogram, 472, 485-488, 516
Horizontal line
coordinate plane, 135-138

Identity Property
Addition, 291
Multiplication, 291, 305
Inches, 229
Independent variable, 356, 357-360
Inequalities, 306
defined, 337
graphing, 345-348
solutions, 337-340
writing, 341-343
Input-output table, 361-363, 379
Input value, 361
Integers
absolute value, 119-122
compare, 123-125
compare and order, 105-108
defined, 100, 101, 117
negative, 101
opposites, 100
order of operations, 28, 29, 32, 33, 37,
41, 60, 61, 79, 87, 265, 266, 277, 513
positive, 101
Interquartile range, 514, 528
Inverse operations, 7, 306
fraction division, 78
Investigate, 69, 81, 153, 195, 315, 323, 393, 401, 439, 453, 491, 523
Isosceles triangle, 132

Kilograms, 238, 239, 241
Kiloliter, 234
Kilometer, 230, 234

Ladder diagram, 10

Lateral area

 of triangular pyramid, 448Least common multiple (LCM), 4, 25, 43 defined, 13
finding, 14, 15 using a list, 13 using prime factorization, 13 using Venn diagram, 13
Length
converting units, 227, 229-232
customary units, 229
metric units, 230, 239
Like terms
combining, 287-290
defined, 287
Linear equation
defined, 356, 375
graphing, 375-378
Line of symmetry, 132
Line plot. See Dot plots
Line symmetry, 132
Liter, 228
Lower quartile, 519

Make Connections, 70, 82, 154, 196, 316, 324, 394, 402, 440, 454, 492, 524
Mass
converting units, 237-241
defined, 228
metric units, 238
Materials
centimeter grid paper, 439
counters, 153, 491, 523
cubes, 453
fraction strips, 69
grid paper, 389, 401
large number line from 0-10, 523
MathBoard, 315, 323
net of rectangular prisms, 453
pattern blocks, 81
ruler, 393, 401, 439, 478
scissors, 389, 393, 401, 439, 453
tape, 453
tracing paper, 393
two-color counters, 153
MathBoard. In every student edition. Some examples are: $6,7,10,53,57,61,103,107,111$, 154, 158, 163, 197, 200, 205, 231, 235, 239, 263, 267, 271, 313, 317, 321, 359, 363, 367, 391, 395, 399, 437, 441, 445, 475, 479, 483, 517, 521, 525
Math Detective, 3, 49, 99, 151, 227, 259, 305, 355,
387, 433, 471, 513

Mathematical Practices

1. Make sense of problems and persevere in solving them. In many lessons. Some examples are: $6,76,87,406,438$
2. Reason abstractly and quantitatively. In many lessons. Some examples are: 15, 460
3. Construct viable arguments and critique the reasoning of others. In many lessons. Some examples are: 64, 120, 362, 543
4. Model with mathematics. In many lessons. Some examples are: 18, 82, 288
5. Use appropriate tools strategically. In many lessons. Some examples are: 181, 240
6. Attend to precision. In many lessons. Some examples are: $33,175,445$
7. Look for and make use of structure. In many lessons. Some examples are: 11, 184
8. Look for and express regularity in repeated reasoning. In many lessons. Some examples are: $79,138,263,394,402,515$
Math Idea, 5, 14, 56, 101, 105, 119, 229, 244, 261, 269, 292, 307, 337, 389, 424, 481, 533
Math on the Spot videos. In every student edition lesson. Some examples are: $8,12,16,54,58,62$, 104, 108, 112, 156, 160, 164, 198, 202, 206, 232, $236,246,264,268,272,310,314,322,360,361$, $368,392,396,404,438,442,446,476,480,484$, 518, 522, 526
Math Talk. In all Student Edition lessons, 7, 9, 10, $11,13,15,17,19,21,28,29,32,35,37,40,41$, 51, 52, 53, 55, 56, 57, 59, 61, 63, 65, 70, 75, 77, $78,79,81,82,86,87,89,101,102,103,105$, 106, 107, 109, 110, 111, 113, 114, 115, 119, 121, $124,125,128,129,132,133,135,136,137,139$, $140,153,154,158,159,161,163,165,170,171$, $175,177,179,183,185,196,200,204,209,210$,

213, 214, 217, 218, 219, 229, 230, 231, 234, 235, 238, 239, 244, 247, 248, 261, 262, 263, 265, 267, 269, 271, 274, 275, 277, 278, 279, 283, 284, 285, 287, 292, 293, 295, 296, 297, 307, 308, 309, 311, 313, 315, 316, 319, 321, 323, 324, 327, 328, 329, 331, 332, 334, 337, 338, 339, 341, 342, 346, 347, 357, 359, 361, 365, 366, 371, 372, 373, 375, 377, 389, 391, 394, 397, 405, 406, 407, 411, 413, 415, 417, 419, 420, 437, 440, 443, 445, 447, 449, 453, 454, 457, 459, 461, 462, 474, 475, 478, 479, 482, 487, 491, 495, 497, 515, 520, 521, 524, 527, 528, 529, 534, 535, 537, 541, 542, 543, 545

Mean

defined, 472, 495
as fair share and balance point, 491-494
finding, 495-498
set of data, 513
Mean absolute deviation, 523-526
defined, 524
dot plot, 525-526

Measurement

Conversion factor, 228
converting units of capacity, 233-235
converting units of length, 227, 229-232
converting units of mass, 237-240
converting units of volume, 227
converting units of weight, 227, 237-241
Measure of center, 495-498
applying, 537-540
defined, 495
effect of outliers, 499-502
Measure of variability, 514, 527-530
applying, 537-540
choose an appropriate, 533-536
defined, 527

Median

defined, 472, 495
finding, 495-498
outlier, 499-502
Meter, 228, 234
Metric units of measure
capacity, 234
converting, 230, 234
length, 230-231
mass, 238
Mid-Chapter Checkpoint, 25-26, 67-68, 117-118, 173-174, 207-208, 241-242, 281-282, 335-336, 369-370, 409-410, 451-452, 489-490, 531-532
Miles, 229
Mililiters, 234
Milligrams, 238

Millimeters, 230
Mixed numbers, 50
converting to decimals, 51-54
division, 85-88
model division, 81-84
writing, 51
Mode
defined, 472, 495
finding, 495-498
Model fraction division, 69-72
Model mixed number division, 81-84
Model percents, 195-198
Model ratios, 153-156
Multi-digit decimals
adding and subtracting, 27-30
multiplication, 31-34
Multi-Digit Numbers
division, 5-8
Multiplication
Associative Property, 291, 294
Commutative Property, 291, 295, 305
decimals, estimate, 31-35
Distributive Property, 292-294, 296-298
equations, 323-328 model and solve, 323-328
solution, 327-330
exponents as repeated, 261-264
fractions, products, 59-62
fractions and whole numbers, 49
Identity Property of, 291, 305
inverse operation, 7
order of operations, 265
prime factorization, 10
Properties of Multiplication, 291, 305, 328
simplify, 63-66
table to find equivalent ratios, 161-164
Multiplication tables, 161-164
Multiplicative inverse, 50, 78

Negative numbers, 100
Nets, 435-438
defined, 434
surface area of cube, 444
surface area of prism, 441
rectangular pyramid, 436
surface area, 439-442
triangular prism, 435-438

Number line, 109-112
absolute value, 119-122
compare and order fractions and decimals, 55-58
integers, 105-108
rational numbers, 113-116
divide by using, 77-80
find quotient, 79
inequalities, 345-348
negative integers, 101-104
positive integers, 101-104
rational numbers, 109-112
Number Patterns, 355

Numbers

compatible, 4, 5, 6
negative, 100, 101-104
positive, 101-104
Numerators, 50, 55, 59, 63-66

Numerical expression

defined, 260, 265
order of operations, 265-268
simplifying, 265-268

(0)

On Your Own, In every Student Edition lesson. Some examples are: $7,11,15,53,57,61,103$, 107, 111, 159, 163, 168, 201, 205, 211, 231, 235, 239, 263, 267, 271, 309, 313, 321, 359, 363, 368, 391, 399, 407, 437, 445, 449, 475, 479, 483, 517, 521, 529
Opposites
defined, 100, 101
negative integers, 101
positive integers, 101
Order
fractions and decimals, 55-58
integers, 105-108
rational numbers, 113-116
Ordered pairs, 100, 127, 152
relationships, 131-134
Order of operations
algebraic expressions, 277-280
integers, 265, 266, 277, 513
numerical expressions, 265-268
Origin, 127
Ounces, 228, 233, 237-240
Outliers, 472
defined, 499
effect, 499-502
Output value, 361

Parallelogram

area, 389-392
defined, 388

Parentheses

order of operations, 259
Pattern blocks, 81, 83

Patterns

changing dimensions, 419-422
data, 515-518
extend, 151
finding, 78
number, 355
use, 54
Pentagon, 387

Percents

bar model, 213-215
defined, 194, 195
find the whole, 217-220
model, 195-198
of a quantity, 209-212
solve problem with model, 213-216
write as decimal, 199-202
write as fraction, 199-202
write decimal as, 203-206
write fraction as, 203-206

Perimeter

changing dimensions, 419-422
composite figures, 415-418
finding, 387
Personal Math Trainer, In all Student Edition chapters. Some examples are: 3, 250, 540
Pint, 228, 233
Place value
decimal, 51
of a digit, 27
Polygons
area, 411-414
changing dimensions, 419-422
coordinate plane, 423-426
graphs on coordinate plane, 423-426 identify, 387
Polyhedron, 434
Pose a Problem, 38, 71, 80, 164, 182, 198, 326, 368, 488, 522
Positive numbers, 101-104
Pound, 237-240
Practice. Copy and Solve, 11, 29, 41, 61, 79, 103, 107, 111, 137, 181, 231, 235, 239, 275, 279, 285, 309, 321, 329, 347, 373, 479, 483, 487, 529

Preview words, 4, 50, 100, 152, 194, 228, 260, 306, $356,388,434,472,514$
Prime factorization, 9-12, 13-16, 25
defined, 4, 9
divisibility rule, 9
factor tree, 9
finding, 10-11
greater common factor, 17
least common multiple, 13-14
ladder diagram, 10
reason for using, 14
Prime number, 4
defined, 9
Prism, 434
net, 435-438, 439-442
surface area, 443-446
volume, 457-460

Problem Solving

analyze relationships, 365-368
apply greatest common factor, 21-24
changing dimensions, 419-422
combine like terms, 287-290
compare ratios, use tables to, 165-168
coordinate plane, 139-142
data displays, 503-506
distance, rate, and time formulas, 247-250
equations with fractions, 331-334
fraction operations, 89-92
geometric measurements, 461-464
misleading statistics, 545-548
percents, 213-216
use tables to compare ratios, 165-168
Problem Solving. Applications. In most lessons.
Some examples are: $8,12,20,52,58,76,104$,
108, 112, 160, 164, 197, 198, 202, 232, 240, 268,
$276,280,286,310,314,318,374,378,392,395$,
403-404, 438, 441, 450, 476, 488, 493-494, 522,
526, 540, 544
Projects, 2, 150, 258, 386
Properties
Associative Property of Addition, 259
Associative Property of Multiplication, 291
Commutative Property of Addition, 259
Commutative Property of Multiplication, 291, 305
Distributive Property of Addition, 18
Distributive Property of Multiplication, 18, 292
Division Property of Equality, 327
Identity Property, 291, 305
Multiplication Property of Equality, 328
quadrilaterals, 388
Subtraction Property of Equality, 306
Pyramid, 434
defined, 436
surface area, 447-450

Quadrants, 100, 131-134
Quadrilateral, 388
Quart, 233
Quartile
lower, 519
upper, 514, 519
Quotients, 193
compatible numbers to estimate, 73-76

R

Range

defined, 514, 528
interquartile, 528
Rates, 152, 157-160
defined, 158, 194 distance, rate, and time formulas, 247-250 unit rate, 157-160, 175-178, 179-182 writing, 157-160
Rational numbers
absolute value, 119-122
compare and order, 113-116
coordinate plane, 127-130
defined, 100, 117
number line, 109-112
Ratios, 152, 157-160
defined, 152, 194
equivalent
defined, 152
finding, 169-172
graph to represent, 183-186
use, 169-172
using multiplication tables to find, 161-164
model, 153-156
percent as, 199
rates, 157-160
tables to compare, 165-168
writing, 157-160
Reading. Connect to, 126, 156, 246, 344, 364, 480
Read the Problem, 21, 22, 89, 90, 139, 140, 165, 166, 213, 214, 247, 248, 287, 288, 331, 332, 365, 366, 419, 420, 461, 462, 545, 546
Real World. See Connect, to Science; Problem Solving; Problem Solving. Applications; Unlock the Problem
Reciprocals, 50, 78
Rectangles, 388
area, 389-392, 433

Rectangular prisms

surface area, 439-442
volume, 453-456, 457-459
Rectangular pyramid, 436
Regular polygon
area, 411-414
defined, 388, 411
in nature, 414

Relationships

analyze, 365-368
graph, 371-374
ordered pair, 131-134

Relative frequency table, 481

Remember, 9, 28, 59, 60, 372, 454, 516
Review and Test. See Chapter Review/Test; MidChapter Checkpoint
Review Words, 4, 50, 100, 152, 194, 228, 260, 306, 356, 388, 434, 472, 514
Round decimals, 3, 31

Science. Connect to, 30, 42, 264, 414, 460, 518
Sense or Nonsense?, 84, 104, 186, 318, 340, 396, 498, 518, 540

Set of data, 473

Share and Show, 6, 7, 10, 53, 57, 61, 103, 107, 111, 155, 159, 163, 197, 200, 205, 231, 235, 239, 263, 267, 271, 309, 313, 317 347, 359, 363, 367, 373, 391, 395, 399, 437, 441, 445, 471, 475, 479, 517, 521, 525
Show What You Know, 3, 49, 99, 151, 193, 227, 259, 305, 355, 387, 433, 471, 513
Simplest form, 50, 51-54, 59-62, 63-66, 79
Simplifying
algebraic expressions, 287-288
fractions, 50, 51-54, 59-62, 63-66, 78-79, 194
numerical expressions, 265-268
order of operations, 265

Solid figures

defined, 435
nets, 435-438
pyramid, 436
rectangular prism, 435, 457-459
rectangular pyramid, 436
surface area, 439-442, 443-446, 447-450, 461-464
triangular prism, 435
volume, 453-456, 457-460, 461-464
Solution of equations, 307-310
Solutions of inequalities, 337-340

Solve the Problem, 21, 22, 38, 89, 90, 139, 140, 165, 166, 182, 198, 213, 214, 247, 248, 287, 288, 331, 332, 365, 366, 420, 461, 462, 545, 546
Squares, 388
area, 389-392, 433

Statistical question

defined, 473
recognizing, 473-476

Student Help

Error Alert, 40, 64, 135, 162, 208, 230, 278, 312, 358, 439, 519, 538
Math Idea, 5, 14, 56, 101, 105, 119, 218, 229, 244, 261, 269, 292, 307, 337, 389, 424, 481, 533
Math Talk, In every lesson. Some examples are: 7, 9, 53, 57, 102, 177, 275, 283, 521
Remember, 9, 17, 28, 59, 60, 372, 454, 516
Write Math, 12, 20, 24, 286, 334, 408, 421

Subtraction

decimals, 27-30
equations model and solve, 319-322
solution, 307-310
order of operations, 265
solve addition and subtraction equations, 319-322
Subtraction Property of Equality, 319
Subtraction Property of Equality, 306
Summarize, 480
Surface area, 439-442
cubes, 444
defined, 439
net, 439-442
prisms, 441, 443-446
pyramids, 447-460
rectangular prism, 439, 441, 443
triangular prism, 444
Symmetry
line, 132

Tables
translating between equation, 361-364
Technology and Digital Resources,
See Math on the Spot
Terms
algebraic expressions, 274
defined, 260, 274
like terms, 287-290
Test and Review. See Chapter Review/Test
ThinkSmarter, In every Student Edition lesson. Some examples are: 8, 270, 547
ThinkSmarter*, In all Student Edition chapters.
Some examples are: 12, 318, 540
Thousandth, 4, 27, 28
Three-dimensional figures, 435-438
Time
distance, rate, and time formulas, 247-250
Ton, 237
Transform units, 243-246
Trapezoids
area, 388, 401-404, 405-408
defined, 401
Tree diagram, 306

Triangles

area, 393-396, 397-400, 433
congruent, 388, 393
Triangular prism
net, 435-438
surface area, 444
Try Another Problem, 22, 90, 140, 166, 214, 248, 288, 332, 366, 420, 462, 504, 546
Try This!, 14, 31, 64, 85, 102, 105, 158, 176, 180, 261, 265, 269, 311, 341, 345, 474, 495

(U)

Understand Vocabulary, 4, 50, 100, 152, 194, 228, 260, 306, 356, 388, 434, 472, 514
Unit rate
defined, 158
finding, 175-178
graph to represent, 183-186
solve problems, 179-182
Units of capacity, 233
Unlock the Problem, 5, 9, 13, 16-17, 27, 51, 59, 88, 101, 105, 109, 157, 161, 165, 199, 203, 229, 233, 236, 261, 265, 269, 307, 319, 322, 357, 360, 361, 389, 397, 400, 435, 443, 446, 473, 477, 481, 515, 519, 527
Upper quartile, 514, 519-522

Variables, 260, 269
and algebraic expressions, 269-272, 283-286
defined, 269
dependent, 356, 357-360
independent, 356, 357-360
solve problems, 283-286
Venn diagram, 13, 17, 20, 44, 228
Vertical line, 135-137
Visualize It, 4, 50, 100, 152, 194, 228, 260, 306, 356, 388, 434, 472, 514
Vocabulary, 25, 67, 117, 173, 207, 241, 281, 369, 409, 451, 489, 531
Vocabulary Builder, 4, 50, 100, 152, 194, 228, 260, 306, 356, 388, 434, 472, 514

Volume

cube, 458
defined, 434, 453
fractions and, 453-456
prism, 458
rectangular prisms, 453-456, 457-459

M

Weight

converting units, 237-240
customary units, 237
defined, 228
units, 237-240
What If, 23, 31, 58, 70, 91, 248, 289, 333, 358, 367
What's the Error, 54, 76, 108, 112, 232, 268, 280, 310, 314, 330, 404, 442

Whole numbers, 100
compare, 49
dividing decimals by, 35-38
greatest common factor, 12-20
least common multiple, 13-16
multiplication
by decimals, 193

Word sentence

writing equation, 312-313
writing inequality, 341-343
Write Math, 8, 12, 20, 58, 71, 72, 116, 160, 168, 215, 240, 249, 268, 276, 280, 314, 421, 422, 438, 455, 494, 525

Writing

algebraic expressions, 269-272
equations, 311-314
equivalent algebraic equations, 291-294
inequalities, 341-343
ratios, and rates, 157-160
x-axis, 127
x-coordinate, 127

Yard, 229
y-axis, 127
y-coordinate, 127

Table of Measures

METRIC	CUSTOMARY
Length	
```1 meter (m) = 1,000 millimeters (mm) 1 \text { meter = 100 centimeters (cm)} 1 meter = 10 decimeters (dm) 1 dekameter (dam) = 10 meters 1 hectometer (hm) = 100 meters 1 kilometer (km) = 1,000 meters```	$\begin{aligned} 1 \text { foot }(\mathrm{ft}) & =12 \text { inches (in.) } \\ 1 \text { yard }(\mathrm{yd}) & =3 \text { feet } \\ 1 \text { yard } & =36 \text { inches } \\ 1 \text { mile }(\mathrm{mi}) & =1,760 \text { yards } \\ 1 \text { mile } & =5,280 \text { feet } \end{aligned}$
Capacity	
$\begin{aligned} 1 \text { liter }(\mathrm{L}) & =1,000 \text { milliliters }(\mathrm{mL}) \\ 1 \text { liter } & =100 \text { centiliters }(\mathrm{cL}) \\ 1 \text { liter } & =10 \text { deciliters }(\mathrm{dL}) \\ 1 \text { dekaliter }(\text { daL) } & =10 \text { liters } \\ 1 \text { hectoliter }(\mathrm{hL}) & =100 \text { liters } \\ 1 \text { kilolite }(\mathrm{kL}) & =1,000 \text { liters } \end{aligned}$	$\begin{aligned} 1 \text { cup }(\mathrm{c}) & =8 \text { fluid ounces (fl oz) } \\ 1 \text { pint }(\mathrm{pt}) & =2 \text { cups } \\ 1 \text { quart }(\mathrm{qt}) & =2 \text { pints } \\ 1 \text { quart } & =4 \text { cups } \\ 1 \text { gallon (gal) } & =4 \text { quarts } \end{aligned}$
Mass/Weight	
$\begin{aligned} 1 \text { gram }(\mathrm{g}) & =1,000 \text { milligrams }(\mathrm{mg}) \\ 1 \mathrm{gram} & =100 \text { centigrams }(\mathrm{cg}) \\ 1 \mathrm{gram} & =10 \text { decigrams }(\mathrm{dg}) \\ 1 \text { dekagram }(\mathrm{dag}) & =10 \text { grams } \\ 1 \text { hectogram }(\mathrm{hg}) & =100 \text { grams } \\ 1 \text { kilogram }(\mathrm{kg}) & =1,000 \text { grams } \end{aligned}$	$\begin{aligned} 1 \text { pound }(\mathrm{lb}) & =16 \text { ounces (oz) } \\ 1 \text { ton }(T) & =2,000 \text { pounds } \end{aligned}$

## TIME

1 minute ( min ) $=60$ seconds ( sec )
1 hour (hr) $=60$ minutes
1 day $=24$ hours
1 week $(w k)=7$ days

1 year ( yr ) = about 52 weeks
1 year $=12$ months (mo)
1 year $=365$ days
1 decade $=10$ years
1 century $=100$ years
1 millennium $=1,000$ years

$=$	is equal to	$10^{2}$	ten squared
$\neq$	is not equal to	$10^{3}$	ten cubed
$\approx$	is approximately equal to	$2^{4}$	the fourth power of 2
$>$	is greater than	$\left.\right\|^{-} 4 \mid$	the absolute value of ${ }^{-} 4$
$<$	is less than	$\%$	percent
$\geq$	is greater than or equal to	$(2,3)$	ordered pair $(x, y)$
$\leq$	is less than or equal to	$\circ$	degree

FORMULAS



[^0]:    

[^1]:    Multiply 2,570 g by the conversion factor.

