3rd Grade CALIFORNIA

CALIFORNIA 60

Copyright © 2015 by Houghton Mifflin Harcourt Publishing Company
All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, broadcasting or by any other information storage and retrieval system, without written permission of the copyright owner unless such copying is expressly permitted by federal copyright law.

Only those pages that are specifically enabled by the program and indicated by the presence of the print icon may be printed and reproduced in classroom quantities by individual teachers using the corresponding student's textbook or kit as the major vehicle for regular classroom instruction.

Common Core State Standards © Copyright 2010. National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.

This product is not sponsored or endorsed by the Common Core State Standards Initiative of the National Governors Association Center for Best Practices and the Council of Chief State School Officers.

HOUGHTON MIFFLIN HARCOURT and the HMH Logo are trademarks and service marks of Houghton Mifflin Harcourt Publishing Company. You shall not display, disparage, dilute or taint Houghton Mifflin Harcourt trademarks and service marks or use any confusingly similar marks, or use Houghton Mifflin Harcourt marks in such a way that would misrepresent the identity of the owner. Any permitted use of Houghton Mifflin Harcourt trademarks and service marks inures to the benefit of Houghton Mifflin Harcourt Publishing Company.
All other trademarks, service marks or registered trademarks appearing on Houghton Mifflin Harcourt Publishing Company websites are the trademarks or service marks of their respective owners.

Authors

Juli K. Dixon, Ph.D.

Professor, Mathematics Education University of Central Florida Orlando, Florida

Edward B. Burger, Ph.D.
President, Southwestern University Georgetown, Texas

Steven J. Leinwand

Principal Research Analyst
American Institutes for Research (AIR)
Washington, D.C.
Contributor
Rena Petrello
Professor, Mathematics
Moorpark College
Moorpark, CA

Matthew R. Larson, Ph.D. K-12 Curriculum Specialist for Mathematics Lincoln Public Schools Lincoln, Nebraska

Martha E. Sandoval-Martinez

Math Instructor
El Camino College Torrance, California

English Language Learners Consultant

Elizabeth Jiménez

CEO, GEMAS Consulting
Professional Expert on English
Learner Education
Bilingual Education and
Dual Language
Pomona, California

Whole Number Operations

Critical Area

Critical Area Developing understanding of multiplication and division and strategies for multiplication and division within 100

Project: Inventing Toys 2

1 Addition and Subtraction Within 1,000

Domains Operations and Algebraic Thinking Number and Operations in Base Ten

CALIFORNIA COMMON CORE STANDARDS 3.OA.8, 3.0A.9, 3.NBT.1, 3.NBT. 2
\checkmark Show What You Know 3
Vocabulary Builder 4
1 Algebra • Number Patterns 5
2 Round to the Nearest Ten or Hundred 9
3 Estimate Sums 13
4 Mental Math Strategies for Addition 17
5 Algebra • Use Properties to Add 21
6 Use the Break Apart Strategy to Add 25
7 Use Place Value to Add 29
\checkmark Mid-Chapter Checkpoint 33
8 Estimate Differences 35
9 Mental Math Strategies for Subtraction 39
10 Use Place Value to Subtract 43
11 Combine Place Values to Subtract 47
12 Problem Solving • Model Addition and Subtraction 51
\checkmark Chapter 1 Review/Test 55
2 Represent and Interpret Data 61
Domain Measurement and Data
CALIFORNIA COMMON CORE STANDARDS 3.MD.3, 3.MD. 4
\checkmark Show What You Know 61
Vocabulary Builder 62
1 Problem Solving • Organize Data 63
2 Use Picture Graphs 67
3 Make Picture Graphs 71
\checkmark Mid-Chapter Checkpoint 75
4 Use Bar Graphs 77
5 Make Bar Graphs 81
6 Solve Problems Using Data 85
7 Use and Make Line Plots 89
\checkmark Chapter 2 Review/Test. 93

Chapter 3 Overview
In this chapter, you will explore and discover answers to the following Essential Questions:

- How can you use multiplication to find how many in all?
- What models can help you multiply?
- How can you use skip counting to help you multiply?
- How can multiplication properties help you find products?
- What types of problems can be solved by using multiplication?

Chapter 4 Overview

In this chapter, you will explore and discover answers to the following Essential Questions:
-What strategies can you use to multiply?

- How are patterns and multiplication related?
- How can multiplication properties help you find products?
- What types of problems can be solved by using multiplication?

3

Understand Multiplication
Domain Operations and Algebraic Thinking CALIFORNIA COMMON CORE STANDARDS 3.OA.1, 3.0A.3, 3.0A.5, 3.0A.8
Show What You Know 99
Vocabulary Builder 100
1 Count Equal Groups 101
2 Algebra• Relate Addition and Multiplication 105
3 Skip Count on a Number Line 109
\checkmark Mid-Chapter Checkpoint 113
4 Problem Solving • Model Multiplication 115
5 Model with Arrays 119
6 Algebra • Commutative Property of Multiplication 123
7 Algebra• Multiply with 1 and 0 127
\checkmark Chapter 3 Review/Test 131
4 Multiplication Facts and Strategies 137
Domain Operations and Algebraic Thinking
CALIFORNIA COMMON CORE STANDARDS 3.OA.3, 3.0A.5, 3.OA.7, 3.0A.8, 3.0A.9
\checkmark Show What You Know 137
Vocabulary Builder 138
1 Multiply with 2 and 4 139
2 Multiply with 5 and 10 143
3 Multiply with 3 and 6 147
4 Algebra•Distributive Property. 151
5 Multiply with 7 155
\checkmark Mid-Chapter Checkpoint 159
6 Algebra • Associative Property of Multiplication 161
7 Algebra • Patterns on the Multiplication Table 165
8 Multiply with 8 169
9 Multiply with 9 173
10 Problem Solving • Multiplication 177
\checkmark Chapter 4 Review/Test 181
5 Use Multiplication Facts 187
Domains Operations and Algebraic Thinking Number and Operations in Base Ten
CALIFORNIA COMMON CORE STANDARDS 3.OA.4, 3.0A.9, 3.NBT. 3
\checkmark Show What You Know 187
Vocabulary Builder 188
1 Algebra • Describe Patterns 189
2 Algebra • Find Unknown Numbers 193
Mid-Chapter Checkpoint 197
3 Problem Solving • Use the Distributive Property 199
4 Multiplication Strategies with Multiples of 10 203
5 Multiply 1-Digit Numbers by Multiples of 10 207
\checkmark Chapter 5 Review/Test. 211
6 Understand Division 217
Domain Operations and Algebraic ThinkingCALIFORNIA COMMON CORE STANDARDS 3.OA.2, 3.0A.3, 3.0A.5, 3.0A.6, 3.0A.7
σ Show What You Know 217
Vocabulary Builder 218
1 Problem Solving • Model Division 219
2 Size of Equal Groups 223
3 Number of Equal Groups 227
4 Model with Bar Models. 231
5 Algebra • Relate Subtraction and Division 235
\checkmark Mid-Chapter Checkpoint 239
6 Investigate • Model with Arrays 241
7 Algebra•Relate Multiplication and Division 245
8 Algebra • Write Related Facts 249
9 Algebra • Division Rules for 1 and 0 253257

Chapter 5 Overview

In this chapter, you will explore and discover answers to the following

Essential Questions:

- How can you use multiplication facts, place value, and properties to solve multiplication problems?
- How are patterns and multiplication related?
- How can multiplication properties help you find products?
- What types of problems can be solved by using multiplication?

Chapter 6 Overview

In this chapter, you will explore and discover answers to the following Essential Questions:

- How can you use division to find how many in each group or how many equal groups?
- How are multiplication and division related?
- What models can help you divide?
- How can subtraction help you divide?

Chapter 7 Overview

In this chapter, you will explore and discover answers to the following Essential Questions:

- What strategies can you use to divide?
- How can you use a related multiplication fact to divide?
- How can you use factors to divide?
- What types of problems can be solved by using division?

Domain Operations and Algebraic Thinking CALIFORNIA COMMON CORE STANDARDS 3.OA.3, 3.0A.4, 3.0A.7, 3.0A.8
Show What You Know 263
Vocabulary Builder 264
1 Divide by 2 265
2 Divide by 10 269
3 Divide by 5 273
4 Divide by 3 277
5 Divide by 4 281
6 Divide by 6 285
\checkmark Mid-Chapter Checkpoint 289
7 Divide by 7 291
8 Divide by 8 295
9 Divide by 9 299
10 Problem Solving • Two-Step Problems 303
11 Investigate • Order of Operations 307
\checkmark Chapter 7 Review/Test. 311

Fractions

 COMMON Critical Area Developing understanding of fractions, especially CORE unit fractions (fractions with numerator 1)
Project: Coins in the U.S. 318
8 Understand Fractions 319
Domain Number and Operations-FractionsCALIFORNIA COMMON CORE STANDARDS 3.NF.1, 3.NF.2a, 3.NF.2b, 3.NF.3c
Show What You Know 319
Vocabulary Builder 320
1 Equal Parts of a Whole 321
2 Equal Shares 325
3 Unit Fractions of a Whole 329
4 Fractions of a Whole. 333
5 Fractions on a Number Line 337
\checkmark Mid-Chapter Checkpoint 341
6 Relate Fractions and Whole Numbers 343
7 Fractions of a Group. 347
8 Find Part of a Group Using Unit Fractions 351
9 Problem Solving • Find the Whole Group Using Unit Fractions 355
\checkmark Chapter 8 Review/Test 359
q Compare Fractions 365
Domain Number and Operations-FractionsCALIFORNIA COMMON CORE STANDARDS 3.NF.3a, 3.NF.3b, 3.NF.3d
\checkmark Show What You Know 365
Vocabulary Builder 366
1 Problem Solving • Compare Fractions 367
2 Compare Fractions with the Same Denominator 371
3 Compare Fractions with the Same Numerator 375
4 Compare Fractions 379
\checkmark Mid-Chapter Checkpoint 383
5 Compare and Order Fractions 385
6 Investigate • Model Equivalent Fractions 389
7 Equivalent Fractions 393
\checkmark Chapter 9 Review/Test. 397

Critical Area

Measurement

co
 DIGITAL

Go online! Your math lessons are interactive. Use iTools, Animated Math Models, the Multimedia eGlossary, and more.

Chapter 10 Overview

In this chapter, you will explore and discover answers to the following
Essential Questions:

- How can you tell time and use measurement to describe the size of something?
- How can you tell time and find the elapsed time, starting time, or ending time of an event?
- How can you measure the length of an object to the nearest half or fourth inch?

Chapter 11 Overview

In this chapter, you will explore and discover answers to the following Essential Questions:

- How can you solve problems involving perimeter and area?
- How can you find perimeter?
- How can you find area?
- What might you need to estimate or measure perimeter and area?

Critical Area Developing understanding of the structure of rectangular arrays and of area

404

10

Time, Length, Liquid Volume,and Mass405

Domain Measurement and Data
CALIFORNIA COMMON CORE STANDARDS 3.MD.1, 3.MD.2, 3.MD. 4
\checkmark Show What You Know 405
Vocabulary Builder 406
1 Time to the Minute 407
2 A.M. and P.M. 411
3 Measure Time Intervals 415
4 Use Time Intervals 419
5 Problem Solving • Time Intervals 423
\checkmark Mid-Chapter Checkpoint 427
6 Measure Length 429
7 Estimate and Measure Liquid Volume 433
8 Estimate and Measure Mass 437
9 Solve Problems About Liquid Volume and Mass 441
\checkmark Chapter 10 Review/Test 445
11 Perimeter and Area 451
Domain Measurement and Data
CALIFORNIA COMMON CORE STANDARDS 3.MD.5, 3.MD.5a, 3.MD.5b, 3.MD.6, 3.MD.7, 3.MD.7a, 3.MD.7b, 3.MD.7c, 3.MD.7d, 3.MD. 8
\checkmark Show What You Know 451
Vocabulary Builder 452
1 Investigate • Model Perimeter 453
2 Find Perimeter 457
3 Algebra • Find Unknown Side Lengths 461
4 Understand Area 465
5 Measure Area 469
6 Use Area Models 473
\checkmark Mid-Chapter Checkpoint 477
7 Problem Solving • Area of Rectangles 479
8 Area of Combined Rectangles 483
9 Same Perimeter, Different Areas 487
10 Same Area, Different Perimeters 491
\checkmark Chapter 11 Review/Test 495

Geometry

Critieal Area

COMMON CORE

Project: Make a Mosaic . 502

12

Two-Dimensional Shapes
503
Domain Geometry
CALIFORNIA COMMON CORE STANDARDS 3.G.1, 3.G. 2
Show What You Know 503
Vocabulary Builder 504
1 Describe Plane Shapes 505
2 Describe Angles in Plane Shapes 509
3 Identify Polygons 513
4 Describe Sides of Polygons 517
\checkmark Mid-Chapter Checkpoint 521
5 Classify Quadrilaterals 523
6 Draw Quadrilaterals 527
7 Describe Triangles. 531
8 Problem Solving • Classify Plane Shapes 535
9 Investigate • Relate Shapes, Fractions, and Area 539
Chapter 12 Review/Test 543
Glossary H1
California Common Core State Standards H13
Index H21
Table of Measures H39

SO
 DIGITAL

Go online! Your math lessons are interactive. Use iTools, Animated Math Models, the Multimedia eGlossary, and more.

Chapter 12 Overview

In this chapter, you will explore and discover answers to the following Essential Questions:

- What are some ways to describe and classify two-dimensional shapes?
- How can you describe the angles and sides in polygons?
- How can you use sides and angles to describe quadrilaterals and triangles?
- How can you use properties of shapes to classify them?
- How can you divide shapes into equal parts and use unit fractions to describe the parts?

Whane Number operations

Project

Inventing Toys

The dolls in the picture are called Abuelitos. Some of them are grandmother and grandfather dolls that were designed to sing lullabies. They and the grandchildren dolls have music boxes inside them. You squeeze their hands to start them singing!

Get Started

Suppose you and a partner work in a toy store. You want to order enough dolls to fill two shelves in the store. Each shelf is 72 inches long. How many cartons of dolls will fill the two shelves? Use the Important Facts to help you.

Important Facts

- Each Abuelita doll comes in a box that is 8 inches wide.
- There are 4 boxes in 1 carton.

- Abuelita Rosa sings 6 songs.
- Abuelito Pancho sings 4 songs.
- Javier sings 5 songs.
- Baby Andrea and Baby Tita each sing 5 songs.
- Baby Mimi plays music but does not sing.

Completed by

Addition and Subtraction whin 1,000

Show What You Know

Check your understanding of important skills.
Name \qquad
Think Addition to Subtract Write the missing numbers.

1. $9-4=\square$

Think: $4+\square=9$
$4+$ \qquad $=9$

So, $9-4=$ \qquad .
2. $13-7=$

Think: $7+\square=13$
$7+$ \qquad $=13$

So, $13-7=$ \qquad .
3. $17-9=$

Think: $9+\square=17$
$9+$ \qquad $=17$

So, $17-9=$ \qquad .

- Addition Facts Find the sum.

4. $\begin{array}{r}4 \\ +3\end{array}$
5. 2
$+3$
6. $\begin{array}{r}8 \\ +\quad 6\end{array}$
7. 9
8. 7
$+4$
$+9$

Subtraction Facts Find the difference.

9. 8
-5
10. 11
-2
11. 10
-6
12. 18
-9
13. 15
-7

Manuel's puppy chewed part of this homework paper. Two of the digits in his math problem are missing. Be a Math Detective to help Manuel figure out the missing digits. What digits are missing?

Vocabulary Builder

Visualize It

Sort the review words with a \checkmark into the Venn diagram.

Addition Words Subtraction Words

Understand Vocabulary

Complete the sentences by using preview words.

1. A number close to an exact number is called an \qquad .
2. You can \qquad a number to the nearest ten or hundred to find a number that tells about how much or about how many.
3. \qquad are numbers that are easy to compute mentally.
4. The \qquad states that you
can add two or more numbers in any order and get the same sum.
\qquad

Number Patterns

Lesson 1.1

Essential Question How can you use properties to explain patterns on the addition table?

Unlock the Problem

A pattern is an ordered set of numbers or objects. The order helps you predict what will come next.

You can use the addition table to explore patterns.

(1) Activity 1

Materials $=$ orange and green crayons

- Look across each row and down each column. What pattern do you see?

$+\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	
$\mathbf{0}$	$\mathbf{0}$	1	2	2	3	4	5	6	7	8	9
$\mathbf{1}$	1	2	3	4	5	6	7	8	9	10	11
$\mathbf{2}$	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{3}$	3	4	5	6	7	8	9	10	11	12	13
$\mathbf{4}$	4	5	6	7	8	9	10	11	12	13	14
$\mathbf{5}$	$\mathbf{5}$	6	7	8	9	10	11	12	13	14	15
$\mathbf{6}$	$\mathbf{6}$	7	8	9	10	11	12	13	14	15	16
$\mathbf{7}$	7	8	9	10	11	12	13	14	15	16	17
$\mathbf{8}$	8	9	10	11	12	13	14	15	16	17	18
$\mathbf{9}$	9	10	11	12	13	14	15	16	17	18	19
$\mathbf{1 0}$	10	11	12	13	14	15	16	17	18	19	20

- Shade the row and column orange for the addend 0 . Compare the shaded squares to the yellow row and the blue column. What pattern do you see?

What happens when you add 0 to a number?

- Shade the row and column green for the addend 1 . What pattern do you see?

The Identity Property of Addition states that the sum of any number and zero is that number.

$$
7+0=7
$$

Mathematical Practices
What other patterns can you find in the addition table?
\qquad
What happens when you add 1 to a number?

(1) Activity 2

Materials $■$ orange crayon

- Shade all the sums of 5 orange. What pattern do you see?
- Write two addition sentences for each sum of 5. The first two are started for you.
$5+0=$ \qquad and $0+5=$ \qquad

$+\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$		
$\mathbf{0}$												
$\mathbf{1}$	$\mathbf{0}$	1	2	2	3	4	5	6	7	8	9	10
$\mathbf{2}$	1	2	3	4	5	6	7	8	9	10	11	
$\mathbf{3}$	2	3	4	5	6	7	8	9	10	11	12	
$\mathbf{4}$	3	4	5	6	7	8	9	10	11	12	13	
$\mathbf{5}$	4	5	6	7	8	9	10	11	12	13	14	
$\mathbf{6}$	5	6	7	8	9	10	11	12	13	14	15	
$\mathbf{7}$	6	7	8	9	10	11	12	13	14	15	16	
$\mathbf{8}$	8	8	9	10	11	12	13	14	15	16	17	
$\mathbf{9}$	8	9	10	11	12	13	14	15	16	17	18	
$\mathbf{1 0}$	10	11	12	13	14	15	16	17	18	19		
10	11	12	13	14	15	16	17	18	19	20		

\qquad $+\quad=$ \qquad and \qquad $+$ \qquad $=$ \qquad
\qquad $+$ \qquad $=$ \qquad and \qquad
\qquad
\qquad

- What pattern do you see?
\qquad

1) Activity 3

Materials $■$ orange and green crayons

- Shade a diagonal from left to right orange. Start with a square for 1 . What pattern do you see?
- Shade a diagonal from left to right green. Start with a square for 2 . What pattern do you see?
\qquad
- Write addition sentences for the shaded boxes. Write even or odd under each addend.

The Commutative Property of Addition states that you can add two or more numbers in any order and get the same sum.

$$
\begin{aligned}
3+4 & =4+3 \\
7 & =7
\end{aligned}
$$

Remember
Even numbers end in 0,2 , 4,6 , or 8 . Odd numbers end in $1,3,5,7$, or 9 .

Mathematical Practices

Explain how you know when the sum of two numbers will be odd.

\qquad

Share and Show

MATH BOARD

Use the addition table on page 6 for 1-15.

1. Complete the addition sentences to show the Commutative Property of Addition.
$3+$ \qquad $=$ \qquad
$4+$ \qquad $=$
\qquad

Mathematical Practices

Explain why you can use the Commutative Property of Addition to write a related addition sentence.

Find the sum. Then use the Commutative Property of Addition to write the related addition sentence.
2. $8+5=$ \qquad
3. $7+9=$ \qquad
4. $10+4=$
\qquad
\qquad $+\ldots=$ \qquad
\qquad $+$ \qquad
\qquad
\qquad $+$ \qquad
\qquad

Is the sum even or odd? Write even or odd.
5. $8+1$ \qquad 6. $3+9$ \qquad 7. $4+8$
\qquad

Problem Solving • Applications

8. THINK SMARTER Look back at the shaded diagonals in Activity 2. Why does the orange diagonal show only odd numbers? Explain.

\qquad
\qquad
9. HIDEEPER Find the sum $15+0$. Then write the name of the property that you used to find the sum.
10. THINK SMARIER Select the number sentences that show the Commutative Property of Addition. Mark all that apply.
(A) $27+4=31$
(C) $27+0=0+27$
(B) $27+4=4+27$
(D) $27+(4+0)=(27+4)+0$

Sense or Nonsense?

11.

(प) Whose statement is nonsense? Explain your reasoning.

The sum of an odd number and an odd number is odd.

$$
\begin{gathered}
\text { even }+ \text { even }=\text { even } \\
4+6
\end{gathered}
$$

I can circle pairs of tiles with no tiles left over. So, the sum is even.
\qquad
\qquad
\qquad

- For the statement that is nonsense, correct the statement.
\qquad
\qquad

Round to the Nearest Ten or Hundred

Essential Question How can you round numbers?

1 Unlock the Problem

When you round a number, you find a number that tells you about how much or about how many.

Mia's baseball bat is 32 inches long. What is its length rounded to the nearest ten inches?
(P) One Way Use a number line to round.

A Round 32 to the nearest ten.

Find which tens the number is between.
32 is between \qquad and \qquad .

Name three other numbers that round to 30 when rounded to the nearest ten. Explain. nearest ten inches is \qquad inches.
(B) Round 174 to the nearest hundred.

Find which hundreds the number is between.
174 is between \qquad and \qquad .

174 is closer to \qquad than it is to \qquad .

So, 174 rounded to the nearest hundred is \qquad .

Try This! Round 718 to the nearest ten and hundred.
Locate and label 718 on the number lines.

(1) Another Way Use place value.

(A) Round 63 to the nearest ten.

Think: The digit in the ones place tells if the number is closer to 60 or 70 .

3

So, the tens digit stays the same. Write 6 as the tens digit.

Write zero as the ones digit.
So, 63 rounded to the nearest ten
is \qquad .

B Round 457 to the nearest hundred.
Think: The digit in the tens place tells if the number is closer to 400 or 500.

$$
5 \bigcirc 5
$$

So, the hundreds digit increases by one.
Write 5 as the hundreds digit.
Write zeros as the tens and ones digits.
So, 457 rounded to the nearest hundred
is \qquad .
\qquad

Share and Show

MATH BOARD

Locate and label 46 on the number line. Round to the nearest ten.

1. 46 is between \qquad and \qquad .
2. 46 is closer to \qquad than it is to \qquad .
3. 46 rounded to the nearest ten is \qquad .

Round to the nearest ten.
4. 19 \qquad 5. 66 \qquad
6. 51 \qquad
Round to the nearest hundred.
7. 463 \qquad 8. 202 \qquad 9. 658 \qquad

On Your Own

Locate and label 548 on the number line. Round to the nearest hundred.

10. 548 is between \qquad and \qquad .
11. 548 is closer to \qquad than it is to \qquad .
12. 548 rounded to the nearest hundred is \qquad .

Round to the nearest ten and hundred.
13. 576 \qquad 14. 298 \qquad
15. 844 \qquad

Problem Solving • Applications

Use the table for 16-18.

16. On which day did about 900 visitors come to the giraffe exhibit?
17. To the nearest ten, how many visitors came to the giraffe exhibit on Sunday?
18. GIDEEPER On which two days did about 800 visitors come to the giraffe exhibit each day?
\qquad
19. (unisigicat 3) Make Arguments Cole said that 555 rounded to the nearest ten is 600 . What is Cole's error? Explain.
\qquad
\qquad
\qquad
20. THINK SMARTER Write five numbers that round to 360 when rounded to the nearest ten.
\qquad
21. THINKSMARTER Select the numbers that round to 100 . Select all that apply.
(A) 38
(C) 109
(B) 162
(D) 83
\qquad

Estimate Sums

Essential Question How can you use compatible numbers and rounding to estimate sums?

Unlock the Problem
The table shows how many dogs went to Pine Lake Dog Park during the summer months. About how many dogs went to the park during June and August?

You can estimate to find about how many or about how much. An estimate is a number close to an exact amount.

(One Way use compatible numbers.

Compatible numbers are numbers that
are easy to compute mentally and are close to the real numbers.

$$
\begin{array}{r}
432 \\
+489 \\
+475 \\
\hline
\end{array}
$$

So, about \qquad dogs went to Pine Lake Dog Park during June and August.

Math

Will the sum of the compatible numbers 425 and 475 be greater than or less than the exact sum? Explain.

1. What other compatible numbers could you have used?
2. About how many dogs went to the park during July and August? What compatible numbers could you use to estimate?

(1) Another Way Use place value to round. $432+489=$

First, find the place to which you want to round. Round both numbers to the same place. The greatest place value of 432 and 489 is hundreds. So, round to the nearest hundred.

Remember

When you round a number, you find a number that tells about how many or about how much.

STEP 1 Round 432 to the nearest hundred.

- Look at the digit to the right of the hundreds place.

$$
\begin{array}{cr}
432 & 432 \\
\uparrow & +489
\end{array} \quad+
$$

- Since $3<5$, the digit 4 stays the same.
- Write zeros for the tens and ones digits.

STEP 2 Round 489 to the nearest hundred.

- Look at the digit to the right of the hundreds place.

- Since $8>5$, the digit 4 increases by one.
- Write zeros for the tens and ones digits.

STEP 3 Find the sum of the rounded numbers.
432
+489 $\quad \rightarrow \quad 400$

Math
Talk
Mathematical Practices
How would you round 432 and 489 to the nearest ten? What would be the estimated sum? Explain.

Try This! Estimate the sum.

A Use compatible numbers.

47	\rightarrow	
+23	\rightarrow	+25

(B) Use rounding.

304	\rightarrow	300
+494	\rightarrow	+

\qquad

Share and Show

1. Use compatible numbers to complete the problem. Then estimate the sum.

$$
\begin{aligned}
& 428 \rightarrow \\
&+286 \rightarrow+ \\
& \hline
\end{aligned}
$$

Use rounding or compatible numbers to estimate the sum.
2. 65
$+23$

3. 421
$+218$
© 4. 369
$\begin{array}{r}+480 \\ \hline\end{array}$

On Your Own

Use rounding or compatible numbers to estimate the sum.
5. 19
$+54$

$$
+
$$

6. 39
$+42$

7. 327
$+581$
$+$
8. 27
$+78$

$$
+
$$

9. 267

$$
+517
$$

10. 465
$+478$

13. 632

$$
+244
$$

11. 186
$\begin{array}{r}+460 \\ \hline\end{array}$

$$
+
$$

12. 817

$$
\begin{array}{r}
+118 \\
\hline
\end{array}
$$

$$
+
$$

$$
+
$$

14. $278+369$

$$
+\quad=
$$

15. $523+195$

$$
+\quad=
$$

Problem Solving • Applications Warld

Use the table for 16-18.

 many pet bowls were sold in June and July altogether?

Dan's Pet Supplies Sold		
Month	Pet Bowls	Bags of Pet Food
June	91	419
July	57	370
August	76	228

17. GחDEEPER Would you estimate there were more pet bowls sold in June or in July and August combined? Explain.
18. THINK SMARTER Dan estimated the lowest monthly sales of both pet bowls and bags of pet food to be about 300 . What month had the lowest sales? Explain.

\qquad
\qquad
\qquad
19. THINKSMARTER Write each number sentence in the box below the better estimate of the sum.
$263+189=\square 305+72=\square 195+238=\square 215+289=$

400	500

\qquad

Mental Math Strategies for Addition

Essential Question What mental math strategies can you use to find sums?

(0)

Unlock the Problem
The table shows how many musicians are in each section of a symphony orchestra. How many musicians play either string or woodwind instruments?

(1) One Way Count by tens and ones to find $57+15$.

Orchestra Musicians	
Section	Number
Brass	12
Percussion	13
String	57
Woodwind	15

A Count on to the nearest ten. Then count by tens and ones.

Think: $3+\square=15$

$57+15=$ \qquad

So, \qquad musicians play either string or woodwind instruments.
(B) Count by tens. Then count by ones.

Think: $10+5=15$

Math Idea
Count on from the greater addend, 57.

Try This! Find $43+28$. Draw jumps and label the number line to show your thinking.
\square

(1) Other Ways

(A) Use compatible numbers to find $178+227$.

STEP 1 Break apart the addends to make them compatible.

Think: $\begin{aligned} 178 & =175+3 \\ 227 & =225+2\end{aligned}$

175 and 225 are compatible numbers.

Remember

Compatible numbers are easy to compute mentally and are close to the real numbers.
$\begin{array}{lllllll}\text { STEP } 2\end{array}$ Find the sums. \(\left.\begin{array}{rllll}178 \& \rightarrow \& 175 \& + \& 3

+227\end{array}\right) \rightarrow\)| 225 | + | 2 |
| :--- | :--- | :--- |

STEP 3 Add the sums. \qquad $+$ \qquad $=$

So, $178+227=$ \qquad .

B Use friendly numbers and adjust to find $38+56$.
STEP 1 Make a friendly number.
$38+2=$ \qquad

Describe another way to use friendly numbers to find the sum.

Think: Add to 38 to make a
number with 0 ones.

STEP 2 Since you added 2 to 38, you have $56-2=$ \qquad to subtract 2 from 56 .

STEP 3 Find the sum. \qquad
\qquad
\qquad
So, $38+56=$ \qquad .

Share and Show

MATH BOARD

1. Count by tens and ones to find $63+27$. Draw jumps and label the number line to show your thinking.

Think: Count by tens and ones from 63.

63
$63+27=$ \qquad
\qquad
2. Use compatible numbers to find $26+53$.

Think: $26=25+1$

$$
\begin{array}{ll}
26 & =25+1 \\
53 & =50+3
\end{array} \quad 26+53=
$$

\qquad
Mathematical Practices
Explain how you could use friendly numbers to find $26+53$.

Count by tens and ones to find the sum. Use the number line to show your thinking.
3. $34+18=$ \qquad

On Your Dwn

Use mental math to find the sum.
Draw or describe the strategy you use.
5. $116+203=$ \qquad 6. $18+57=$ \qquad
 attended the school concert. On Saturday, 427 people attended. Explain how can you use mental math to find how many people attended the concert.
\qquad
8. THINK SMARIER There are 14 more girls than boys in the school orchestra. There are 19 boys. How many students are in the school orchestra?

Problem Solving • Applications

Use the table for 9-12

9.

(untaicica (1) Analyze How many girls attended school on Monday and Tuesday?
10. What's the Question? The answer is 201 students.
\qquad
11. IHINKSMARTER

How many students attended school on Tuesday and Wednesday? Explain how you can find your answer.

\qquad
\qquad
\qquad
\qquad
\qquad
12. HIDEEPER On which day did the most students attend school?
\qquad
13. THINK SMARTER On Monday, 46 boys and 38 girls bought lunch at school. How many students bought lunch? Explain one way to solve the problem.
\qquad

Use Properties to Add

Number and Operations in Base Ten3.NBT. 2

MATHEMATICAL PRACTICES
MP.2, MP.7, MP. 8

Math Idea

You can change the order or the grouping of the addends to make combinations that are easy to add. you can group addends in different ways and still get the same sum. It is also called the Grouping Property.

$$
(16+7)+23=16+(7+23)
$$

Unlock the Problem

Mrs. Gomez sold 23 cucumbers, 38 tomatoes, and 42 peppers at the Farmers' Market.
How many vegetables did she sell in all?
Find $23+38+42$.
(1) Look for an easy way to add.

STEP 1 Line up the numbers by place value.

23
38
$\begin{array}{r}42 \\ + \\ \hline\end{array}$
$23+38+42=$ \qquad
So, Mrs. Gomez sold \qquad vegetables in all.

STEP 2 Group the ones to make them easy to add.

Think: Make a ten.

STEP 3 Group the tens to make them easy to add.

Think: Make doubles.

Mathematical Practices
Explain how to group the digits to make them easy to add.

(1) Example Use properties to find $36+37+51$.

STEP 1 Line up the numbers by place value.

36
37
$+51$

STEP 2 Change the grouping.
Think: Adding $37+51$ first would be easy because there is no regrouping needed.

STEP 3 Add.

36
$\begin{array}{r}+88 \\ \hline\end{array}$

So, $36+37+51=$ \qquad .

Try This! Use properties to add.

(A) Find $11+16+19+14$.

Think: Use the Commutative Property of Addition to change the order.

(B) Find $17+(33+45)$.

Think: Use the Associative Property of Addition to change the grouping.

Math

Shape and Show

MATH

 BOARD1. Find the sum. Write the addition property you used.

Explain how the Commutative and Associative Properties of Addition are alike and how they are different.

STEP 1	STEP 2
46	55
55	
+24	24

Use addition properties and strategies to find the sum.

2. $13+26+54=$ \qquad
3. $57+62+56+43=$ \qquad

On Your Own

Use addition properties and strategies to find the sum.
4. $18+39+32=$ \qquad
6. $15+76+125=$ \qquad 7. $33+71+56+29=$ \qquad
8. Change the order and the grouping of the addends so that you can use mental math to find the sum. Then find the sum.
$43+39+43+11=$ \qquad
\qquad
$+$ $+$ $+$

Problem Solving • Applications

9. G■DEEPER Mr. Arnez bought 32 potatoes, 29 onions, 31 tomatoes, and 28 peppers to make salads for his deli. How many vegetables did he buy?
10. Ms. Chang is baking for the school bake sale. She bought 16 apples, 29 peaches, and 11 bananas at the Farmers' Market. How many pieces of fruit did she buy?
11. Малमinagical (2) Reason Abstractly What is the unknown number? Which property did you use?

$$
(\square+8)+32=49
$$

12. THINLSMARTER Change the order or grouping to find the sum. Explain how you used properties to find the sum.

$$
63+86+77
$$

13. THINK SMARTER For numbers 13a-13d, choose Yes or No to tell whether the number sentence shows the Associative Property of Addition.

13a. $(86+7)+93=86+(7+93) \quad$ O Yes O No
13b. $86+7=7+86$
\bigcirc Yes
\bigcirc No

13c. $86+0=86$
\bigcirc Yes
○ No
13d. $86=80+6$
O Yes
\bigcirc No

Unlock the Problem

There are more zoos in Germany than in any other country. At one time, there were 355 zoos in the United States and 414 zoos in Germany. How many zoos were there in the United States and Germany altogether?

You can use the break apart strategy to find sums.

STEP 1 Estimate. $400+400=$ \qquad

STEP 2 Break apart the addends.
Start with the hundreds.
Then add each place value.

STEP 3 Add the sums.

$$
700+60+9=
$$

\qquad
So, there were \qquad zoos in the United States and Germany altogether.

STEP 1 Estimate. $500+200=$ \qquad

STEP 2 Break apart the addends.
Start with the hundreds.
Then add each place value.

$$
\begin{aligned}
467 & =400+\ldots+ \\
+208 & =\frac{+0+8}{600+60+15}
\end{aligned}
$$

STEP 3 Add the sums.

$$
600+60+15=
$$

\qquad
So, $467+208=$ \qquad .

Try This! Use the break apart strategy to find $343+259$.
Estimate. $300+300=$ \qquad

$$
\begin{array}{r}
343 \\
+\underline{259}=\frac{300+}{+} \\
+\quad+ \\
+
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
2. How do you know your answer is reasonable?
\qquad
\qquad

Share and Show

MATH BOARD

1. Complete.

Estimate: $400+400=$ \qquad

$$
\begin{array}{r}
425=400+5 \\
+362=\frac{+60+}{700++7}=
\end{array}
$$

So, $425+362=$ \qquad .
2. Write the numbers the break apart strategy shows.

$$
\begin{aligned}
& =100+30+4 \\
+\quad & =200+40+9 \\
& =300+70+13
\end{aligned}
$$

Explain how the break apart strategy uses expanded forms of numbers.
\qquad

Estimate. Then use the break apart strategy to find the sum.
3. Estimate: \qquad

$$
\begin{array}{r}
142= \\
+436= \\
\hline
\end{array}
$$

4. Estimate: \qquad

$$
\begin{array}{r}
459= \\
+213= \\
\hline
\end{array}
$$

6. Estimate: \qquad

$$
\begin{array}{r}
654= \\
+243=
\end{array}
$$

5. Estimate: \qquad

$$
\begin{array}{r}
291= \\
+420= \\
\hline
\end{array}
$$

On Your Own

Estimate. Then use the break apart strategy to find the sum.
7. Estimate: \qquad

$$
\begin{array}{r}
435= \\
+312= \\
\hline
\end{array}
$$

9. Estimate: \qquad

$$
\begin{array}{r}
634= \\
+251= \\
\hline
\end{array}
$$

8. Estimate: \qquad

$$
\begin{array}{r}
163= \\
+205= \\
\hline
\end{array}
$$

10. Estimate: \qquad

$$
\begin{array}{r}
526= \\
+357= \\
\hline
\end{array}
$$

Practice: Copy and Solve Estimate. Then solve.
11. $163+205$
12. $543+215$
13. $213+328$
14. $372+431$
15. $152+304$
16. $268+351$
17. $413+257$
18. $495+312$

Problem Solving • Applications wall

Use the table for 19-20.
19. FTDEEPER Which two schools together have fewer than 600 students? Explain.
\qquad
\qquad

Number of Students	
School	Number
Harrison	304
Montgomery	290
Bryant	421

20. THINK SMARTER The number of students in Collins School is more than double the number of students in Montgomery School. What is the least number of students that could attend Collins School?

21. What's the Error? Lexi used the break apart strategy to find $145+203$. Describe her error. What is the correct sum?

$$
\begin{array}{r}
100+40+5 \\
+200+30+0 \\
\hline 300+70+5=375
\end{array}
$$

 than or greater than 800 ? How do you know?
\qquad
\qquad
23. THINK SMARTER) What is the sum of 421 and 332 ?

Show your work.

Unlock the Problem

Dante is planning a trip to Illinois. His airplane leaves from Dallas, Texas, and stops in Tulsa, Oklahoma. Then it flies from Tulsa to Chicago, Illinois. How many miles does Dante fly?

Add. $236+585$
Estimate. $200+600=$ \qquad

STEP 1

Add the ones. Regroup the ones as tens and ones.

$$
\begin{array}{r}
236 \\
+585 \\
\hline
\end{array}
$$

STEP 2

Add the tens. Regroup the tens as hundreds and tens.

$$
\begin{array}{r}
11 \\
236 \\
+585 \\
\hline 1
\end{array}
$$

STEP 3

Add the hundreds.

$$
\begin{array}{r}
1 \\
236 \\
-585 \\
\hline 21
\end{array}
$$

$236+585=$ \qquad
So, Dante flies \qquad miles.

Since \qquad is close to the estimate of \qquad , the answer is reasonable.

- You can also use the Commutative Property of Addition to check your work. Change the $\begin{array}{r}536 \\ \hline\end{array}$ order of the addends and find the sum.

ERROR Alert

Remember to add the regrouped ten and hundred.

Try This! Find $563+48$ in two ways.
Estimate. $550+50=$ \qquad
(A) Use the break apart strategy.

$$
\begin{array}{r}
563=500+\square+\square \\
+48=\square+\square
\end{array}
$$

(B) Use place value.

$\begin{array}{r}563 \\ +\quad 48 \\ \hline\end{array}$

0Use place value to add three addends.
(A) Add. $140+457+301$

Estimate. $150+450+300=$ \qquad

STEP 1 Add the ones.

$$
\begin{array}{r}
140 \\
457 \\
+301 \\
\hline
\end{array}
$$

STEP 2 Add the tens.

$$
\begin{array}{r}
140 \\
457 \\
+301 \\
\hline 8
\end{array}
$$

STEP 3 Add the hundreds.

140
457
+301
98

So, $140+457+301=$ \qquad .
(B) Add. $173+102+328$

Estimate. $200+100+300+$ \qquad
STEP 1 Add the ones.
Regroup the ones as tens and ones.

$$
\begin{array}{r}
173 \\
102 \\
+328 \\
\hline
\end{array}
$$

STEP 2 Add the tens.
Regroup the tens as hundreds and tens.
$\begin{array}{r}11 \\ 173 \\ 102 \\ +328 \\ \hline 3\end{array}$

STEP 3 Add the hundreds.

$$
\begin{array}{r}
11 \\
173 \\
102 \\
+328 \\
\hline 03
\end{array}
$$

So, $173+102+328=$ \qquad .
\qquad

Share and Show

MATH BOARD

1. Circle the problem in which you need to regroup. Use the strategy that is easier to find the sum.
a. $496+284$
b. $482+506$

Estimate. Then find the sum.

2. Estimate: $\begin{array}{r}251 \\ +345 \\ \hline\end{array}$
3. Estimate: \qquad (6). Estimate: 686 $\begin{array}{r}314 \\ \hline\end{array}$
4. Estimate: \qquad
231
410
$\begin{array}{r}158 \\ + \\ \hline\end{array}$

On Your Own

Practice: Copy and Solve Estimate. Then solve.
6. $253+376$
7. $654+263$
8. $321+439+112$
9. $182+321$
10. $701+108$
11. $543+372+280$

अixacti 2) Use Reasoning Algebra Find the unknown digits.

12.

13.

14.

$$
\begin{array}{r}
2 \\
+\quad 29 \\
\hline 682
\end{array}
$$

15. $\begin{array}{r}3 \\ +\quad 17 \\ \hline 903\end{array}$
16. [TIDEEPER There are 431 crayons in a box and 204 crayons on the floor. About how many fewer than 1,000 crayons are there? Estimate. Then solve.

Unlock the Problem

17. THINK SMARIER A plane flew 187 miles from New York City, New York, to Boston, Massachusetts. It then flew 273 miles from Boston to Philadelphia, Pennsylvania. The plane flew the same distance on the return trip. How many miles did the plane fly?

a. What do you need to find?
\qquad
b. What is an estimate of the total distance?
c. Show the steps you used to solve the problem.
d. How do you know your answer is reasonable?
\qquad
\qquad
e. The total distance is \qquad miles round trip.
18. THINK SMARIER Help Max find the sum of the problem. 451
246
$+222$
For numbers 18a-18d, choose Yes or No to tell if Max should regroup.
18a. Regroup the ones.
\circ Yes
\bigcirc No
18b. Add the regrouped ten.
\bigcirc Yes
\bigcirc No
18c. Regroup the tens.
\bigcirc Yes
\bigcirc No
18d. Add the regrouped hundred.
○ Yes
O No
\qquad

Mid-Chapter Checkpoint

Vocabulary

Choose the best term from the box.

1. A \qquad is an ordered set of numbers or objects in which the order helps you predict what comes next. (p. 5)
2. The \qquad states that when you add zero to any number, the sum is that number. (p. 5)

Vocabulary
Commutative Property of Addition
compatible numbers
Identity Property of
Addition
pattern

Concepts and Skills

Is the sum even or odd? Write even or odd. (3.0А.9)
3. $8+5$ \qquad 4. $9+7$ \qquad -
5. $4+6$ \qquad

Use rounding or compatible numbers to estimate the sum. (3.nвт.1)
6. 56
$\begin{array}{r}+32 \\ \hline\end{array}$

$$
+\square
$$

7. 271 | +425 |
| :--- |
8. 328

Use mental math to find the sum. (3.мвт.2)
9. $46+14+$ \qquad
10. $39+243+$ \qquad 11. $326+402+$ \qquad

Estimate. Then find the sum. (3.nвт.2)
12. Estimate: \qquad 13. Estimate: \qquad 14. Estimate: \qquad 15. Estimate: \qquad

$$
\begin{array}{r}
437 \\
+184 \\
\hline
\end{array}
$$

16. Nancy planted 77 daisies, 48 roses, and 39 tulips. About how many more roses and tulips did she plant than daisies? (3.мвт.1)
17. Tomas collected 139 cans for recycling on Monday, and twice that number on Tuesday. How many cans did he collect on Tuesday? (3.nвт.2)
18. There are 294 boys and 332 girls in the Hill School. How many students are in the school? (3..nвт.2)
19. On Monday, 76 students played soccer. On Tuesday, 62 students played soccer. On Wednesday, 68 students played soccer. How many more students played soccer on Tuesday and Wednesday combined than on Monday? (3.nвт.2)
\qquad

Estimate Differences

Essential Question How can you use compatible numbers and rounding to estimate differences?

Unlock the Problem

The largest yellowfin tuna caught by fishers weighed 387 pounds. The largest grouper caught weighed 436 pounds. About how much more did the grouper weigh than the yellowfin tuna?

You can estimate to find about how much more.

Q)One Way Use compatible numbers.

Think: Compatible numbers are numbers that are easy to compute mentally and are close to the real numbers.

$$
436 \rightarrow 425
$$

$$
-387 \rightarrow-375
$$

So, the grouper weighed about
\qquad pounds more than the yellowfin tuna.

- What other compatible numbers could you have used?

Try This! Estimate. Use compatible numbers.
©
$\begin{array}{rlr}73 & \rightarrow & 75 \\ -22 & \rightarrow & - \\ - & \end{array}$
${ }^{B}$

376	\rightarrow	
-148	\rightarrow	-150

(1) Another Way Use place value to round.

$436-387=$

STEP 1 Round 436 to the nearest ten.
Think: Find the place to which you
want to round. Look at the digit to the right.

- Look at the digit in the ones place.
- Since $6>5$, the digit 3 increases by one.

- Write a zero for the ones place.

STEP 2 Round 387 to the nearest ten.

- Look at the digit in the ones place.

- Write a zero for the ones place.

STEP 3 Find the difference of the rounded numbers.

$$
\begin{aligned}
& 436 \rightarrow 440 \\
& -387 \rightarrow-390
\end{aligned}
$$

So, $436-387$ is about \qquad .

Try This! Estimate. Use place value to round.

(A) $761 \rightarrow 800$
$-528 \rightarrow-$

Think: Round both numbers to

 the same place value.(B) $642 \rightarrow$
$\underline{-287} \rightarrow \underline{-300}$

Mathematical Practices
Explain a different way you can round each number in Example B to find another estimate.
\qquad

Share and Show

1. Use compatible numbers to complete the problem. Then estimate the difference.

$$
\begin{aligned}
& 546 \rightarrow \\
&-209 \rightarrow- \\
& \hline
\end{aligned}
$$

Use rounding or compatible numbers to estimate the difference.
2. $\begin{array}{r}57 \\ -21 \\ -\end{array}$

On Your Own

Use rounding or compatible numbers to estimate the difference.
5.

6.

7. 936
-421

8.

9. 584

10. 442
$\begin{array}{r}-\quad 36 \\ \hline\end{array}$
12. $491-270$
11. $429-51$
$\square-\square=$

$$
\square-\square=
$$

13. FIDEEPER There are 262 students in the 2nd grade and 298 students in the 3rd grade. If 227 students take the bus to school, about how many students do not take the bus?

Problem Solving • Applications

Use the table for 14-16.

14. (said the estimated difference between the weight of the Pacific halibut and the yellowfin tuna is zero. Do you agree or disagree? Explain.

Largest Saltwater Fish Caught		
Type of Fish	Weight in Pounds	
Pacific Halibut	459	
	133	
	Conger	Yellowfin

15. What's the Question? The answer is about 500 pounds.
\qquad
\qquad
16. THINKSMARIER About how much more is the total weight of the Pacific halibut and conger than the weight of the yellowfin tuna? Explain.

Personal Math Trainer

17. THINK SMARTER A total of 907 people went to a fishing tournament. Of these people, 626 arrived before noon. Alina estimates that fewer than 300 people arrived in the afternoon. How did she estimate? Explain.

Mental Math Strategies for Subtraction

Essential Question What mental math strategies can you use to find differences?

A sunflower can grow to be very tall. Dylan is 39 inches tall. She watered a sunflower that grew to be 62 inches tall. How many inches shorter was Dylan than the sunflower?
P) One Way Use a number line to find 62 - 39 .

A Count up by tens and then ones.
Think: Start at 39. Count up to 62.

Add the lengths of the jumps to find the difference.

$$
10+10+3=
$$

\qquad
$62-39=$ \qquad
So, Dylan was \qquad inches shorter than the sunflower.

P Other Ways

(A) Use friendly numbers and adjust to find 74-28.

STEP 1 Make the number you subtract a friendly number.

Think: Add to 28 to make a number with 0 ones.
STEP 2 Since you added 2 to 28 , you have to add 2 to 74.

STEP 3 Find the difference.
So, $74-28=$ \qquad .

Try This! Use friendly numbers to subtract 9 and 99.

- Find 36 - 9.

Think: 9 is 1 less than 10.
Subtract 10. \qquad
Then add 1. \qquad $+1=$ \qquad
So, $36-9=$ \qquad .

- Find 423 - 99.

Think: 99 is 1 less than 100.
Subtract 100. $423-100=$ \qquad
Then add 1. \qquad $+1=$ \qquad
So, $423-99=$ \qquad .

B Use the break apart strategy to find 458-136.
STEP 1 Subtract the hundreds.
$400-100=$ \qquad

STEP 2 Subtract the tens.
$50-30=$ \qquad

STEP 3 Subtract the ones.
$8-6=$ \qquad

STEP 4 Add the differences. \qquad $+$ \qquad $+$ \qquad $=$ \qquad

So, $458-136=$ \qquad .

Share and Show

MATH BOARD

1. Find $61-24$. Draw jumps and label the number line to show your thinking.

Think: Take away tens and ones.

\qquad

Use mental math to find the difference.
Draw or describe the strategy you use.
3. $56-38=$ \qquad 4. $435-121=$ \qquad

Problem Solving • Applications

 to find $43-19$. She added 1 to 19 and subtracted 1 from 43.
What is Erica's error? Explain.
\qquad
\qquad
6. ITINKKMARTER The farm shop had 68 small bags of bird treats and 39 large bags of bird treats on a shelf. If Jill buys 5 small bags and 1 large bag, how many more small bags than large bags of bird treats are left on the shelf?
7. THINK SMARTER There were 87 sunflowers at the flower shop in the morning. There were 56 sunflowers left at the end of the day. How many sunflowers were sold? Explain a way to solve the problem.

Connect tol Reading

Compare and Contrast

Emus and ostriches are the world's largest birds. They are alike in many ways and different in others.

When you compare things, you decide how they are alike. When you contrast things, you decide how they are different.

The table shows some facts about emus and ostriches.
Use the information on this page to compare and contrast the birds.

Facts About Emus and Ostriches		
	Emus	Ostriches
Can they fly?	No	No
Where do they live?	Australia	Africa
How much do they weigh?	About 120 pounds	About 300 pounds
How tall are they?	About 72 inches	About 108 inches
How fast can they run?	About 40 miles per hour	About 40 miles per hour

8. How are emus and ostriches alike? How are they different?

Alike:

1. \qquad
2. \qquad
Different: 1. \qquad
3. \qquad
4. \qquad
5. GIDEEPER What if two emus weigh

117 pounds and 123 pounds, and an ostrich weighs 338 pounds. How much more does the ostrich weigh than the two emus?

Lesson 1.10

\qquad

Use Place Value to Subtract

Essential Question How can you use place value to subtract
3-digit numbers?

Unlock the Problem

Ava sold 473 tickets for the school play. Kim sold 294 tickets. How many more tickets did Ava sell than Kim?

\squareUse place value to subtract.
Subtract. 473 - 294
Estimate. 475 - $300=$ \qquad

STEP 1

Subtract the ones.
$3<4$, so regroup.
7 tens 3 ones =
6 tens \qquad ones

613
473
-294

STEP 2
Subtract the tens.
$6<9$, so regroup.
4 hundreds 6 tens $=$
3 hundreds \qquad tens

$$
\begin{array}{r}
16 \\
3613 \\
478 \\
-294 \\
\hline 9
\end{array}
$$

- Do you need to combine or compare the number of tickets sold?
- Circle the numbers you will need to use.

STEP 3

Subtract the hundreds.
Add to check your answer.

16
3613
473
-294
79
---:
179
473

So, Ava sold \qquad more tickets than Kim.

Since \qquad is close to the estimate of \qquad the answer is reasonable.

Try This! Use place value to subtract. Use addition to check your work.

Math Idea

Addition and subtraction undo each other. So you can use addition to check subtraction.

(1. Example Use place value to find $890-765$.

Estimate. $900-750=$ \qquad

STEP 1

Subtract the ones.
Regroup the tens as tens and ones.

810
890
-765

STEP 2

Subtract the tens.

810
890
-765
5

STEP 3

Subtract the hundreds. Add to check your answer.

810
890
-765
25
---:
+765

So, $890-765=$ \qquad .

Explain how you know your answer is reasonable.

Try This! Circle the problem in which you need to regroup. Find the difference.

(A)

Share and Show

MATH
 BOARD

1. Estimate. Then use place value to find $627-384$.

Add to check your answer.
Estimate. \qquad - \qquad $=$ \qquad

Since \qquad is close to the estimate of \qquad , the answer is reasonable.
\qquad

Estimate. Then find the difference.

2. Estimate:

\qquad 3. Estimate:

\qquad 4. Estimate: \qquad 65. Estimate: \qquad 456
-217 642 -159
3. Estimate: \qquad $\begin{array}{r}242 \\ -220 \\ \hline\end{array}$
4. Estimate: \qquad
$\begin{array}{r}870 \\ -492 \\ \hline\end{array}$
5. Estimate:

6. Estimate: \qquad

$$
\begin{array}{r}
937 \\
-618 \\
\hline
\end{array}
$$

Which exercises can you compute mentally? Explain why.

On Your Own

Estimate. Then find the difference.

10. Estimate:

$$
\begin{array}{r}
435 \\
-312 \\
\hline
\end{array}
$$

\qquad 11. Estimate: \qquad
$\begin{array}{r}617 \\ -501 \\ \hline\end{array}$
12. Estimate: $\begin{array}{r}893 \\ -268 \\ \hline\end{array}$
\qquad 13. Estimate: \qquad

$$
\begin{array}{r}
750 \\
-276 \\
\hline
\end{array}
$$

Practice: Copy and Solve Estimate. Then solve.
14. $568-276$
15. $761-435$
16. $829-765$
17. $974-285$

18. 86
$-\quad-\quad$
19. 372

$-\quad$
240

20. 537
$-\quad-\quad 172$
21. 629

Problem Solving • Applications (Wall)

Use the table for 22-23.
22. THINK SMARTER Alicia sold 59 fewer tickets than Jenna and Matt sold together. How many tickets did Alicia sell? Explain.

School Play Tickets Sold	
Student	Number of Tickets
Jenna	282
Matt	178
Sonja	331

23. GIDEEPER How many more tickets would each student need to sell so that each student sells 350 tickets?
\qquad
\qquad
24. Nina says to check subtraction, add the difference to the number you subtracted from. Does this statement make sense? Explain.
\qquad
\qquad
\qquad
25. Munimici © Communicate Do you have to regroup to find 523 - 141? Explain. Then solve.
\qquad
\qquad
26. THINKSMARTER Students want to sell 400 tickets to the school talent show. They have sold 214 tickets. How many more tickets do they need to sell to reach their goal? Show your work.
\qquad

Combine Place Values to Subtract

Essential Question How can you use the combine place values strategy to subtract 3-digit numbers?

Unlock the Problem

Elena collected 431 bottles for recycling.
Pete collected 227 fewer bottles than Elena. How many bottles did Pete collect?

- What do you need to find?
- Circle the numbers you need to use.

P Combine place values to find the difference.
A Subtract. $431-227$
Estimate. $400-200=$ \qquad
STEP 1 Look at the ones place. Since $7>1$, combine place 431 Think: 31-27 values. Combine the tens and ones places. There are 31 ones and 27 ones. Subtract the ones. Write 0 for -227 the tens.

STEP 2 Subtract the hundreds.
431
So, Pete collected \qquad bottles. is close to the estimate Since \qquad of \qquad , the answer is reasonable. -
\qquad
-482
Estimate. $510-480=$ \qquad
STEP 1 Subtract the ones.

STEP 2 Look at the tens place. Since $8>1$, combine place values. Combine the hundreds and tens places. There are 51 tens and 48 tens. Subtract the tens.

So, $513-482=$ \qquad .

(1) Example Combine place values to find 500-173.

Estimate. $500-175=$ \qquad

STEP 1 Look at the ones and tens places. Since $3>0$ and $7>0$, combine the hundreds and tens.

There are 50 tens. Regroup 50 tens as 49 tens 10 ones.

49	10	
5	0	0
-17	3	

So, $500-173=$ \qquad .

STEP 2 Subtract the ones.

Think: 10-3

STEP 3 Subtract the tens.

Think: 49-17

Try This! Find 851 - 448 in two ways.

Mathematical Practices
Explain why you combined the hundreds and tens.

Estimate. $850-450=$ \qquad
(A) Use place value.

1. When does the combine place values strategy make it easier to find the difference? Explain.
\qquad
\qquad
\qquad
2. Which strategy would you use to find $431-249$? Explain.
\qquad
\qquad

Share and Show

1. Combine place values to find 406-274.

$$
\begin{array}{rc}
406 & \text { Think: Subtract the ones. Then } \\
\text { combine the hundreds } \\
\text { and tens places. }
\end{array}
$$

Estimate. Then find the difference.2. Estimate:

595
-286

3. Estimate:

728
-515

4. Estimate: \qquad

543	
-307	600

On Your Own

Estimate. Then find the difference.
6. Estimate:
\qquad 7. Estimate: \qquad 9. Estimate: \qquad
10. Estimate: \qquad

11. Estimate: \quad| 528 |
| ---: |
| -297 |
12. Estimate: | |
| ---: |
| 734 |
| -327 |
13. Estimate: \qquad

$$
\begin{array}{r}
537 \\
-428 \\
\hline
\end{array}
$$

8. Estimate: \qquad

$$
\begin{array}{r}
839 \\
-754 \\
\hline
\end{array}
$$

9. Estimate: | 916 |
| ---: |
| -558 |

Practice: Copy and Solve Estimate. Then solve.

14. $457-364$
15. $652-341$
16. $700-648$
17. $963-256$

Problem Solving • Applications

Use the table for 18-20.

 table shows the heights of some roller coasters in the United States. How much taller is Kingda Ka than Titan?
19. GIDEEPER Jason rode two roller coasters with a difference in height of 115 feet. Which roller coasters did Jason ride?
\qquad
20. THINK SMARIER What if another roller coaster was 500 feet tall? Which roller coaster would be 195 feet shorter?

[^0]21. THINK SMARIER Owen solves this problem. He says the difference is 127. Explain the mistake Owen made. What is the correct difference?

335
-218

Problem Solving •

Model Addition and Subtraction
Essential Question How can you use the strategy draw a diagram to solve one- and two-step addition and subtraction problems?

Lesson 1.12

4nsOperations and Algebraic Thinking3.0A. 8 Also 3.NBT. 2

Unlock the Problem

Sami scored 84 points in the first round of a new computer game. He scored 21 more points in the second round than in the first round. What was Sami's total score?
You can use a bar model to solve the problem.

Read the Problem

What do I need to find?

I need to find
\qquad .

What information do I need to use?

Sami scored points in the first round.

He scored \qquad more points than that in the second round.

Solve the Problem

- Complete the bar model to show the number of points Sami scored in the second round.

points

1. How many points did Sami score in the second round?
2. What was Sami's total score?

How will I use the information?

I will draw a bar model to show the number of points Sami scored in each round. Then I will use the bar model to decide which operation to use.

- Complete another bar model to show Sami's total score.

Δ points
\qquad
\qquad

(Try Another Problem

Anna scored 265 points in a computer game. Greg scored 142 points. How many more points did Anna score than Greg?

You can use a bar model to solve the problem.

3. How many more points did Anna score than Greg?

Explain how the length of each bar in the model would change if Greg scored more points than Anna but the totals remained the same.
5. How did your drawing help you solve the problem?
\qquad

Name

Share and Show

MATH

 BOARD1. Sara received 73 votes in the school election. Ben received 25 fewer votes than Sara. How many students voted?

First, find how many students voted for Ben.
Think: $73-25=$

Write the numbers in the bar model.
So, Ben received \qquad votes.

Next, find the total number of votes.
Think: $73+48=\Delta$

Write the numbers in the bar model.

- votes

So, \qquad students voted.
2. If Ben received 73 votes and Sara received 25 fewer votes than Ben, how would your bar models change? Would the total votes be the same? Explain.
\qquad
\qquad
\qquad

On Your ©wn

3. THINKSMARTER What if there were 3 students in another election and the total number of votes was the same? What would the bar model for the total number of votes look like? How many votes might each student get?
\qquad
\qquad
\qquad
4. Pose a Problem Use the bar model at the right. Write a problem to match it.

89

157
5. Solve your problem. Will you add or subtract?
6. Tony's Tech Store had a big sale. The store had 142 computers in stock. During the sale, 91 computers were sold. How many computers were not sold?
7. The number of computer games sold during the sale was 257 . This is 162 more than the number sold the week before the sale. How many computer games were sold the week before the sale?
8. GIDEEPER In one week, 128 cell phones were sold. The following week, 37 more cell phones were sold than the week before. How many cell phones were sold in those two weeks?
 rounded to the nearest hundred, was 400 . What is the greatest number of customers that could have been in the store? Explain.
\qquad
\qquad
10. THINK SMARTER There are 306 people at the fair on Saturday. There are 124 fewer people on Sunday. How many people are at the fair on the two days?
\qquad

Chapter 1 Review/Test

1. For numbers la-1d, choose Yes or No to tell whether the sum is even.
1a. $5+8$
○ Yes
O No
1b. $9+3$
○ Yes
No
1c. $6+7$

- Yes
No
1d. $9+5$
\circ Yes
No

2. Select the number sentences that show the Commutative Property of Addition. Mark all that apply.
(A) $14+8=22$
(B) $8+14=14+8$
(C) $8+(13+1)=(8+13)+1$
(D) $(5+9)+8=(9+5)+8$
3. Select the numbers that round to 300 when rounded to the nearest hundred. Mark all that apply.
(A) 238
(B) 250
(C) 283
(D) 342
(E) 359
4. There are 486 books in the classroom library. Complete the chart to show 486 rounded to the nearest 10.

Hundreds	Tens	Ones

5. Write each number sentence in the box below the better estimate of the sum.

$393+225=\square$	$481+215=\square$
$352+328=\square$	$309+335=\square$
600	700

6. Diana sold 336 muffins at the bake sale. Bob sold 287 muffins. Bob estimates that he sold 50 fewer muffins than Diana. How did he estimate? Explain.
\square
7. The table shows how many books each class read.

Reading Contest	
Class	Number of Books
Mr. Lopez	273
Ms. Martin	402
Mrs. Wang	247

For numbers 7a-7d, select True or False for each statement.
7a. Ms. Martin's class read about 100 more books than Mr. Lopez's class.
○ True
False

7b. The 3 classes read over \quad - True 900 books altogether. \quad False
7c. Mrs. Wang's class read about 50 fewer books than Mr. Lopez's class.

- True
- False

7d. Ms. Martin's and
Mrs. Wang's class read about 700 books.

○ True
False
8. Janna buys 2 bags of dog food for her dogs. One bag weighs 37 pounds. The other bag weighs 15 pounds. How many pounds do both bags weigh? Explain how you solved the problem.
\square
9. Choose the property that makes the statement true.

can group addends in different ways and get the same sum.

Use the table for 10-12.

Susie's Sweater Shop	
Month	Number of Sweaters Sold
January	402
February	298
March	171

10. The table shows the number of sweaters sold online in three months. How many sweaters were sold in January and February?
11. How many more sweaters were sold in January than March?
\qquad sweaters
12. How many more sweaters were sold in February and March than in January?
13. Help Dana find the sum.

346
421
$+152$
For numbers 13a-13d, select Yes or No to tell Dana when to regroup.

13a. Regroup the ones.
\bigcirc Yes
○ No
13b. Add the regrouped ten.
\bigcirc Yes
\bigcirc No
13c. Regroup the tens.
○ Yes
○ No
13d. Add the regrouped hundred.

○ Yes
○ No
14. Alexandra has 78 emails in her inbox. She deletes 47 emails. How many emails are left in her inbox? Draw jumps and label the number line to show your thinking.

15. Daniel has 402 pieces in a building set. He uses 186 pieces to build a house. How many pieces does he have left? Show your work.

\qquad
16. Luke solves this problem. He says the difference is 214. Explain the mistake Luke made. What is the correct difference?

352
-148
\square
17. Sunnyday Elementary School is having its annual Read-a-thon. The third graders have read 573 books so far. Their goal is to read more than 900 books. What is the least number of books they need to read to reach their goal? Explain.
\square
18. There are 318 fiction books in the class library. The number of nonfiction books is 47 less than the number of fiction books.

Part A
About how many nonfiction books are there in the class library? Explain.
\square

Part B

How many fiction and nonfiction books are there in the class library altogether? Show your work.
19. Alia used $67+38=105$ to check her subtraction. Which math problem could she be checking?
Mark all that apply.
(A) $67-38=$
(B) $105-67=$
(C) $105+38=$
(D) $105-38=$
20. Alex and Erika collect shells. The tables show the kinds of shells they collected.

Alex's Shells	
Shell	Number of Shells
Scallop	36
Jingle	95
Clam	115

Erika's Shells	
Shell	Number of Shells
Scallop	82
Clam	108
Whelk	28

Part A

Who collected more shells? How many did she collect? About how many more is that? Explain how you solved the problem.
\square

Part B

Alex and Erika have the greatest number of what kind of shell? How many shells of that kind do they have? Show your work.
\square

2 Represent and Interpret Data

Show What You Know

Check your understanding of important skills.
Name \qquad
Numbers to 20 Circle the number word. Write the number.

fourteen
fifteen

2.

seventeen
eighteen

Skip Count Skip count to find the missing numbers.

3. Count by twos. 2, 4, \qquad , \qquad 10, \qquad , \qquad 16
4. Count by fives. 5,10 , \qquad , \qquad , \qquad , 30, \qquad

- Addition and Subtraction Facts Find the sum or difference.

5. $12-4=$ \qquad 6. $9+8=$ \qquad 7. $11-7=$
\qquad

Paige helps to sell supplies in the school store. Each month she totals all the sales and makes a bar graph. The graph shows sales through December. Be a Math Detective to find the month during which the hundredth sale was made.

School Supply Sales

Vocabulary Builder

Visualize It

Complete the bubble map by using the words with a $\sqrt{ }$.

Review Words
compare
data
fewer
more
survey
\checkmark tally table

Preview Words

\checkmark frequency table
\checkmark horizontal bar graph
key
\checkmark line plot
\checkmark picture graph
scale
\checkmark vertical bar graph

Understand Vocabulary

Write the review word or preview word that answers the riddle.

1. I am a graph that records each piece of data above a number line.
2. I am the numbers that are placed at fixed distances on a graph to help label the graph.
3. I am the part of a map or graph that explains the symbols.
4. I am a graph that uses pictures to show and compare information.
5. I am a table that uses numbers to record data.
\qquad

Problem Solving• Organize Data

Essential Question How can you use the strategy make a table to organize data and solve problems?

Unlock the Problem

The students in Alicia's class voted for their favorite yogurt flavor. They organized the data in this tally table. How many more students chose chocolate than strawberry?

Another way to show the data is in a frequency table. A frequency table uses numbers to record data.

Favorite Yogurt Flavor	
Flavor	Tally
Vanilla	HI II
Chocolate	HH III
Strawberry	IIII

Read the Problem
 What do I need to find?
 How many more students chose
 \qquad than
 \qquad yogurt

as their favorite?

What information do I need to use?

the data about favorite \qquad in the tally table

How will I use the information?

I will count the \qquad . Then I will
put the numbers in a frequency table and compare the number of students who chose \qquad to the number of
students who chose \qquad .

Solve the Problem

Favorite Yogurt Flavor	
Flavor	Number
Vanilla	

Count the tally marks. Record \qquad for vanilla. Write the other flavors and record the number of tally marks.

To compare the number of students who chose strawberry and the number of students who chose chocolate, subtract.
\qquad - \qquad $=$ \qquad
So, \qquad more students chose chocolate as their favorite flavor.

```
Math
```

Talk
Mathematical Practices
Explain why you would record data in a frequency table.

(1) Try Another Problem

Two classes in Carter's school grew bean plants for a science project. The heights of the plants after six weeks are shown in the tally table. The plants were measured to the nearest inch. How many fewer bean plants were 9 inches tall than 7 inches and 8 inches combined?

Read the Problem

 What do I need to find?Solve the Problem
Record the steps you used to solve the problem.

How will I use the information?

- Suppose the number of 3 -inch plants was half the number of 8 -inch plants. How many 3 -inch bean plants were there?

Mathematical Practices
Explain another strategy you could use to solve the problem.

Share and Show

Use the Shoe Lengths table for 1-3.

1. The students in three third-grade classes recorded the lengths of their shoes to the nearest centimeter. The data are in the tally table. How many more shoes were 18 or 22 centimeters long combined than 20 centimeters long?

First, count the tally marks and record the data in a frequency table.

To find the number of shoes that were 18 or 22 centimeters long, add

$$
6+
$$

\qquad $+$ \qquad $+$ \qquad $=$ \qquad .

20 centimeters long, add \qquad $+$ \qquad $=$ \qquad .

To find the difference between the shoes that were 18 or 22 centimeters long and the shoes that were 20 centimeters long, subtract the sums.

> To find the number of shoes that were
\qquad - \qquad $=$ \qquad
So, \qquad more shoes were 18 or 22 centimeters long than 20 centimeters long.
© 2. How many fewer girls' shoes than boys' shoes
were measured? \qquad

On Your Own

3. THINK SMARTER What if the length of 5 more boys' shoes measured 21 centimeters? Explain how the table would change.

 234 and 250 . The sum of the digits is double the digit in the ones place. What is Isabel's number?
\qquad
4. FIDEEPER Heather has 6 dimes and 10 pennies. Jason has 3 quarters. Who has more money? Explain your answer.
\qquad
5. THINKSMARTER Andrew has 10 more goldfish than Todd. Together, they have 50 goldfish. How many goldfish does each boy have?
6. THINISMARIER Jade made this tally table to record how many students have different types of pets.

Students' Pets			
Type of Pet	Tally		
Dog	HY HY \|	II	
Rabbit	\|		
Hamster	HY		
Cat	HY II		

For numbers 7a-7d, select True or False for each statement.
7a. Nine fewer students have hamsters than have dogs.

- True

False
7b. Seven students have cats.

- True

False
7c. Fewer students have cats than hamsters.

- True

False
7d. More students have dogs than other animals combined.

- True
- False

Essential Question How can you read and interpret data in a picture graph?

- Underline the words that tell you where to find the information to answer the question.
- How many $)$ are shown for Bus?

Unlock the Problem

Nick has a picture graph that shows how some students get to school. How many students ride the bus?
A picture graph uses small pictures or symbols to show and compare information.

	How We Get to School	
	Walk	$\bigcirc \cdot ;)$
Each row has a label that names one way students get to school.	Bike	© : $) \cdot()$
	Bus	
	Car	$\bigcirc \cdot ;) \cdot() \cdot ;$
	Key: Each $)=10$ students.	

4
To find the number of students who ride the bus,

The title says that the picture graph is about how some students get to school.

The key tells that each picture or symbol stands for the way 10 students get to school. count each $)$ as 10 students.

10, 20, \qquad , \qquad , \qquad , \qquad , \qquad , \qquad

Use a Half Symbol

1
How many students chose an orange as their favorite fruit?

Math Idea

Half of the picture stands for half the value of the whole picture.
;) $=2$ students
© = 1 student

Our Favorite Fruit

Banana	$\bigcirc \cdot ;) \cdot()$
Apple	;) :) ;
Pear	(); $)^{()}$
Orange	

Key: Each - = 2 students.

Count the \cdot in the orange row by twos. Then add 1 for the half symbol.

2, 4, \qquad , \qquad
\qquad $+$ \qquad $=$ \qquad
So, \qquad students chose an orange as their favorite fruit.

Share and Show

Use the Number of Books Students Read picture graph for 1-3.

1. What does \square stand for?

Think: Half of 2 is 1 .
2. How many books did the students read in September?
\qquad
3. How many more books did the students read in October than in November?

Explain how to find the number of books the students read.
\qquad

On Your Own

Use the Favorite Game picture graph for 4-10.
4. How many students chose puzzles?
5. How many fewer students chose card games than board games?
\qquad
6.

Maymict 8 Draw Conclusions Which two types of games did a total of 34 students choose?
7. GIDEEPER How many students were surveyed?
\qquad
8. How many students did not choose card games?
\qquad
9. WRITE Math What's the Error? Jacob said one more student chose board games than puzzles. Explain his error.
\qquad
\qquad
\qquad
10. HDDEEPER What if computer games were added as a choice and more students chose it than puzzles, but fewer students chose it than board games? How many students would choose computer games?

Unlock the Problem

Use the picture graph for 11－12．
11.

THINKSMARIER）The students who went to summer camp voted for their favorite activity．Which two activities received a total of 39 votes？
a．What do you need to find？
\qquad
b．What steps will you use to solve the problem？
\qquad
c．Show the steps you used to solve the problem． p

Favorite Camp Activity

Biking	
Hiking	
Boating	
Fishing	潫准

Key：Each 颜 $=6$ students．
d．Complete the sentences．
Each 渻＝＿＿＿students．
Each 费 $=\ldots$ students．
votes for biking + hiking $=$ \qquad
votes for hiking＋boating＝ \qquad
votes for biking＋boating $=$ \qquad
votes for fishing + hiking $=$ \qquad
So， \qquad received a total of 39 votes．

Personal Math Trainer

12．THINKSMARTER Choose the word from each box that makes the sentence true．

Fifteen fewer students voted for

hiking boating fishing

\qquad

Make Picture Graphs

Essential Question How can you draw a picture graph to show data in a table?

Unlock the Problem

Delia made the table at the right. She used it to record the places the third grade classes would like to go during a field trip. How can you show the data in a picture graph?

(Make a picture graph.

STEP 1

Write the title at the top of the picture graph. Write the name of a place in each row.

STEP 2

Look at the numbers in the table. Choose a picture for the key, and tell how many students each picture represents. Write the key at the bottom of the graph.

STEP 3

Draw the correct number of pictures for each field trip choice.
\qquad

- How did you decide how many pictures to draw for the Science Center?

Try This! Make a picture graph from data you collect. Take a survey or observe a subject that interests you. Collect and record the data in a frequency table. Then make a picture graph. Decide on a symbol and a key. Include a title and labels.

Key:	

Share and Show

Jeremy pulled marbles from a bag one at a time, recorded their color, and then put them back. Make a picture graph of the data. Use this key:

Each $\bigcirc=2$ marbles.

Jeremy's Marble Experiment

Color	Number
Blue	4
Green	11
Red	8

\square

Use your picture graph above for 1-2.

1. How many more times did Jeremy pull out a red marble than a blue marble?
2. How many fewer times did Jeremy pull out green marbles than blue and red marbles combined?
\qquad

On Your Own

3. Two classes from Delia's school visited the Science Center. They recorded their favorite exhibit in the tally table. Use the data in the table to make a picture graph. Use this key:

Favorite Exhibit	
Exhibit	Tally
Nature	HH I
Solar System	HY III
Light and Sound	HH HI IIII
Human Body	HH III

Use your picture graph above for 4-6.
4. Which exhibits received the same number of votes?
5. . exhibit received 22 votes? Explain how many pictures you would draw.
6. THINKSMARTER What if the Solar System exhibit received 15 votes? Would it make sense to use the key

Problem Solving - Applications (Rear wo

7. While at the Science Center, Delia's classmates learned how many teeth some mammals have. Use the data in the table to make a picture graph. Use this key:

$$
\text { Each } \triangle=4 \text { teeth. }
$$

Teeth in Mammals

Animal	Number
Hamster	16
Cat	30
Dog	42
Cow	32

\square

Key:

Use your picture graph above for 8-10.
8. THINK SMARTER Pose a Problem Write a problem that can be solved by using the data in your picture graph. Then solve the problem.

9. HロDEEPER How many fewer teeth do cats and hamsters have combined than dogs and cows combined?
10. THINK SMARTER How many pictures would you draw for Cat if each $\triangle=5$ teeth? Explain your reasoning.
\qquad

Mid-Chapter Checkpoint

Vocabulary

Choose the best term from the box.

1. A \qquad uses numbers to record data. (p. 63)
2. A \qquad uses small pictures or symbols to show and compare information. (p. 67)

Concepts and Skills

Use the Favorite Season table for 3-6. (3.MD.3)
3. Which season got the most votes?
\qquad
4. Which season got 3 fewer votes than winter?
\qquad
5. How many more students chose summer than fall?
\qquad
6. How many students chose a favorite season?
\qquad

Use the Our Pets picture graph for 7-9. (3.MD.3)
7. How many students have cats as pets?
8. Five more students have dogs than which other pet? \qquad
9. How many pets in all do students have?

Use the Favorite Summer Activity picture graph

 for 10-14.10. Some students in Brooke's school chose their favorite summer activity. The results are in the picture graph at the right. How many students chose camping? (3.MD.3)

Camping	
Biking	
Swimming	
Canoeing	

11. How many more students chose swimming than canoeing? (3.MD.3)
12. Which activity did 15 fewer students choose than camping? (3.MD.3)
13. How many pictures would you draw for biking if each 㜣 $=5$ students? (3.mD.3)
14. How many more students chose biking and canoeing combined than swimming? (3.MD.3)
\qquad

Use Bar Graphs

Essential Question How can you read and interpret data in a bar graph?

Unlock the Problem

A bar graph uses bars to show data. A scale of equally spaced numbers helps you read the number each bar shows.

The students in the reading group made a bar graph to record the number of books they read in October. How many books did Seth read?

- Underline the words that tell you where to find the information to answer the question.

More Examples These bar graphs show the same data.

In a horizontal bar graph, the bars go across from left to right. The length of the bar shows the number.

In a vertical bar graph, the bars go up from the bottom. The height of the bar shows the number.
4. What does each space between two numbers represent?
5. Why do you think the scale in the graphs is 0 to 28 by fours instead of 0 to 28 by ones? What other scale could you use?

Share and Show

Use the Favorite Way to Exercise bar graph for 1-3.

1. Which activity did the most students choose?

Think: Which bar is the longest?
2. How many students answered the survey?
3. Which activity received 7 fewer votes than soccer? \qquad -

Favorite Way to Exercise

Math

Talk Mathematical Practices

What can you tell just by comparing the lengths of the bars in the graph? Explain.
\qquad

Problem Solving • Applications (world

Use the Favorite Kind of Book bar graph for 4-8.
4. Which kind of book was chosen by half the number of students as books about animals?
5. HIDEEPER Which two kinds of books combined were chosen as often as books about sports?
6.
 a problem that matches the data in the graph.
\qquad
\qquad
7. THINK SMARTER What if 10 more students were asked and they chose books about animals? Describe what the bar graph would look like.

Favorite Kind of Book

Kind of Book

\qquad
8. IHINKSMARTER For numbers 8a-8d, select True or False for each statement.

8a. More students chose books about sports than any other kind of book.

- True

False
8b. Five more students chose books about puzzles than books about space.

- True
- False

8c. Thirty more students chose books about animals than books about nature.

- True
- False

8d. Fifteen fewer students chose books about puzzles than books about sports.

- True

False

Sense or Nonsense?

9. THINKSMARTER The table shows data about some students' favorite amusement park rides. Four students graphed the data. Which student's bar graph makes sense?

Alicia

Tyler

Favorite Amusement Ride

Ride	Number of Students
Super Slide	11
Ferris Wheel	14
Bumper Cars	18
Roller Coaster	23

Spencer

Kate

- Explain why the other bar graphs do not make sense.
\qquad
\qquad
\qquad
\qquad

Make Bar Graphs

Essential Question How can you draw a bar graph to show data in a table or picture graph?

Measurement and Data-3.MD. 3 Also 3.NBT. 2
MATHEMATICAL PRACTICES MP.2, MP.4, MP. 5

Unlock the Problem

Jordan took a survey of his classmates' favorite team sports. He recorded the results in the table at the right. How can he show the results in a bar graph?
(1) Make a bar graph.

Favorite Team Sport				
Sport				
Sally				
Soccer	HH HH \|			
Basketball	\|			
Baseball 6	HH HH \|			
Football	HH \|			

STEP 1

Write a title at the top to tell what the graph is about. Label the side of the graph to tell about the bars. Label the bottom of the graph to explain what the numbers tell.

STEP 2

Choose numbers for the bottom of the graph so that most of the bars will end on a line. Since the least number is 4 and the greatest number is 14 , make the scale $0-16$. Mark the scale by twos.

STEP 3

Draw and shade a bar to show the number for each sport.

Talk
Mathematical Practices
How did you know how long to draw the bar for football?

School Walk-a-Thon	
Sam	₹

Matt's school is having a walk-a-thon to raise money for the school library. Matt made a picture graph to show the number of miles some students walked. Make a bar graph of Matt's data. Use a scale of 0- \qquad , and mark the scale by \qquad .

Use your bar graph for 1-4.

1. Which student walked the most miles? \qquad Think: Which student's bar is the tallest?

Mathematical Practices

Explain how the graph would have to change if another student, Daniel, walked double the number of miles Erica walked.
2. How many more miles would Matt have had to walk to equal the number of miles Erica walked?
3. How many miles did the students walk?
4. Write the number of miles the students walked in order from greatest to least.
\qquad

On Your Own

5. Lydia and Joey did an experiment with a spinner. Lydia recorded the result of each spin in the table at the right. Use the data in the table to make a bar graph. Choose numbers and a scale and decide how to mark your graph.

Spinner Results

Color	Tally
Red	HY HY HY I
Yellow	HI III
Blue	HY HY II
Green	HY HY

\square ERROR Alert
Be sure to draw the bars correctly when you transfer data from a table.

Use your bar graph for 6-8.

6. The pointer stopped on \qquad half the number of times that it stopped on \qquad .
7. The pointer stopped on green \qquad fewer times than it stopped on blue.
8. Maymanical (6) Explain why you chose the scale you did.

Problem Solving • Applications (abild

 number of points some basketball players scored. Use the data in the table to make a bar graph. Choose numbers so that most of the bars will end on a line.

Points Scored

Player	Number of Points
Billy	10
Dwight	30
James	15
Raul	25
Sean	10

\square
Use your bar graph for 10-12.
10. GIDEEPER Which player scored more points than James but fewer points than Dwight? \qquad
11. THINK SMARIER Write and solve a new question that matches the data in your bar graph.
\qquad
\qquad

12. THINKSMARIER Which player scored 10 more points than James?
\qquad
\qquad

Solve Problems Using Data

Essential Question How can you solve problems using data represented in bar graphs?

Measurement and Data-3.MD. 3
Also 3.NBT.2, 3.0A.8
MATHEMATICAL PRACTICES
MP.1, MP.3, MP. 7

Unlock the Problem

connect Answering questions about data helps you better understand the information.

Derek's class voted on a topic for the school bulletin board. The bar graph shows the results. How many more votes did computers receive than space?

P One Way use a model.

Count back along the scale to find the difference between the bars.

Count back from 10 to 3 .
Skip count by twos.

The difference is \qquad votes.

1. Another Way Write a number sentence.

Think: There are 10 votes for computers. There are 3 votes for space. Subtract to compare the number of votes.

So, computers received \qquad more votes than space.

- How do you know you need to subtract?

Votes for School Bulletin Board Topic

Math

Talk
Mathematical Practices
Explain another way you can skip count to find the difference.

1) Example

Brooke's school collected cans of food. The bar graph at the right shows the number of cans. How many fewer cans were collected on Tuesday than on Thursday and Friday combined?

STEP 1 Find the total for Thursday and Friday.

STEP 2 Subtract to compare the total for Thursday and Friday to Tuesday and to find the difference.

So, \qquad fewer cans were collected on Tuesday than on Thursday and Friday combined.

- What if 4 fewer cans were collected on Monday than on Tuesday? How many cans were collected on Monday? Explain.

Share and Show

MATH BOARD

Use the Spinner Results bar graph for 1-3.

1. How many more times did the pointer stop on green than on purple?
\qquad more times
2. How many fewer times did the pointer stop on blue than on red and green combined?

\qquad fewer times
3. What if there were 15 more spins and the pointer stopped 10 more times on green and 5 more times on blue? How many more times did the pointer stop on green than blue?
\qquad

On Your Own

Use the Diego's DVDs bar graph for 4-6.

4. Diego has 5 fewer of this kind of DVD than comedy. Which kind of DVD is this?
5. Is the number of comedy and action DVDs greater than or less than the number of animated and drama DVDs? Explain.
\qquad
\qquad
6. THINKSMARIER How many DVDs does Diego have that are NOT comedy DVDs?
\qquad

Problem Solving • Applications (world

Use the Science Fair Projects bar graph for 7-9.

7. How many more students would have to do a project on plants to equal the number of projects on space?
8. WRITE Math What's the Question? The answer is animals, space, rocks, oceans, and plants.

\qquad
\qquad
\qquad
9. on weather than did a project on rocks? Describe what the bar graph would look like.

Unlock the Problem

Use the November Weather bar graph for 10-12.
10. FIDEEPER Lacey's class recorded the kinds of weather during the month of November in a bar graph. Were there more cloudy and sunny days or more rainy and snowy days?
a. What do you need to find?
b. What operation will you use to find the answer?

November Weather

d. Complete the sentences.

So, there were more \qquad days.
11. How many days in November were NOT cloudy?

Think: There are 30 days in November.

Personal Math Trainer

12. THINK SMARTER \dagger Is the number of cloudy and snowy days greater than or less than the number of rainy and sunny days? Explain.
\qquad

Use and Make Line Plots

Essential Question How can you read and interpret data in a line plot and use data to make a line plot?

Measurement and Data-3.MD. 4
Also 3.NBT. 2
MATHEMATICAL PRACTICES
MP.1, MP.4, MP.5, MP. 6

Unlock the Problem

A line plot uses marks to record each piece of data above a number line. It helps you see groups in the data.

Some students took a survey of the number of letters in their first names. Then they recorded the data in a line plot.

How many students have 6 letters in their first names?

Each X stands for 1 student.

Number of Letters in Our First Names
\leftarrow the number of letters in a name.

1Find 6 on the number line. The 6 stands for 6 \qquad .

There are \qquad X s above the 6 .

So, \qquad students have 6 letters in their first names.

1. Which number of letters was found most often? \qquad
2. Write a sentence to describe the data. \qquad
\qquad
3. How many letters are in your first name? \qquad
4. Put an X above the number of letters in your first name.

P) Activity Make a line plot.

Materials $■$ ruler $■$ measuring tape
Measure the height of four classmates to the nearest inch. Combine your data with other groups. Make a line plot to show the data you collected.

STEP 1 Record the heights in the table.
STEP 2 Write a title below the number line to describe your line plot.

STEP 3 Write the number of inches in order from left to right above the title.

STEP 4 Draw X s above the number line to show each student's height.

5. Which height appears most often?

Think: Which height has the most X s?
6. Which height appears least often?
7. Complete the sentence. Most of the students in the class are \qquad inches tall or taller.
8. THINK SMARIER Is there any height for which there are no data? Explain.
\qquad

Heights in Inches	
Number of Inches	Tally

\qquad

Share and Show

MATH BOARD

1. Measure the length of three drawing tools from your desk to the nearest inch. Combine your data with several other classmates. Record the lengths in the table.
© 2. Make a line plot to show the data you collected.

2. Which length appears most often?

Problem Solving • Applications

Use the line plot at the right for 4-6.
4. members recorded the height of their avocado plants to the nearest inch in a line plot. Write a sentence to describe what the line plot shows.

Lengths in Inches

Number of Inches	Tally

Height of Avocado Plants (in Inches)
5. THINKSMARTER How many more plants are 8 or 9 inches tall than are 6 or 7 inches tall? Explain.
\qquad
\qquad

6. IHINKSMARTER How many plants are taller than 8 inches? ___ plants

Connect tol Reading

GTDEEPER

Make an Inference

Addison made the line plot below to show the high temperature every day for one month. What inference can you make about what season this is?

When you combine what you see with what you already know to come up with an idea, you are making an inference.

You can use what you know about weather and the data in the line plot to make an inference about the season.

You know that the numbers in the line plot are the high temperatures recorded during the month.

The highest temperature recorded was \qquad .

The lowest temperature recorded was \qquad .

The temperature recorded most often was \qquad .

Since all the high temperatures are greater than 100, you know the days were hot. This will help you make an inference about the season.

So, you can infer that the season is \qquad .
\qquad

Chapter 2 Review/Test

1. Mia made a tally table to record the different types of birds she saw at the bird feeder in the garden.

Birds at the Feeder			
Name	Tally		
Jay	\|	I	
Sparrow	HH HH II		
Finch	HH \|		
Blackbird	HH I		

For numbers la-1c, select True or False for each statement.
1a. Mia saw twice as many sparrows as blackbirds.

- True

○ False
1b. Mia saw 8 finches.
○ True

- False

1c. Mia saw 4 fewer jays than blackbirds.

- True
\bigcirc False

2. Jake asked 25 students in his class how close they live to school. The frequency table shows the results.

Part A

Complete the table and explain how you found the answer.

Miles to School		
	Boys	Girls
about 1 mile	4	5
about 2 miles		4
about 3 miles	3	2

\square

Part B

How many more students live about 2 miles or less from school than students who live about 3 miles from school?
Show your work.
\square

Use the picture graph for 3-6.

Students at Barnes School are performing in a play. The picture graph shows the number of tickets each class has sold so far.
3. How many tickets were sold altogether? Explain how you found the total.
\square
4. Choose the name from each box that makes the sentence true.

Ms. Brown's
Key: Each $V=5$ tickets.
Five fewer tickets were sol

than | Ms. Brown's |
| :---: |
| Mrs. Gold's |
| Mr. Castro's |

5. How many more tickets were sold by Ms. Brown's class than Mr. Castro's class?
\qquad tickets
6. What if Mrs. Gold's class sold 20 more tickets? Draw a picture to show how the graph would change.
\qquad

Use the frequency table for 7-8.

7. The Pet Shop keeps track of the number of fish it has for sale. The frequency table shows how many fish are in three tanks.

Fish in Tanks	
Tank	Number of Fish
Tank 1	16
Tank 2	9
Tank 3	12

Part A

Use the data in the table to complete the picture graph.

Part B

How many pictures did you draw for Tank 2? Explain.
\square
8. Each tank can hold up to 20 fish. How many more fish can the Pet Shop put in the three tanks?
(A) 60 fish
(C) 20 fish
(B) 23 fish
(D) 33 fish

Use the bar graph for 9-12.

9. Three more students play piano than which other instrument?
10. The same number of students play which two instruments?

Musical Instruments

11. For numbers 11a-11d, select True or False for each statement.

11a. Ten more students play guitar than play flute.

True

- True
\bigcirc False

11c. Six fewer students play flute and piano combined than play drums and guitar combined.

○ True
\bigcirc False
11d. Nine more students play piano and guitar combined than play drums.

○ True
False
12. There are more students who play the trumpet than play the flute, but fewer students than play the guitar. Explain how you would change the bar graph to show the number of students who play the trumpet.
\square
\qquad

Use the frequency table for 13-14.

13. Karen asks students what vegetables they would like to have in the school cafeteria. The table shows the results of her survey.

Part A

Favorite Vegetables	
Vegetable	Number of Votes
broccoli	15
carrots	40
corn	20
green beans	10

Use the data in the table to complete the bar graph.

Part B

How do you know how long to make the bars on your graph? How did you show 15 votes for broccoli? Explain.

14. How many more votes did the two most popular vegetables get than the two least popular vegetables? Explain how you solved the problem.
\qquad
\qquad
\qquad

Use the line plot for 15-16.

The line plot shows the number of goals the players on Scot's team scored.
15. For numbers 15a-15d, select True or False for each statement.

15a. Three players scored 2 goals.

Number of Goals

Scored

- True
\bigcirc False
15b. Six players scored fewer than 2 goals.
- True
- False

15c. There are 8 players on the team.

○ True
\bigcirc False
15d. Five players scored more than 1 goal.

- True
- False

16. What if two more people played and each scored 3 goals? Describe what the line plot would look like.
\square

Use the line plot for 17-18.

Robin collected shells during her vacation. She measured the length of each shell to the nearest inch and recorded the data in a line plot.

17. How many shells were 6 inches long or longer?
\qquad shells
18. How many more shells did Robin collect that were 5 inches long than 8 inches long?
\qquad shells

Understand

 Moltiplication
Show What You Know

Check your understanding of important skills.
Name \qquad

Count On to Add Use the number line. Write the sum.

1. $6+2=$ \qquad
2. $3+7=$ \qquad

Skip Count by Twos and Fives Skip count. Write the missing numbers.
3. $2,4,6$, \qquad , \qquad ,
4. $5,10,15$, \qquad , \qquad , \qquad

Model with Arrays Use the array. Complete.
5.

6.

\qquad $+$ \qquad $+$ \qquad $=$ \qquad
\qquad $+$ \qquad $=$ \qquad

Ryan's class went on a field trip to a farm. They saw 5 cows and 6 chickens. Be a Math Detective to find how many legs were on all the animals they saw.

Vocabulary Builder

Visualize It

Complete the tree map by using the review words.

Review Words
addend
addition
difference
number sentences
related facts
subtraction
sum

Preview Words
array
equal groups
factor
multiply
product

Understand Vocabulary
 Read the definition. Write the preview word that matches it.

1. A set of objects arranged in rows and columns
2. The answer in a multiplication problem
3. When you combine equal groups to find how many in all
4. A number that is multiplied by another number to find a product
\qquad

Count Equal Groups

Essential Question How can you use equal groups to find how many in all?

Unlock the Problem

Equal groups have the same number of objects in each group.

Tim has 6 toy cars. Each car has 4 wheels. How many wheels are there in all?

- How many wheels are on each car?
- How many equal groups of wheels are there?
- How can you find how many wheels in all?

(1) Activity Use counters to model the equal groups.

Materials - counters
STEP 1 Draw 4 counters in each group.
STEP 2 Skip count to find how many wheels in all. Skip count by 4 s until you say 6 numbers.
number of equal groups \rightarrow

There are \qquad groups with \qquad wheels in each group.

So, there are \qquad wheels in all.

Math
Mathematical Practices
What if Tim had 8 cars? How could you find the total number of wheels?

Example count equal groups to find the total.

Sam, Kyla, and Tia each have 5 pennies.
How many pennies do they have in all?
How many pennies does each person have? \qquad
How many equal groups of pennies are there? \qquad
Draw 5 counters in each group.

Think: There are \qquad groups of 5 pennies.

Think: There are \qquad fives.

Skip count to find how many pennies. \qquad
\qquad
So, they have \qquad pennies.

- THINKSMARIER Explain why you can skip count by 5 s to find how many.

Share and Show

MATH
BOARD

1. Complete. Use the picture. Skip count to find how many wheels in all.

\qquad groups of 2
\qquad twos
Skip count by 2s. 2, 4, \qquad , \qquad
So, there are \qquad wheels.
\qquad

Draw equal groups. Skip count to find how many.

2. 2 groups of 6 \qquad 3. 3 groups of 2 \qquad

Count equal groups to find how many.
$\checkmark 4$

\qquad groups of \qquad
\qquad in all
5.

\qquad
\qquad in all

On Your Dwn

Draw equal groups. Skip count to find how many.
6. 3 groups of 3 \qquad 7. 2 groups of 9 \qquad
8. G■DEEPER A toy car costs \$3. A toy truck costs \$4. Which costs more-4 cars or 3 trucks? Explain.
 Will he be able to put an equal number of toy cars on 3 shelves? Explain your answer.

Unlock the Problem

10. \qquad Tina, Charlie, and Amber have toy cars. Each car has 4 wheels. How many wheels do their cars have altogether?
a. What do you need to find?
b. What information will you use from the graph to solve the problem?

c. Show the steps you used to solve the problem.
d. So, the cars have \qquad wheels.
11. THINKSMARTER A bookcase has 4 shelves. Each shelf holds 5 books. How many books are in the bookcase?

Draw counters to model the problem. Then explain how you solved the problem.

Relate Addition and Multiplication

Essential Question How is multiplication like addition?

Unlock the Problem

Tomeka needs 3 apples to make one loaf
of apple bread. Each loaf has the same number of apples. How many apples does Tomeka need to make 4 loaves?

- How many loaves is Tomeka making?
- How many apples are in each loaf?
- How can you solve the problem?

(One Way Add equal groups.

Use the 4 circles to show the 4 loaves.
Draw 3 counters in each circle to show the apples Tomeka needs for each loaf.

Find the number of counters.
Complete the addition sentence.
$3+$ \qquad $+$ \qquad $+$ \qquad = \qquad
So, Tomeka needs \qquad apples to make \qquad loaves of apple bread.

How is the picture you drew like the addition sentence you wrote?

(1) Another Way Multiply.

When you combine equal groups, you can multiply to find how many in all.

Think: 4 groups of 3

Draw 3 counters in each circle.
Since there are the same number of counters in each circle, you can multiply to find how many in all.

Multiplication is another way to find how many there are altogether in equal groups.

Write:

$=12$
product
or

Read: Four times three equals twelve.
The factors are the numbers multiplied.
The product is the answer to a multiplication problem.

Share and Show

1. Write related addition and multiplication sentences for the model.

\qquad $+$ \qquad $+$ \qquad $=$ \qquad
\qquad
\qquad
\qquad

How would you change this model so you could write a multiplication sentence to match it?
\qquad

Draw a quick picture to show the equal groups. Then write related addition and multiplication sentences.
2. 3 groups of 6

$$
\text { 3. } 2 \text { groups of } 3
$$

\qquad
\qquad
\qquad
\qquad
\qquad \times \qquad $=$
\qquad
\qquad $\times \ldots=$ \qquad

On Your Own

Draw a quick picture to show the equal groups. Then write related addition and multiplication sentences.
4. 4 groups of 2
5. 5 groups of 4
$__{Z_{+}}^{+}+{ }_{\sim}^{+}+{ }_{\sim}=$
\qquad $\times \quad=$ \qquad
\qquad $+$ $+$ \qquad $+$ \qquad $+$ \qquad $=$
_
$\times \ldots$ \qquad
\qquad

Complete. Write a multiplication sentence.
© Houghton Mifflin Harcourt Publishing Company

7

8.

9. $2+2+2+2=$ \qquad
10. $4+4+4+4=$ \qquad
\qquad \times \qquad
11. $9+9+9=$ \qquad
\qquad \times \qquad $=$ \qquad
\qquad \times \qquad

$$
=
$$

\qquad

Problem Solving • Applications

Use the table for 12-13.

12. Morris bought 4 peaches. How much do the peaches weigh? Write a multiplication sentence to find the weight of the peaches.
\qquad \times \qquad $=$ \qquad ounces

Average Weight of Fruits

Fruit	Weight in Ounces
Apple	6
Orange	5
Peach	3
Banana	4

13. THINKSMARTER Thomas bought 2 apples. Sydney bought 4 bananas. Which weighed more-the 2 apples or the 4 bananas? How much more? Explain how you know.
\qquad

 write related multiplication and addition sentences for 6 $+4+3$. Does Shane's statement make sense? Explain.
\qquad
\qquad
14. GПDEEPER Write a word problem that can be solved using 3×4. Solve the problem.
\qquad
\qquad
15. THINISMARIER Select the number sentences that represent the model at the right. Mark all that apply.
(A) $3+6=9$
(C) $3 \times 6=18$
(B) $6+6+6=18$
(D) $6+3=9$
\qquad

Skip Count on a Number Line

Essential Question How can you use a number line to skip count and find how many in all?

Unlock the Problem

Caleb wants to make 3 balls of yarn for his cat to play with. He uses 6 feet of yarn to make each ball. How many feet of yarn does Caleb need in all?

Use a number line to count equal groups.

How many feet of yarn does Caleb
need for each ball? \qquad
How many equal lengths of yarn does he need? \qquad
Begin at 0 . Skip count by 6 s by drawing jumps on the number line.

How many jumps did you make? \qquad
How long is each jump? \qquad
Multiply. $3 \times 6=$ \qquad

So, Caleb needs \qquad feet of yarn in all.
 the number line?

What if Caleb made 4 balls of yarn with 5 feet of yarn in each ball? What would you do differently to find the total number of feet of yarn needed?

Share and Show

1. Skip count by drawing jumps on the number line. Find how many in 5 jumps of 4 . Then write the product.

Think: 1 jump of 4 shows 1 group of 4 .

$5 \times 4=$ \qquad

Draw jumps on the number line to show equal groups.

Find the product.
d 2. 3 groups of 8

3. 8 groups of 3

$8 \times 3=$ \qquad

Write the multiplication sentence shown by the number line.

\qquad

On Your Own

Draw jumps on the number line to show equal groups. Find the product.
5. 6 groups of 4

6. 7 groups of 3

$7 \times 3=$ \qquad
7. 2 groups of 10

$$
2 \times 10=
$$

\qquad

Write the multiplication sentence shown by the number lines.
8.

\qquad \times \qquad $=$ \qquad
9.

\qquad \times \qquad $=$ \qquad

Problem Solving • Applications Weald

10. (EIDEEPER Erin displays her toy cat collection on 3 shelves. She puts 8 cats on each shelf. If she collects 3 more cats, how many cats will she have?
\qquad
11. THINK SMARTER

Write two multiplication sentences that have a product of 12 . Draw jumps on the number line to show the multiplication.

\qquad

Hish-Chapter Checkpoint

Vocabulary

Choose the best term from the box.

1. When you combine equal groups, you can
\qquad to find how many in all. (p. 106)

Vocabulary
equal groups
factors
multiply
product
2. The answer in a multiplication problem is called the
\qquad . (p. 106)
3. The numbers you multiply are called the \qquad . (p. 106)

Concepts and Skills

Count equal groups to find how many. (3.0A.1)
4.

groups of \qquad
5.

groups of \qquad
\square in all
6.
groups of \qquad
\qquad in all

Write related addition and multiplication sentences. (3.0A.1)
7. 3 groups of 9
\qquad $+$ \qquad
\qquad
\qquad \times \qquad $=$
\qquad

Find the product. (3.0А.3)
9. 6 groups of 3

\qquad \times \qquad $=$ \qquad
10. Beth's mother cut some melons into equal slices. She put 4 slices each on 8 plates. Write a multiplication sentence to show the total number of melon slices she put on the plates. (3.00.1)
11. Avery had 125 animal stickers. She gave 5 animal stickers to each of her 10 friends. How many animal stickers did she have left? What number sentences did you use to solve? (3.0A.3)
12. Matt made 2 equal groups of marbles. Write a multiplication sentence to show the total number of marbles. (3.0A.1)

13. Lindsey has 10 inches of ribbon. She buys another 3 lengths of ribbon, each 5 inches long. How much ribbon does she have now? (3.0A.3)
14. Jack's birthday is in 4 weeks. How many days is it until Jack's birthday? Describe how you could use a number line to solve. (з.0А.3)
\qquad
\qquad
\qquad

Name

Problem Solving • Model Multiplication

Essential Question How can you use the strategy draw a diagram to solve one- and two-step problems?

Unlock the Problem

Three groups of students are taking drum lessons. There are 8 students in each group. How many students are taking drum lessons?

Read the Problem

What do I need to find?

I need to find how many
are taking drum lessons.

What information do I need to use?

Operations and Algebraic Thinking-
3.0A. 8 Also 3.OA.1,3.0A. 3

MATHEMATICAL PRACTICES MP.1, MP.4, MP.5, MP. 6

Solve the Problem

Complete the bar model to show the drummers.

Write 8 in each box to show the 8 students in each of the 3 groups.

Since there are equal groups, I can multiply to find the number of students taking drum lessons.
\qquad \times \qquad

$$
=\square
$$

\qquad

$$
=\square
$$

So, there are \qquad students in all.

(1) Try Another Problem

Twelve students in Mrs. Taylor's class want to start a band. Seven students each made a drum. The rest of the students made 2 shakers each. How many shakers were made?

Read the Problem
What do I need to find?

Solve the Problem

Record the steps you used to solve the problem.

12 students

What information do I need to use?

How will I use the information?

1. How many shakers in all did the students make? \qquad
2. How do you know your answer is reasonable? \qquad
\qquad

Share and Show

MATH
 BOARD

1. There are 6 groups of 4 students who play the trumpet in the marching band. How many students play the trumpet in the band?

First, draw a bar model to show each group of students.
Draw \qquad boxes and write \qquad in each box.

Then, multiply to find the total number of trumpet players.
\qquad \times \qquad $=\square$
\qquad
So, \qquad students play the trumpet in the marching band.
©2. What if there are 4 groups of 7 students who play the saxophone? How many students play the saxophone or trumpet?

On Youp Own

3. There are 3 rows of flute players in the marching band.

There are 7 students in each row. How many flute players are in the marching band?
ard? \qquad
4. THINKSMARTER Suppose there are 5 groups of 4 trumpet players. In front of the trumpet players are 18 saxophone players. How many students play the trumpet or saxophone?

Use the picture graph for 5-7.

5. The picture graph shows how students in Jillian's class voted for their favorite instrument. How many students voted for the guitar?
6. GחDEEPER On the day of the survey, two students

Favorite Instrument Survey

Flute	(-)
Trumpet	():)
Guitar	
Drum	
Key: Each $\odot=2$ votes.	

\qquad
\qquad
7. THINK SMARTER Jillian added the number of votes for two instruments and got a total of 12 votes. For which two instruments did she add the votes?
\qquad and \qquad
 invented 26 years after the harmonica. The electric guitar was invented 84 years after the flute. How many years was the electric guitar invented after the harmonica?
\qquad

Personal Math Trainer
9. THINKSMARTER Raul buys 4 packages of apple juice and 3 packages of grape juice. There are 6 drink boxes in each package. How many drink boxes does Raul buy? Show your work.

Model with Arrays

Essential Question How can you use arrays to model multiplication and find factors?

Unlock the Problem

Many people grow tomatoes in their gardens. Lee plants 3 rows of tomato plants with 6 plants in each row. How many tomato plants are there?

(1) Activity 1

Materials $■$ square tiles $■$ MathBoard

- You make an array by placing the same number of tiles in each row. Make an array with 3 rows of 6 tiles to show the tomato plants.

\triangle Tomatoes are a great source of vitamins.
- Now draw the array you made.
\square
- Find the total number of tiles.

Multiply.

So, there are \qquad tomato plants.

Math

Talk
Does the number of tiles change if you turn the array to show 6 rows of 3 ? Explain.

Mathematical Practices

(1) Activity 2 Materials $■$ square tiles $■$ MathBoard

Use 8 tiles. Make as many different arrays as you can, using all 8 tiles. Draw the arrays. The first one is done for you.
A \square
\square
\square B

8 rows of \qquad
1 row of 8
$8 \times$ \qquad $=8$
$1 \times 8=8$
\qquad

C

\qquad rows of \qquad \times \qquad $=8$
\qquad rows of \qquad
\qquad
\qquad \times \qquad $=8$

You can make \qquad different arrays using 8 tiles.

Share and Show

1. Complete. Use the array.

Write a multiplication sentence for the array.

© 3.

\qquad

On Your Own

Write a multiplication sentence for the array.

5.

Draw an array to find the product.
6. $3 \times 6=$
\qquad 7. $4 \times 7=$ \qquad
8. $3 \times 5=$ \qquad 9. $4 \times 4=$ \qquad
10. [TDDEEPER Use 6 tiles. Make as many different arrays as you can using all the tiles. Draw the arrays. Then write a multiplication sentence for each array.
\qquad

Problem Solving • Applications

Use the table to solve 11-12.

 grows vegetables in his garden. Draw an array and write the multiplication sentence to show how many corn plants Mr. Bloom has in his garden.
12. THINK SMARTER Could Mr. Bloom have planted his carrots in equal rows of 4 ? If so, how many rows could he have planted? Explain.

Mr. Bloom's Garden

Vegetable	Planted In
Beans	4 rows of 6
Carrots	2 rows of 8
Corn	5 rows of 9
Beets	4 rows of 7

13. (अ) 12 strawberry plants. Describe all of the different arrays that Mr. Bloom could make using all of his strawberry plants. The first one is done for you.

2 rows of 6;
\qquad
14. THINKSMARTER Elizabeth ran 3 miles each day for 5 days. How many miles did she run in all? Shade the array to represent the problem. Then solve.

Commutative Property of Multiplication

Essential Question How can you use the Commutative Property of Multiplication to find products?

Operations and Algebraic Thinking3.0A.5 Also 3.OA.1, 3.OA.3, 3.0A. 7 MATHEMATICAL PRACTICES

Circle the number that is the product.

How many tiles are in each row? \qquad
What multiplication sentence does your array show?
Suppose Dave arranges the boxes in 3 equal rows.
Draw a quick picture of your array.

How many tiles are in each row? \qquad
What multiplication sentence does your array show? \qquad
So, two ways Dave can arrange the 15 boxes are in \qquad rows of 3 or in 3 rows of \qquad .

Multiplication Property The Commutative Property

 of Multiplication states that when you change the order of the factors, the product stays the same. You can think of it as the Order Property of Multiplication.
$3 \times$ \qquad $=$ \qquad

$2 \times$ \qquad $=$ \qquad

So, $2 \times$ \qquad $=3 \times$ \qquad .

Math Idea

Facts that show the Commutative Property of Multiplication have the same factors in a different order.

$$
2 \times 3=6 \text { and } 3 \times 2=6
$$

- Explain how the models are alike and how they are different.

Try This! Draw a quick picture on the right that shows the Commutative Property of Multiplication. Then complete the multiplication sentences.

$\times 4=$ \qquad $\times 3=$ \qquad
(B)

$2 \times$ \qquad $=$ \qquad $5 \times$ \qquad $=$ \qquad
\qquad

Share and Show

MATH BOARD

1. Write a multiplication sentence for the array.

Write a multiplication sentence for the model. Then use the Commutative Property of Multiplication to write a related multiplication sentence.
2.
 \times \qquad $=$ \qquad
\qquad \times \qquad $=$ \qquad

\qquad
 \times \qquad
\qquad
\qquad \times \qquad $=$ \qquad

On Your Own

Write a multiplication sentence for the model. Then use the Commutative Property of Multiplication to write a related multiplication sentence.
5.

\qquad \times \qquad
6.

\qquad \times \qquad
\qquad \times \qquad
\qquad \times \qquad
\qquad

आघमघ
8. $3 \times 7=$ \qquad $\times 3$
9. $4 \times 5=10 \times$ \qquad
10. $3 \times 6=$ \qquad $\times 9$
11. $6 \times$ \qquad $=4 \times 9$
12. \qquad $\times 8=4 \times 6$
13. $5 \times 8=8 \times$
\qquad

Problem Solving • Applications

14. Jenna used pinecones to make 18 peanut butter bird feeders. She hung the same number of feeders in each of 6 trees. Draw an array to show how many feeders she put in each tree.

She put \qquad bird feeders in each tree.
15. What if Jenna hung the same number of feeders in each
 of 9 trees? How many feeders would she put in each tree?
\qquad
16. GПDEEPER Write two different word problems about 12 birds to show 2×6 and 6×2. Solve each problem.
\qquad
\qquad
\qquad
17. THINKSMARTER There are 4 rows of 6 bird stickers in Don's sticker album. There are 7 rows of 5 bird stickers in Lindsey's album. How many bird stickers do they have?
18. IHINKSMARTER Write the letter for each multiplication sentence on the left next to the multiplication sentence on the right that has the same value.
(A) $5 \times 7=$
 $6 \times 3=$
(B) $8 \times 2=$
 $2 \times 8=$
(C) $3 \times 6=$
 $4 \times 9=$
(D) $9 \times 4=\square$ \square $7 \times 5=$ \square
\qquad

Multiply with 1 and 0

YSBOperations and Algebraic Thinking3.0A. 5 Also 3.0A.1, 3.OA.3, 3.0A. 7 MATHEMATICAL PRACTICES MP.2, MP.3, MP.7, MP. 8

Unlock the Problem

- How many birdbaths are there?
- How many birds does Luke see in each birdbath?

What if there were 5 birdbaths with 0 birds in each of them? What would be the product? Explain.

- How do the birdbaths look now? \qquad

(1) Example

Jenny has 2 pages of bird stickers. There are 4 stickers on each page. How many stickers does she have in all?
$2 \times 4=$ \qquad Think: 2 groups of 4
So, Jenny has \qquad stickers in all.

Suppose Jenny uses 1 page of the stickers.
What fact shows how many stickers she has now?
\qquad \times \qquad $=$ \qquad Think: 1 group of 4

So, Jenny has \qquad stickers now.

Then, Jenny uses the rest of the stickers. What fact shows how many stickers Jenny has now?
\qquad \times \qquad $=$ \qquad Think: 0 groups of 4

So, Jenny has \qquad stickers now.

ERROR Alert

A 0 in a multiplication sentence means 0 groups or 0 things in a group, so the product is always 0 .

- What does each number in $0 \times 4=0$ tell you?

1. What pattern do you see when you multiply numbers with 1 as a factor?
Think: $1 \times 2=2 \quad 1 \times 3=3 \quad 1 \times 4=4$
\qquad
\qquad
2. What pattern do you see when you multiply numbers with 0 as a factor?
Think: $0 \times 1=0 \quad 0 \times 2=0 \quad 0 \times 5=0$

The Identity Property of Multiplication states that the product of any number and 1 is that number.

$$
\begin{array}{ll}
7 \times 1=7 & 6 \times 1=6 \\
1 \times 7=7 & 1 \times 6=6
\end{array}
$$

The Zero Property of Multiplication states that the product of zero and any number is zero.

$$
\begin{array}{ll}
0 \times 5=0 & 0 \times 8=0 \\
5 \times 0=0 & 8 \times 0=0
\end{array}
$$

\qquad

Share and Show

MATH BOARD

1. What multiplication sentence matches this picture? Find the product.

Find the product.
2. $5 \times 1=$ \qquad 3. $0 \times 2=$ \qquad
64. $4 \times 0=$ \qquad
6. $1 \times 6=$ \qquad
6. $3 \times 0=$
7. $1 \times 2=$ \qquad
8. $0 \times 6=$ \qquad
9. $8 \times 1=$ \qquad

On Your Own

Find the product.
10. $3 \times 1=$ \qquad 11. $8 \times 0=$ \qquad
12. $1 \times 9=$ \qquad
13. $0 \times 7=$ \qquad
14. $0 \times 4=$ \qquad
15. $10 \times 1=$ \qquad
16. $1 \times 3=$ \qquad
17. $6 \times 1=$ \qquad
18. $1 \times 0=$ \qquad
19. $1 \times 7=$ \qquad
20. $6 \times 0=$ \qquad
21. $1 \times 4=$ \qquad

Marifmaical (2) Use Reasoning Algebra Complete the multiplication sentence.
22. \qquad $\times 1=15$
23. $1 \times 28=$ \qquad 24. $0 \times 46=$ \qquad 25. $36 \times 0=$ \qquad
26. \qquad $\times 5=5$
27. $19 \times$ \qquad $=0$
28. \qquad $\times 0=0$
29. $7 \times$ \qquad $=7$
30. HIDEEPER $^{\text {E }}$ Each box holds 6 black markers and 4 red markers. Derek has 0 boxes of markers. Write a number sentence that shows how many markers Derek has. Explain how you found your answer.

Problem Solving • Applications

Use the table for 31-33.
31. At the circus Jon saw 5 unicycles. How many wheels are on the 5 unicycles? Write a multiplication sentence.
\qquad \times \qquad = \qquad
32. What's the Question? Julia used multiplication with 1 and the information

Circus Vehicles

Type of Vehicle	Number of Wheels
Car	4
Tricycle	3
Bicycle	2
Unicycle	1

\qquad
\qquad
33. THINKSMARIER Brian saw some circus vehicles. He saw 17 wheels in all. If 2 of the vehicles are cars, how many vehicles are bicycles and tricycles?
34. WRITE Math Write a word problem that uses multiplying with 1 or 0 . Show how to solve your problem.
\qquad
\qquad
35. THINK SMARTER For numbers 35a-35d, select True or False for each multiplication sentence.
35a. $6 \times 0=0$

- True
\bigcirc False
35b. $0 \times 9=9 \times 0$
- True
○ False
35c. $1 \times 0=1$
- True
- False
35 d. $3 \times 1=3$
- True
- False
\qquad

Chapter 3 Review/Test

1. There are 3 boats on the lake. Six people ride in each boat. How many people ride in the boats? Draw circles to model the problem and explain how to solve it.
\square
2. Nadia has 4 sheets of stickers. There are 8 stickers on each sheet. She wrote this number sentence to represent the total number of stickers.

$$
4 \times 8=32
$$

What is a related number sentence that also represents the total number of stickers she has?

$$
\begin{equation*}
8+4= \tag{A}
\end{equation*}
$$

\square
(B) $4+4+4+4=$ \square
(C) $8 \times 8=$
(D) $8 \times 4=$
3. Lindsay went hiking for two days in Yellowstone National Park. The first jump on the number line shows how many birds she saw the first day. She saw the same number of birds the next day.

Write the multiplication sentence that is shown on the number line.
\qquad \times \qquad $=$ \qquad

4. Paco drew an array to show the number of desks in his classroom.

Write a multiplication sentence for the array.

5. Alondra makes 4 necklaces. She uses 5 beads on each necklace.

For numbers 5a-5d, choose Yes or No to tell if the number sentence could be used to find the number of beads Alondra uses.
$5 a$.

$$
4 \times 5=\square
$$

○ Yes
○ No
$5 b$.
$4+4+4+4=\square$
\bigcirc Yes
○ No
5c. $5+5+5+5=$

- Yes
- No

5d.
$5+4=\square$
○ Yes
○ No
6. John sold 3 baskets of apples at the market. Each basket contained 9 apples. How many apples did John sell? Make a bar model to solve the problem.

\qquad
7. Select the number sentences that show the Commutative Property of Multiplication. Mark all that apply.
(A) $3 \times 2=2 \times 3$
(B) $4 \times 9=4 \times 9$
(C) $5 \times 0=0$
(D) $6 \times 1=1 \times 6$
(E) $7 \times 2=14 \times 1$
8. A waiter carried 6 baskets with 5 dinner rolls in each basket. How many dinner rolls did he carry? Show your work.
9. Sonya needs 3 equal lengths of wire to make 3 bracelets. The jump on the number line shows the length of one wire in inches. How many inches of wire will Sonya need to make the 3 bracelets?

\qquad inches
10. Josh has 4 dogs. Each dog gets 2 dog biscuits every day. How many biscuits will Josh need for all of his dogs for Saturday and Sunday?
\qquad biscuits
11. Jorge displayed 28 cans of paint on a shelf in his store.

Select other ways Jorge could arrange the same number of cans. Mark all that apply.
(A) 2 rows of 14
(D) 8 rows of 3
(B) 1 row of 28
(E) 7 rows of 4
(C) 6 rows of 5
12. Choose the number that makes the statement true.

The product of any number and | 0 |
| :---: |
| 1 |
| 10 | is zero.

13. James made this array to show that $3 \times 5=15$.

Part A

James says that $5 \times 3=15$. Is James correct? Draw an array to explain your answer.

Part B

Which number property supports your answer?
\qquad
\qquad
14. Julio has a collection of coins. He puts the coins in 2 equal groups. There are 6 coins in each group. How many coins does Julio have? Use the number line to show your work.

0123456789101112131415
coins
15. Landon collects trading cards.

Part A

Yesterday, Landon sorted his trading cards into 4 groups.
Each group had 7 cards. Draw a bar model to show
Landon's cards. How many cards does he have?

Part B

\qquad trading cards

Landon buys 3 more packs of trading cards today. Each pack has 8 cards. Write a multiplication sentence to show how many cards Landon buys today. Then find how many cards Landon has now. Show your work.
16. A unicycle has only 1 wheel. Write a multiplication sentence to show how many wheels there are on 9 unicycles.
\qquad \times \qquad
\qquad
17. Carlos spent 5 minutes working on each of 8 math problems. He can use 8×5 to find the total amount of time he spent on the problems.

For numbers 17a-17d, choose Yes or No to show which are equal to 8×5.
17a. $8+5$
○ Yes
\bigcirc No
17b. $5+5+5+5+5$
\bigcirc Yes
No
17c. $8+8+8+8+8$Yes
No
17d. $5+5+5+5+5+5+5+5$
\bigcirc Yes
No
18. Lucy and her mother made tacos. They put 2 tacos on each of 7 plates.

Select the number sentences that show all the tacos Lucy and her mother made. Mark all that apply.
(A) $2+2+2+2+2+2+2=14$
(B) $2+7=9$
(C) $7+7=14$
(D) $8+6=14$
(E) $2 \times 7=14$
19. Jayson is making 5 sock puppets. He glues 2 buttons on each puppet for its eyes. He glues 1 pompom on each puppet for its nose.

Part A

Write the total number of buttons and pompoms he uses. Write a multiplication sentence for each.

Eyes
\qquad buttons
\qquad $\times \quad=$ \qquad

Noses
___ pompoms
\qquad $=$ \qquad

Part B

After making 5 puppets, Jayson has 4 buttons and 3 pompoms left. What is the greatest number of puppets he can make with those items if he wants all his puppets to look the same? Draw models and use them to explain.

At most, he can make \qquad more puppets.

Chapter
 4miltip icarion facts end Strategles

Show What You Know

Check your understanding of important skills.
Name \qquad

Doubles and Doubles Plus One Write the doubles and doubles plus one facts.
1.

\qquad $+$ \qquad $=$ \qquad
2.

\qquad $+$ \qquad
\qquad $+$ \qquad $=$ \qquad
\qquad $+$ \qquad $=$ \qquad

- Equal Groups Complete.

groups of \qquad
\qquad in all
\qquad
4.

\qquad groups of \qquad
\qquad in all

Stephen needs to use these clues to find a buried time capsule.

- Start with a number that is the product of 3 and 4.
- Double the product and go to that number.
- Add 2 tens and find the number that is 1 less than the sum.

Be a Math Detective to help Stephen find the time capsule.

Vocabulary Builder

Visualize It

Complete the tree map by using the words with a \checkmark.

Review Words
\checkmark arrays
\checkmark Commutative Property of Multiplication
even
\checkmark factors
\checkmark Identity Property of Multiplication
odd
\checkmark product

Preview Words
\checkmark Associative Property of Multiplication
Distributive Property multiple

Understand Vocabulary

Complete the sentences by using the preview words.

1. The \qquad Property of Multiplication states that when the grouping of factors is changed, the product is the same.
2. A \qquad of 5 is any product that has
5 as one of its factors.
3. The \qquad Property states that multiplying a sum by a number is the same as multiplying each addend by the number and then adding the products.
Example: $2 \times 8=2 \times(4+4)$

$$
\begin{aligned}
& 2 \times 8=(2 \times 4)+(2 \times 4) \\
& 2 \times 8=8+8 \\
& 2 \times 8=16
\end{aligned}
$$

\qquad

Multiply with 2 and 4

Essential Question How can you multiply with 2 and 4?

Operations and Algebraic Thinking-3.0A. 3
Also 3.OA.1, 3.0A. 7
MATHEMATICAL PRACTICES
MP.1, MP.4, MP.5, MP. 7

Unlock the Problem

Two students are in a play. Each of the students has 3 costumes. How many costumes do they have in all?

Multiplying when there are two equal groups is like adding doubles.

Find 2×3.

MODEL
Draw counters to show the costumes.

THINK
2 groups of 3
$3+3$
6

- What does the word "each" tell you?
- How can you find the number of costumes the 2 students have?

So, the 2 students have \qquad costumes in all.

Try This!

$2 \times 1=1+1=2$
© Houghton Mifflin Harcourt Publishing Company

$$
2 \times \ldots=6+\ldots=
$$

$2 \times$ \qquad $=7+$ \qquad $=$ \qquad
$2 \times$ \qquad $=8+$ \qquad $=$ \qquad
$2 \times$ \qquad $=9+$ \qquad $=$ \qquad

(I) Count by 2 s .

When there are 2 in each group, you can count by 2 s to find how many there are in all.

There are 4 students with 2 costumes each.
How many costumes do they have in all?
Skip count by drawing the jumps on the number line.

So, the 4 students have \qquad in all.

- How can you decide whether to count by 2 s or double?

(1. Example Use doubles to find 4×5.

When you multiply with 4, you can multiply with 2 and then double the product.

MULTIPLY WITH 2
4×5

DOUBLE THE PRODUCT

Share and Show

1. Double 2×7 to find 4×7.

Multiply with 2. $2 \times 7=$ MATH
BOARD

Double the product. $14+14=$ \qquad
\qquad .

Explain how knowing the product for 2×8 helps you find the product for 4×8.
\qquad
Write a multiplication sentence for the model.
2.

© 3.

Find the product.
4. $\begin{array}{r}6 \\ \times 2 \\ \hline\end{array}$
5. 9
$\times 4$
6. 2
$\times 7$
7. 8
$\begin{array}{r}\times 4 \\ \hline\end{array}$
© 8.5
$\times 2$

Find the product. Use your MathBoard.
9. 10
$\begin{array}{r}\times \quad 4 \\ \hline\end{array}$
10. 2
$\times 9$
11. 4
$\times 6$
12. 7
$\times 2$
13. 2
$\times 0$
14. $\begin{array}{r}4 \\ \times 3 \\ \hline\end{array}$
15. 2
$\times 8$
16. 4
$\times 4$
17. 10
$\times 2$
\times
18. 4
 for the factors 2 and 4.
19.

\times	1	2	3	4	5	6	7	8	9	10
2										
4										

Martimaical 2) Reason Quantitatively Algebra Write the unknown number.
21. $4 \times 8=16+$ \qquad 22. $20=2 \times$ \qquad 23. $8 \times 2=10+$ \qquad
24. THINKSMARIER Lindsey, Louis, Sally, and Matt each brought 5 guests to the school play. How many guests were at the school play? Explain.

Unlock the Problem

25. GDDEEPER

Ms. Peterson's class sold tickets for the class play. How many tickets in all did Brandon and Haylie sell?
a. What do you need to find?

Play Tickets

Brandon
Haylie
Elizabeth

Key: Each 開 $=2$ tickets sold.
b. Why should you multiply to find the number of tickets shown? Explain.
\qquad
\qquad
c. Show the steps you used to solve the problem.
d. Complete the sentences.

Brandon sold ___ tickets. Haylie sold
\qquad tickets. So, Brandon and Haylie
sold \qquad tickets.
 the school play. How many tickets should be on the picture graph above to show his sales? Explain.
27. THINK SMARTER Alex exchanges some dollar bills for quarters at the bank. He receives 4 quarters for each dollar bill. Select the numbers of quarters that Alex could receive. Mark all that apply.
(A) 16
(D) 32
(B) 18
(E) 50
(C) 24
\qquad

Multiply with 5 and 10

Essential Question How can you multiply with 5 and 10?

Operations and Algebraic Thinking-3.0A. 3
Also 3.OA.1, 3.0A. 7
MATHEMATICAL PRACTICES
MP.1, MP.4, MP. 7

Unlock the Problem
Marcel is making 6 toy banjos. He needs 5 strings for each banjo. How many strings does he need in all?

I Use skip counting.
Skip count by 5 s until you say 6 numbers.
5, \qquad , \qquad , \qquad , \qquad , \qquad
$6 \times 5=$ \qquad
So, Marcel needs \qquad strings in all.

(1) Example 1 Use a number line.

Each string is 10 inches long. How many inches of string will Marcel use for each banjo?

Think: 1 jump = 10 inches

- Draw 5 jumps for the 5 strings. Jump 10 spaces at a time for the length of each string.
- You land on 10, \qquad , \qquad , \qquad and \qquad . $5 \times 10=$ \qquad
The numbers $10,20,30,40$, and 50 are multiples of 10 .
So, Marcel will use \qquad inches of string for each banjo.

A multiple of 10 is any product that has 10 as one of its factors.

What do you notice about the multiples of 10 ?

1 Example 2 use a bar model.

Marcel bought 3 packages of strings. Each package cost 104 . How much did the packages cost in all?

So, the packages of strings cost \qquad in all.

Share and Show

MATH BOARD

1. How can you use this number line to find 8×5 ?

\qquad

Explain how knowing 4×5 can help you find 4×10.
Find the product.
2. $2 \times 5=$ \qquad
3. \qquad $=6 \times 10$
4. \qquad $=5 \times 5$
5. $10 \times 7=$
\qquad
6. 10
$\begin{array}{r}\times \quad 4 \\ \hline\end{array}$
7. $\begin{array}{r}5 \\ \times 6 \\ \hline\end{array}$
8. 10
$\times 0$
9.$\times 3$
10. $\begin{array}{r}7 \\ \times 5 \\ \hline\end{array}$
11. 5
$\times 10$
12. 4
$\times 5$
13.9$\times 10$
\qquad

On Your Own

Find the product.

14. $5 \times 1=$ \qquad 15. \qquad $=10 \times 2$
15. \qquad $=4 \times 5$
16. $10 \times 10=$ \qquad
17. $10 \times 0=$ \qquad 19. $10 \times 5=$ \qquad 20. \qquad $=1 \times 5$
18. \qquad $=5 \times 9$
19. 5
$\times 0$
20. 4
$\times 8$
21. 10
$\times 5$
22. 10
$\times 8$
23. 9 $\times 2$
24. 4
$\times 10$
25. 5
$\begin{array}{r}\times 9 \\ \hline\end{array}$
26. 5
$\begin{array}{r} \\ \times 0 \\ \hline\end{array}$
27. 5
$\begin{array}{r}\times 7 \\ \hline\end{array}$

MATHEMATICA PRACTICE

Identify Relationships Algebra
Use the pictures to find the unknown numbers.
34.

$3 \times$ \qquad $=$ \qquad
35.

\qquad $\times 3=$ \qquad

36. Marcel played 5 songs on the banjo. If each song lasted 8 minutes, how long did he play?

minutes
37. There are 6 banjo players. If each player needs 10 sheets of music, how many sheets of music are needed?

sheets

Problem Solving • Applications Warld

Use the table for 38-40.

38. John and his dad own 7 banjos. They want to replace the strings on all of them. How many strings should they buy? Write a multiplication sentence to solve.
39. GחDEEPER Mr. Lemke has 5 guitars, 4 banjos, and 2 mandolins. What is the total number of

Stringed Instruments	
Instrument	Strings
Guitar	6
Banjo	5
Mandolin	8
Violin	4

40. THINK SMARTER The orchestra has 5 violins and 3 guitars that need new strings. What is the total number of strings that need to be replaced? Explain.

\qquad
\qquad
41. WRITE •Math What's the Error? Mr. James has 3 banjos. Mr. Lewis has 5 times the number of banjos Mr. James has. Riley says Mr. Lewis has 12 banjos. Describe her error.
\qquad
\qquad
42. THINK SMARIER Circle the number that makes the multiplication sentence true.

\qquad

Multiply with 3 and 6

Essential Question What are some ways to multiply with 3 and 6?

Unlock the Problem

Sabrina is making triangles with toothpicks. She uses 3 toothpicks for each triangle. She makes 4 triangles.
How many toothpicks does Sabrina use?

Draw a picture.
STEP 1
Complete the 4 triangles.

> Why does Sabrina need 3 toothpicks for each triangle?

STEP 2

Skip count by the number of sides. \qquad - \qquad
How many triangles are there in all? \qquad
How many toothpicks are in each triangle? \qquad
How many toothpicks are there in all?
$4 \times$ \qquad $=$ \qquad
4 triangles have \qquad toothpicks.

So, Sabrina uses \qquad toothpicks.

Math

How can you use what you know about the number of toothpicks needed for 4 triangles to find the number of toothpicks needed for 8 triangles? Explain.

Try This! Find the number of toothpicks needed for 6 triangles.

Draw a quick picture to help you.
How did you find the answer?

Jessica is using craft sticks to make 6 octagons. How many craft sticks will she use?

(1) One Way Use 5 s facts and addition.

\triangle An octagon has 8 sides.
To multiply a factor by 6 , multiply the factor by 5 , and then add the factor.
$6 \times 7=5 \times 7+7=42$
$6 \times 6=5 \times 6+$ \qquad $=$ \qquad
$6 \times 8=5 \times$ \qquad $+$ \qquad $=$ \qquad $6 \times 9=$ \qquad \times \qquad $+$ \qquad
So, Jessica will use \qquad craft sticks.

P) Other Ways

(A) Use doubles.

When at least one factor is an even number, you can use doubles.
$6 \times 8=$
First multiply with half of an even number.
$3 \times 8=$ \qquad
After you multiply, double the product. \qquad $+24=$ \qquad
$6 \times 8=$ \qquad

(B) Use a multiplication table.

Find the product 6×8 where row 6 and column 8 meet.
$6 \times 8=$ \qquad

- Shade the row for 3 in the table. Then, compare the rows for 3 and 6 . What do you notice about their products?

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10
2	0	2	4	6	8	10	12	14	16	18	20
3	0	3	6	9	12	15	18	21	24	27	30
4	0	4	8	12	16	20	24	28	32	36	40
5	0	5	10	15	20	25	30	35	40	45	50
6	0	6	12	18	24	30	36	42	48	54	60
7	0	7	14	21	28	35	42	49	56	63	70
8	0	8	16	24	32	40	48	56	64	72	80
9	0	9	18	27	36	45	54	63	72	81	90
10	0	10	20	30	40	50	60	70	80	90	100

\qquad

Share and Show

MATH
 BOARD

1. Use 5 s facts and addition to find $6 \times 4=\square$.
$6 \times 4=$ \qquad \times \qquad $+$ \qquad
\qquad $6 \times 4=$ \qquad -

Explain how you would use 5 s facts and addition to find 6×3.

Find the product.

2. $6 \times 1=$ \qquad
3. \qquad $=3 \times 7$
© 4. \qquad $=6 \times 5$
(6) $5.3 \times 9=$ \qquad

On Your Own

Find the product.

6. $2 \times 3=$ \qquad
7. \qquad $=3 \times 6$
8. \qquad

$$
=3 \times 0
$$

9. $1 \times 6=$ \qquad
10. $\begin{array}{r}3 \\ \times 6 \\ \hline\end{array}$
11. 8
$\times 3$
12. 6
$\times 7$
13. 3
$\times 3$
14. 10
6
\times

Multiply by 3.		
	Factor	Product
	4	
15.	4	
		18

17.

Multiply by 6.	
Factor	Product
5	
7	

19.

Multiply by	
Factor	Product
3	15
2	

Problem Solving • Applications

Use the table for 21-22.
21. The table tells about quilt pieces Jenna has made. How many squares are there in 6 of Jenna's quilt pieces?
\qquad

22. GIDEEPER How many more squares than triangles are in 3 of Jenna's quilt pieces?
23. THINKSMARTER Alli used some craft sticks to make shapes. If she used one craft stick for each side of the shape, would Alli use more craft sticks for 5 squares or 6 triangles? Explain.

24. explain the Commutative Property of Multiplication with the factors 3 and 4.
\qquad
\qquad
25. THINK SMARIER Omar reads 6 pages in his book each night. How many pages does Omar read in 7 nights?

Use the array to explain how you know your answer is correct.

Distributive Property

Essential Question How can you use the Distributive Property to find products?

Operations and Algebraic

Thinking-3.0A.5 Also 3.OA.1,
3.OA.3, 3.OA.4, 3.0A. 7

MATHEMATICAL PRACTICES

Unlock the Problem

Mark bought 6 new fish for his aquarium. He paid $\$ 7$ for each fish. How much money did he spend in all?

Find $6 \times \$ 7$.
You can use the Distributive Property

- Describe the groups in this problem.
- Circle the numbers you will use to solve the problem. to solve the problem.

The Distributive Property states that multiplying a sum by a number is the same as multiplying each addend by the number and then adding the products.

Remember

sum-the answer to an addition problem
addends-the numbers being added

(1) Activity Materials \square square tiles

Make an array with tiles to show 6 rows of 7 .

$6 \times 7=\square$
$6 \times 7=6 \times(5+2)$
$6 \times 7=(6 \times 5)+(6 \times 2)$
$6 \times 7=$ \qquad $+$ \qquad Add the products. $6 \times 7=$ \qquad So, Mark spent \$ \qquad for his new fish.

Think: $7=5+2$
Multiply each addend by 6 .

Break apart the array to make two smaller arrays for facts you know.

$6 \times 5 \quad 6 \times 2$

Mathematical Practices
What other ways could you break apart the 6×7 array?

Try This!

Suppose Mark bought 9 fish for $\$ 6$ each.
You can break apart a 9×6 array into two smaller arrays for facts you know. One way is to think of 9 as $5+4$. Draw a line to show this way. Then find the product.

$9 \times 6=$ \qquad $+$ \qquad
So, Mark spent \$ \qquad for 9 fish.

Share and Show

MATH BOARD

1. Draw a line to show how you could break apart this 6×8 array into two smaller arrays for facts you know.

- What numbers do you multiply? \qquad and \qquad
\qquad and \qquad
- What numbers do you add? \qquad $+$ \qquad $6 \times 8=6 \times\left(__{\sim}+\ldots\right)$
$6 \times 8=(\ldots \times$ \qquad) + (\qquad \times \qquad
$6 \times 8=$ \qquad $+$ \qquad
$6 \times 8=$ \qquad

Write one way to break apart the array.

 Then find the product.

On Your Own

4. [TDDEFPER Shade tiles to make an array that shows a fact with 7,8 , or 9 as a factor. Write the fact. Explain how you found the product.
\qquad
\qquad
\qquad
\qquad

I_ I I_ I I_ I I_ I I__I I_ _ I I _ I I_ I I_ I
r-1r-1 r-1 r-1 r-1 r-1 \quad -

I_ I I_ I I_ I I_ I I _ I I_ I I _ I I _ - I I_ I
5. THINK SMARTER Robin says, "I can find 8×7 by multiplying 3×7 and doubling it." Does her statement make sense? Justify your answer.
\qquad
6. THINKSMARTER For numbers 6a-6d, choose Yes or No to indicate whether the number sentence has the same value as 7×5.
6a. $7+(3+2)=$
○ Yes
\bigcirc No
6b. $7 \times(3+2)=$
○ Yes
\bigcirc No
6c. $(5 \times 4)+(5 \times 3)=$

- Yes
○ No
6d. $(7 \times 2)+(7 \times 5)=$
○ Yes
\bigcirc No

Problem Solving • Applications (abald

What's the Error?

 Brandon needs 8 boxes of spinners for his fishing club. The cost of each box is $\$ 9$.
How much will Brandon pay?

$8 \times \$ 9=$

Look at how Brandon solved the problem.

Find and describe his error.

$$
\begin{aligned}
& 8 \times 9=(4 \times 9)+(5 \times 9) \\
& 8 \times 9=36+45 \\
& 8 \times 9=81
\end{aligned}
$$

Use the array to help solve the problem

 and correct his error.

So, Brandon will pay \$ \qquad for the spinners.
\qquad

Multiply with 7

Essential Question What strategies can you use to multiply with 7?

Operations and Algebraic

Thinking-3.0A.7 Also 3.0A.1,
3.OA.3,3.0A.4, 3.0A. 5

MATHEMATICAL PRACTICES
MP.2, MP.7, MP. 8

Unlock the Problem

Jason's family has a new puppy. Jason takes a turn walking the puppy once a day. How many times will Jason walk the puppy in 4 weeks?

Find 4×7.

- How often does Jason walk the puppy?
- How many days are in 1 week?
(1) One Way use the Commutative Property of Multiplication.
If you know 7×4, you can use that fact to find 4×7.
You can change the order of the factors and the product is the same.

$$
7 \times 4=
$$

\qquad so $4 \times 7=$ \qquad .

So, Jason will walk the puppy \qquad times in 4 weeks.

I Other Ways

(A) Use the Distributive Property.

STEP 1 Complete the array to show 4 rows of 7 .

STEP 2 Draw a line to break the array into two smaller arrays for facts you know.

STEP 3 Multiply the facts for the smaller arrays. Add the products.

So, $4 \times 7=$ \qquad .
\qquad .

B Use a fact you know.

Multiply. $4 \times 7=$ \square

- Start with a fact you know.

- Add a group of 7 for 3×7. \qquad
- Then add 7 more for 4×7. \qquad
$3 \times 7+7=$

So, $4 \times 7=$ \qquad .

Share and Show

1. Explain how you could break apart an array to find 6×7. Draw an array to show your work.
\qquad
\qquad

Find the product.
2. $9 \times 7=$ \qquad
3. \qquad $=5 \times 7$
4.
\qquad $=7 \times 3$
5. $1 \times 7=$ \qquad

On Your Dwn

Find the product.

6. \qquad $=7 \times 7$
7. $6 \times 7=$ \qquad
8. \qquad $=7 \times 10$
9. \qquad $=7 \times 2$
10. $\begin{array}{r}7 \\ \times 3\end{array}$
11. 6
$\times 3$
$\times 7$
12. 9
13. 8
$\begin{array}{r}7 \\ \hline\end{array}$
14. 1
15. 4
$\times 7$
$\times 7$
16. 10
$\begin{array}{r}\times \quad 4 \\ \hline\end{array}$
17. 0
$\times 7$
18. 2
$\times 7$
19. 5
$\times 7$
20. 6
$\times 9$
21. 7
$\times 8$

Problem Solving • Applications Werld

Use the table for 22-24.
22. Lori has a dog named Rusty. How many baths will Rusty have in 7 months?
23. THINKSMARIER How many more cups of water than food will Rusty get in 1 week?
\qquad
24. HTDEEPER Tim's dog, Midnight, eats 28 cups of food in a week. Midnight eats the same amount each day. In one day, how many more cups of food will Midnight eat than Rusty? Explain.
\qquad
\qquad
\qquad
\qquad
25. José walks his dog 10 miles every week. How many miles do they walk in 7 weeks?
26. Zoey, his dog, for a 3-mile walk twice a day. How many miles do they walk in one week?
27. THINK SMARIER Alia arranges some playing cards in 7 equal rows with 7 cards in each row. How many cards does Alia arrange?

Connect to Reading

Summarize

To help you stay healthy, you should eat a balanced diet and exercise every day.

The table shows the recommended daily servings for third graders. You should eat the right amounts of the food groups.

Suppose you want to share with your friends what you learned about healthy eating. How could you summarize what you learned?

When you summarize, you restate the most
Food Group

Recommended Daily Servings
Food Group Servings important information in a shorter way to help you understand what you have read.

- To stay healthy, you should eat a balanced
\qquad and \qquad every day.
- A third grader should eat 3 cups of \qquad , such as milk and cheese, each day.
- A third grader should eat \qquad of vegetables and fruits each day.

How many cups of vegetables and fruits should a third grader eat in 1 week? \qquad
Remember: 1 week $=7$ days

- A third grader should eat \qquad of whole grains, such as bread and cereal, each day.

How many ounces of whole grains should a third grader eat in 1 week? \qquad
\qquad

\checkmark Mid-Chapter Checkpoint

Vogabulary

Choose the best term from the box to complete the sentence.

1. A \qquad of 4 is any product that has 4 as one of its factors. (p. 143)

Vocabulary
Commutative Property of Multiplication
Distributive Property multiple
2. This is an example of the \qquad Property.

$$
3 \times 8=(3 \times 6)+(3 \times 2)
$$

This property states that multiplying a sum by a number is the same as multiplying each addend by the number and then adding the products. (p. 151)

Concepts and Skills

Write one way to break apart the array.
Then find the product. (3.0A.5)

\qquad
\qquad
Find the product. (3.0A.3, 3.0A.7)
4.

\qquad
\qquad
6. $5 \times 6=$ \qquad
\qquad
5. $3 \times 1=$ \qquad
7. \qquad $=7 \times 7$
8. $2 \times 10=$
9. $\quad 2$
10. 6
$\begin{array}{r}\times 6 \\ \hline\end{array}$
11. 8
$\times 7$
12. 6
13. 3
$\begin{array}{r} \\ \times \\ \hline\end{array}$
$\begin{array}{r}\times 8 \\ \hline\end{array}$
\qquad
14. Lori saw 6 lightning bugs. They each had 6 legs. How many legs did the lightning bugs have in all? (3.0A.3)
15. Zach walked his dog twice a day, for 7 days. Moira walked her dog three times a day for 5 days. Whose dog was walked more times? How many more? (3.0A.3)
16. Annette buys 4 boxes of pencils. There are 8 pencils in each box. Jordan buys 3 boxes of pencils with 10 pencils in each box. Who buys more pencils? How many more? (3.0A.3)
17. Shelly can paint 4 pictures in a day. How many pictures can she paint in 7 days? (3.0A.7)
\qquad

Associative Property of Multiplication

Essential Question How can you use the Associative Property of Multiplication to find products?
connect You have learned the Associative Property of Addition. When the grouping of the addends is changed, the sum stays the same.

$$
(2+3)+4=2+(3+4)
$$

The Associative Property of Multiplication states that when the grouping of the factors is changed, the product is the same. It is also called the Grouping Property of Multiplication.

$$
2 \times(3 \times 4)=(2 \times 3) \times 4
$$

Unlock the Problem

Each car on the roller coaster has 2 rows of seats. Each row has 2 seats. There are 3 cars in each train. How many seats are on each train?
(1) Use an array.

You can use an array
to show $3 \times(2 \times 2)$.
$3 \times(2 \times 2)=\square$
$3 \times$ \qquad $=$ \qquad
So, there are 3 cars with 4 seats in each car.

There are \qquad seats on each roller coaster train. coaster train.

- Underline what you need to find.
- Describe the grouping of the seats.

You can change the grouping with parentheses and the product is the same.
$(3 \times 2) \times 2=$
\qquad $\times 2=$ \qquad

Example Use the Commutative and Associative Properties.

You can also change the order of the factors.
The product is the same.

$(4 \times 3) \times 2=\square$		
$4 \times(3 \times 2)=\square \quad$ Associative Property	$4 \times(3 \times 2)=\square$ $4 \times \square$	$4 \times(2 \times 3)=\square$ $(4 \times 2) \times 3=\square$ $\times 3=$

Share and Show

1. Find the product of 5,2 , and 3 . Write another way to group the factors. Is the product the same? Why?
\qquad
\qquad
Write another way to group the factors. Then find the product.
2. $(2 \times 1) \times 7$
\qquad
\qquad
3. $5 \times(2 \times 5)$
\qquad
\qquad
4. $2 \times(2 \times 5)$
\qquad
\qquad
5. $3 \times(3 \times 4)$
\qquad
\qquad
6. $3 \times(2 \times 6)$
\qquad
\qquad
7. $(1 \times 3) \times 6$

Mathematical Practices
Choose one answer from
Exercises 2-7. Explain why you multiplied those factors first.
\qquad

On Your Dwn

Write another way to group the factors. Then find the product.
8. $(2 \times 3) \times 3$
\qquad
\qquad
11. $(3 \times 2) \times 4$
\qquad
\qquad
14. $2 \times(4 \times 2)$
\qquad
9. $(8 \times 3) \times 2$
\qquad
12. $(6 \times 1) \times 4$
\qquad
\qquad
15. $5 \times(2 \times 4)$
\qquad
\qquad
10. $2 \times(5 \times 5)$
13. $2 \times(2 \times 6)$
\qquad
\qquad
16. $9 \times(1 \times 2)$
\qquad
\qquad

Practice: Copy and Solve Use parentheses and multiplication properties. Then, find the product.
17. $6 \times 5 \times 2$
18. $2 \times 3 \times 5$
19. $3 \times 1 \times 6$
20. $2 \times 5 \times 6$
21. $2 \times 0 \times 8$
22. $1 \times 9 \times 4$
23. $2 \times 2 \times 2$
24. $4 \times 2 \times 2$
25. $2 \times 4 \times 5$
26. $2 \times 6 \times 1$
27. $2 \times 9 \times 3$
28. $2 \times 7 \times 2$

THINKSMARIER Algebra Find the unknown factor.

29. $7 \times\left(2 \times _\right.$_ $)=56$
30. $30=6 \times(5 \times$ \qquad 31. \qquad $\times(2 \times 2)=32$
31. $42=7 \times(2 \times$ \qquad)
32. $8 \times(5 \times$ \qquad) $=40$
33. $0=$ \qquad $\times(25 \times 1)$
34. $60=(2 \times$ \qquad) $\times 6$
35. $4 \times(3 \times$ \qquad) $=24$

Problem Solving • Applications

Use the graph for 38-39.

38.

мй Each car on the Steel Force train has 3 rows with 2 seats in each row. How many seats are on the train? Draw a quick picture.

39. THINKSMARTER A Kingda Ka train has 4 seats per car, but the last car has only 2 seats. How many seats are on one Kingda Ka train?
40. GIDEEPER Sense or Nonsense? Each week, Kelly works 2 days for 4 hours each day and earns $\$ 5$ an hour. Len works 5 days for 2 hours each day and earns $\$ 4$ an hour. Kelly says they both earn the same amount. Does this statement make sense? Explain.
\qquad
\qquad
41. THINK'SMARTIR Clayton packs 3 boxes. He puts 3 lunch bags in each box. There are 4 sandwiches in each lunch bag. How many sandwiches does Clayton pack? Show your work.
\qquad

Patterns on the Multiplication Table

Essential Question How can you use properties to explain patterns on the multiplication table?

Operations and Algebraic
 Thinking-3.0A. 9 Also 3.OA. 5

 MATHEMATICAL PRACTICES MP.1, MP.3, MP. 7Unlock the Problem
You can use a multiplication table to explore number patterns.

() Activity 1

Materials ■ MathBoard

- Write the products for the green squares. What do you notice about the products?
\qquad
\qquad
\qquad
Write the multiplication sentences for the products on your MathBoard.

x	0	1	2	3	4	5	6	7	8	9	10
0											
1											
2											
3											
4											
5											
6											
7											
8											
9											
10											

\qquad

- Will this be true in the yellow squares? Explain using a property you know.
\qquad
Write the products for the yellow squares.
- Complete the columns for 1,5 , and 6 . Look across each row and compare the products. What do you notice?
\qquad

What property does this show?

(1) Activity 2

Materials ■ yellow and blue crayons

- Shade the rows for $0,2,4,6,8$, and 10 yellow.
- What pattern do you notice about each shaded row? \qquad
- Compare the rows for 2 and 4 . What do you notice about the products?
- Shade the columns for $1,3,5,7$, and 9 blue.

\times	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$											
$\mathbf{1}$											
$\mathbf{2}$											
$\mathbf{3}$											
$\mathbf{4}$	$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0
$\mathbf{5}$	$\mathbf{0}$	1	2	3	4	5	6	7	8	9	10
$\mathbf{6}$	$\mathbf{2}$	4	6	6	8	10	12	14	16	18	20
$\mathbf{7}$	4	8	9	12	15	18	21	24	27	30	
$\mathbf{8}$	5	16	20	24	28	32	36	40			
$\mathbf{9}$	6	6	12	18	24	30	36	42	48	54	60
$\mathbf{0}$	7	14	21	28	35	42	49	56	63	70	
$\mathbf{1 0}$	8	16	24	32	40	48	56	64	72	80	
0	9	18	27	36	45	54	63	72	81	90	
0	10	20	30	40	50	60	70	80	90	100	

- What do you notice about the products for each shaded column?
\qquad
- Compare the products for the green squares. What do you notice? What do you notice about the factors?
- What other patterns do you see?

Share and Show

MATH BOARD

1. Use the table to write the products for the row for 2.
\qquad
Describe a pattern you see.

What do you notice about the product of any number and 2?

Is the product even or odd? Write even or odd.
2. 5×8 \qquad
3. 6×3 \qquad 4. 3×5 \qquad 5. 4×4
\qquad

Use the multiplication table. Describe a pattern you see.

6. in the column for 10
\qquad
\qquad

On Your Own

Is the product even or odd? Write even or odd.
8. 4×8 \qquad 9. 5×5 \qquad 10. 7×4 \qquad 11. 2×9
12. HIDEEPER Correct the pattern. Rewrite your pattern.
$6,12,18,22,30,36$ \qquad

Problem Solving • Applications (raold

Complete the table. Then describe a pattern you see in the products.
13.

\times	2	4	6	8	10
5					

14.

\times	1	3	5	7	9
5					

\qquad
\qquad
\qquad
15. THINKSMARTER Explain how patterns of the ones digits in the products relate to the factors in Exercises 13 and 14.
\qquad
\qquad
\qquad

Personal Math Trainer

16. IHINKSMARTER Helene selected an odd number to multiply by the factors in this table. Write even or odd to describe each product.

\times	1	2	3	4	5
odd number					

Sense or Nonsense?

17. (Minicici 3 Make Arguments Whose statement makes sense? Whose statement is nonsense? Explain your reasoning.

18. HIDEEPER Write a statement about the product of two odd numbers. Give an example to show why your statement is true.

Multiply with 8

Essential Question What strategies can you use to multiply with 8?

Operations and Algebraic

Thinking-3.0A.7 Also 3.0A.1,
3.OA.3, 3.0A.4, 3.0A.5, 3.0A. 9

MATHEMATICAL PRACTICES
MP.2, MP.7, MP. 8

Unlock the Problem

A scorpion has 8 legs. How many legs do 5 scorpions have?

Find 5×8.

I One Way Use doubles.

$$
\begin{gathered}
5 \times 8= \\
\swarrow \searrow \\
4+4
\end{gathered}
$$

Think: The factor 8 is an even number. $4+4=8$

$$
5 \times 4=
$$

\qquad
20 doubled is \qquad .

$$
5 \times 8=
$$

\qquad

So, 5 scorpions have \qquad legs.

(1) Another Way Use a number line.

Use the number line to show 5 jumps of 8 .

ERROR Alert

Be sure to count the spaces between the tick marks, not the tick marks.

1 Example Use the Associative Property of Multiplication.

Scorpions have two eyes on the top of the head, and usually two to five pairs along the front corners of the head. If each scorpion has 6 eyes, how many eyes would 8 scorpions have?

$8 \times 6=\square$	
$8 \times 6=(2 \times 4) \times 6$	Think: $8=2 \times 4$
$8 \times 6=2 \times(4 \times 6)$	Use the Associative Property.
$8 \times 6=2 \times \ldots$	Multiply. 4×6
$8 \times 6=$	Double the product.
$8 \times 6=$	

Mathematical Practices When you multiply with 8 , will the product always be even? Explain.

1. Explain one way you can find 4×8.

Find the product.

2. $3 \times 8=$ \qquad 3. \qquad $=8 \times 2$
3.

\qquad $=7 \times 8$
5. $9 \times 8=$
\qquad

On Your Own

Find the product.

6. \qquad $=6 \times 8$
7. $10 \times 8=$ \qquad
8. \qquad $=8 \times 3$
9. $1 \times 8=$
10. $4 \times 8=$ \qquad
11. $5 \times 8=$ \qquad
12. $0 \times 8=$ \qquad
13. $8 \times 8=$ \qquad
14.

6
$\times 8$
$\times 8$

16. 5
17. 3
$\times 8$
18. 10
$\begin{array}{r} \\ \times 8 \\ \hline\end{array}$
19. 7
\qquad
\qquad

Problem Solving • Applications

Use the table for 21-24.

21. About how much rain falls in the Chihuahuan Desert in 6 years? Explain how you can use doubles to find the answer.
\qquad
\qquad
22. (FIDEEPER In 2 years, about how many more inches of rain will fall in the Sonoran Desert

Average Yearly Rainfall in North American Deserts

Desert	Inches
Chihuahuan	8
Great Basin	9
Mojave	4
Sonoran	9

\qquad
23. © मimact ($)$ Describe a Method Look back at

Exercise 22. Write and show how to solve a similar problem by comparing two different deserts.
24. THINKSMARTER How can you find about how many inches of rain will fall in the Mohave Desert in 20 years?
\qquad
\qquad
25. THINK SMARTER For numbers 25a-25d, select True or False for each multiplication sentence.
25a. $\quad 3 \times(2 \times$
4) $=24$

- True
- False
25b. $4 \times 8=32$
- True
- False
25c. $7 \times 8=72$
○ True
- False
25 d. $2 \times(5 \times 8)=80$
○ True
- False

Connect to Science

There are 90 species of scorpions that live in the United States. Only 3 species of scorpions live in Arizona. They are the Arizona bark scorpion, the Desert hairy scorpion, and the Stripe-tailed scorpion.

Facts About Scorpions

Scorpions:

- are between 1 and 4 inches long
- mostly eat insects
- glow under ultraviolet light

They have:

- 8 legs for walking
- 2 long, claw-like pincers used to hold their food
- a curled tail held over their body with a stinger on the tip

© Scorpions glow under ultraviolet light.

26. How many species of scorpions do not live in Arizona?
27. Students saw 8 scorpions. What multiplication sentences can help you find how many pincers and legs the 8 scorpions had?
28. FロDEEPER Three scorpions were in a display with ultraviolet light. Eight groups of 4 students saw the display. How many students saw the glowing scorpions?
\qquad

Multiply with 9

Essential Question What strategies can you use to multiply with 9?

Operations and Algebraic

Thinking-3.0A.7 Also 3.OA.1
3.OA.3,3.OA.4, 3.OA.5, 3.OA. 9

MATHEMATICAL PRACTICES MP.2, MP.7, MP. 8

Unlogk the Problem

Olivia's class is studying the solar system. Seven students are making models of the solar system. Each model has 9 spheres (eight for the planets and one for Pluto, a dwarf planet). How many spheres do the 7 students need for all the models?

Find 7×9.

- What are you asked to find?
- How many students are making
models?

P) One Way Use the Distributive Property.

A With multiplication and addition

$$
7 \times 9=
$$

Think: $9=3+6 \quad 7 \times 9=7 \times(3+6)$
Multiply each addend by 7. $7 \times 9=(7 \times 3)+(7 \times 6)$
Add the products. $\quad 7 \times 9=$ \qquad $+$ \qquad $7 \times 9=$ \qquad

B With multiplication and subtraction

$$
7 \times 9=
$$

Think: $9=10-1 \quad 7 \times 9=7 \times(10-1)$

So, 7 students need \qquad spheres for all the models.

(1) Another Way Use patterns of 9 .

The table shows the 9s facts.

- What do you notice about the tens digit in the product?

The tens digit is \qquad less than the factor that is multiplied by 9 .

- What do you notice about the sum of the digits in the product?

The sum of the digits in the product is always \qquad .

So, to multiply 7×9, think the tens digit is \qquad

Multiply by 9.	
Factors	Product
1×9	9
2×9	18
3×9	27
4×9	36
5×9	45
6×9	54
7×9	
8×9	
9×9	

Try This! Complete the table above.

Use the patterns to find 8×9 and 9×9.

Share and Show

1. What is the tens digit in the product $3 \times 9 ?$ \qquad
Mathematical Practices

Explain how you know the ones digit in the product 3×9.

Think: What number is 1 less than 3 ?

Find the product.

2. $9 \times 8=$ \qquad 3. \qquad $=2 \times 9$
3. $\quad=6 \times 9$ $=6 \times 9$ 5. $9 \times 1=$ \qquad

On Your Own

Find the product.
6. $4 \times 9=$ \qquad 7. $5 \times 9=$ \qquad 8. $10 \times 9=$ \qquad 9. $1 \times 9=$ \qquad
10. 9
$\times 5$
11. 9
$\times 3$
12. 6
$\begin{array}{r} \\ \times 9 \\ \hline\end{array}$
13. 7
$\times 9$
14. 4
$\times 9$
15. A beetle has 6 legs. How many legs do 9 beetles have? \qquad
\qquad

16. 2×9

17. $5 \times 9 \bigcirc 6 \times 7$
18. $1 \times 9 \bigcirc 3 \times 3$
19. $9 \times 4 \bigcirc 7 \times 5$
20. $9 \times 0 \bigcirc 2 \times 3$
21. 5×8
 3×9

Problem Solving • Applications

Use the table for 22-25.
22. The number of moons for one of the planets can be found by multiplying 7×9. Which planet is it?
\qquad
23. GПDEEPER This planet has 9 times the number of moons that Mars and Earth have together. Which planet is it? Explain your answer.

Moons	
Planet	Number of Moons
Earth	1
Mars	2
Jupiter	63
Saturn	47
Uranus	27
Neptune	13

24. THINKSMARTER Uranus has 27 moons. What multiplication fact with 9 can be used to find the number of moons Uranus has? Describe how you can find the fact.

 Mars and its moons. The answer is 18 . What's the question?

Unlock the Problem

26. The school library has 97 books about space. John and 3 of his friends each check out 9 books. How many space books are still in the school library?

a. What do you need to find? \qquad
\qquad
b. Describe one way you can find the answer. \qquad
\qquad
c. Show the steps you used to solve the problem.
d. Complete the sentences.

The library has \qquad space books.

Multiply \qquad X \qquad to find how many books John and his 3 friends check out in all.

After you find the number of books they check out, \qquad
to find the number of books still in the library.

So, there are \qquad space books still in the library.
27. THINKSMARIER Circle the symbol that makes the multiplication sentence true.

Name \qquad

Problem Solving • Multiplication

Essential Question How can you use the strategy make a table to solve multiplication problems?

2s)
Operations and Algebraic Thinking-3.0A.8, 3.0A.9 Also 3.0A.3, 3.0A. 7 MATHEMATICAL PRACTICES MP.1, MP.4, MP. 5

Unlock the Problem

Scott has a stamp album. Some pages have 1 stamp on them, and other pages have 2 stamps on them. If Scott has 18 stamps, show how many different ways he could put them in the album. Use the graphic organizer below to solve the problem.

Read the Problem

What do I need to find?

\qquad
\qquad

What information do I need to use?

Scott has \qquad stamps. Some of the pages have \qquad stamp on them, and the other pages have \qquad stamps.

How will I use the information?

I will make a \qquad showing all the different ways of arranging the stamps in the album.

Solve the Problem

Make a table to show the number of pages with 1 stamp and with 2 stamps. Each row must equal
\qquad , the total number of stamps.

Pages with 2 Stamps	Pages with 1 Stamp	Total Stamps
8	2	18
7	4	18
6	6	18
5	10	18
3	12	18
2		

So, there are \qquad different ways.

1. What number patterns do you see in the table?

(1) Try Another Problem

What if Scott bought 3 more stamps and now has 21 stamps? Some album pages have 1 stamp and some pages have 2 stamps. Show how many different ways he could put the odd number of stamps in the album.

Read the Problem	Solve the Problem
What do I need to find?	
What information do I need	
How will I use the information?	
	So, there are ___ different ways.

2. What patterns do you see in this table? \qquad
\qquad
3. How are these patterns different from the patterns in the table on page 177 ? \qquad
\qquad

Share and Show

MATH
 BOARD

1. Aaron's mother is making lemonade. For each pitcher, she uses 1 cup of lemon juice, 1 cup of sugar, and 6 cups of water. What is the total number of cups of ingredients she will use to make 5 pitchers of lemonade?

First, make a table to show the number of cups of lemon juice, sugar, and water that are in 1 pitcher of lemonade.

Next, multiply to find the number of cups of water needed for each pitcher of lemonade.

Last, use the table to solve the problem.

Number of Pitchers	1	2	3		5
Cups of Lemon Juice	1		3		
Cups of Sugar	1	2			
Cups of Water	6	12		24	
Total Number of Cups of Ingredients	8				

So, in 5 pitchers of lemonade, there are \qquad cups of lemon juice, \qquad cups of sugar, and \qquad cups of water.

This makes a total of \qquad cups of ingredients.
2. What if it takes 4 lemons to make 1 cup of lemon juice?

How many lemons would it take to make 5 pitchers? Explain how you can use the table to help you find the answer.
\qquad
\qquad
3. What pattern do you see in the total number of cups of ingredients?

On Your Own

4. Julie saw 3 eagles each day she went bird-watching. How many eagles did Julie see in 6 days?
 quarters, and dimes. How many ways can he make \$1.75?

Name the ways.
\qquad
\qquad
6. THINISMARTER Cammi needs 36 postcards. She buys 4 packages of 10 postcards. How many postcards will Cammi have left over? Explain.

7. FIDEEPER Phillip has 8 books on each of 3 bookshelves. His aunt gives him 3 new books. How many books does Phillip have now?
8. THINKSMARTER Stuart has some 2-ounce, 3-ounce, and 4-ounce weights. How many different ways can Stuart combine the weights to make a total of 12 ounces? Write multiplication sentences to show your work.
\qquad
\qquad
\qquad
\qquad

Chapter 4 Review/Test

1. Mrs. Ruiz sorted spools of thread into 4 boxes. Each box holds 5 spools. How many spools of thread does Mrs. Ruiz have?

Draw circles to model the problem. Then solve.

2. For numbers 2a-2d, select True or False for each multiplication sentence.
2a. $2 \times 8=16$
○ True
False
2b. $5 \times 8=40$
○ True
False
2c. $6 \times 8=56$
○ True
False
2d. $\quad 8 \times 8=64$
○ True
False
3. Bella is planning to write in a journal. Some pages will have one journal entry on them, and other pages will have two journal entries on them. If Bella wants to make 10 entries, how many different ways can she write them in her journal?
\square
4. There are 7 days in 1 week. How many days are there in 4 weeks?
\qquad days
5. Circle groups to show $3 \times(2 \times 3)$.

6. Dale keeps all of his pairs of shoes in his closet. Select the number of shoes that Dale could have in his closet. Mark all that apply.
(A) 3
(D) 7
(B) 4
(E) 8
(C) 6
7. Lisa completed the table to describe the product of a mystery one-digit factor and each number.

\times	1	2	3	4	5
$?$	even	even	even	even	even

Part A
Give all of the possible numbers that could be Lisa's mystery one-digit factor.

Part B

Explain how you know that you have selected all of the correct possibilities.
\qquad
\qquad
\qquad
8. Kate drew 7 octagons. An octagon has 8 sides. How many sides did Kate draw?

\qquad sides
9. José buys 6 bags of flour. Each bag weighs 5 pounds. How many pounds of flour did José buy?
\qquad
10. Break apart the array to show $8 \times 6=(4 \times 6)+(4 \times 6)$.

11. Circle the symbol that makes the multiplication sentence true.

$$
\begin{aligned}
& \quad>\times 6 \times 1 \\
& \quad< \\
& =
\end{aligned}
$$

12. Roberto wants to make $\$ 2.00$ using dollars, half dollar, and quarters. How many different ways can he make $\$ 2.00$?
\qquad
13. A carpenter builds stools that have 3 legs each. How many legs does the carpenter use to build 5 stools? Use the array to explain how you know your answer is correct.

14. Etta buys some ribbon and cuts it into 7 pieces that are the same length. Each piece is 9 inches long. How long was the ribbon that Etta bought?
\qquad inches
15. Antoine and 3 friends divide some pennies evenly among themselves. Each friend separates his pennies into 3 equal stacks with 5 pennies in each stack.

Write a multiplication sentence that shows the total number of pennies.
16. Luke is making 4 first-aid kits. He wants to put 3 large and 4 small bandages in each kit. How many bandages does he need for the kits? Show your work.

Name
17. For numbers 17a-17d, select True or False for each equation.

17a. $3 \times 7=21$
○ True
False
17b. $\quad 5 \times 7=28$
○ True
False
17c. $\quad 8 \times 7=49$
○ True
False
17d. $\quad 9 \times 7=63$
\bigcirc True
False
18. Circle the number that makes the multiplication sentence true.

$$
\left.10 \times \begin{array}{|c}
4 \\
5 \\
8
\end{array} \right\rvert\,=40
$$

19. For numbers 19a-19d, select Yes or No to indicate whether the number sentence has the same value as 8×6.
19a. $8+(4 \times 2)=$
○ Yes
\bigcirc No
19b. $(8 \times 4)+(8 \times 2)=$○ Yes
\bigcirc No
19c. $(6 \times 4)+(6 \times 2)=\square$

- Yes
- No
19d. $6 \times(4+4)=$ \square
- Yes
○ No

20. Chloe bought 4 movie tickets. Each ticket cost $\$ 6$. What was the total cost of the movie tickets?

$$
\$
$$

\qquad
21. Write a multiplication sentence using the following numbers and symbols.

22. Louis started a table showing a multiplication pattern.

Part A

Complete the table. Describe a pattern you see in the products.

\times	1	2	3	4	5	6	7	8	9	10
3	3	6	9							

Part B

If you multiplied 3×37, would the product be an even number or an odd number? Use the table to explain your reasoning.
\qquad
\qquad
\qquad
\qquad
\qquad
23. Use the number line to show the product of 8×4.

Use Multiplicution Fuacts

Show What You Know

Check your understanding of important skills.
Name \qquad
$>$ Add Tens Write how many tens. Then add.

1. $30+30=\square$
\qquad tens + \qquad tens $=$ tens $30+30=$ \qquad
2. $40+50=\square$
\qquad tens + \qquad tens $=$
\qquad tens
$40+50=$ \qquad

Regroup Tens as Hundreds Write the missing numbers.

3. 35 tens $=$ \qquad hundreds \qquad tens
4. 52 tens $=$ \qquad hundreds \qquad tens
5. 97 tens $=$ \qquad hundreds \qquad tens

Multiplication Facts Through 9 Find the product.

6. $3 \times 9=$ \qquad 7. $4 \times 5=$ \qquad 8. $7 \times 6=$ \qquad 9. $8 \times 2=$
\qquad

Vocabulary Builder

Visualize It

Complete the tree map by using the words with a $\sqrt{ }$.

Understand Vocabulary

Read the definition. Write the preview word or review word that matches it.

1. An ordered set of numbers or objects in which the order helps you predict what will come next.
2. A set of objects arranged in rows and columns.
3. A number sentence that uses the equal sign to show that two amounts are equal.
4. The property that states that multiplying a sum by a number is the same as multiplying each addend by the number and then adding the products.
5. The value of each digit in a number, based on the location of the digit.
\qquad
\qquad

Describe Patterns

Essential Question What are some ways you can describe a pattern in a table?

Operations and Algebraic Thinking3.0A. 9 Also 3.0A.3, 3.0A. 7

MATHEMATICAL PRACTICES

Unlock the Problem

The outdoor club is planning a camping trip. Each camper will need a flashlight. One flashlight uses 4 batteries. How many batteries are needed for 8 flashlights?

You can describe a pattern in a table.

P) One Way Describe a pattern across the rows.

STEP 1 Look for a pattern to complete the table.
As you look across the rows, you can see that the number of batteries increases by 4 for each flashlight.

So, for every flashlight add \qquad batteries.

STEP 2 Use the pattern to find the number of batteries in 8 flashlights.

Add \qquad to 28 batteries. $28+4=$ \qquad
So, \qquad batteries are needed for 8 flashlights.

P) Another Way Describe a pattern in the columns.

STEP 1 Look for a pattern by comparing the columns in the table. You can multiply the number of flashlights by 4 to find the number of batteries that are needed.

STEP 2 Use the pattern to find how many batteries are

ERROR Alert

Check that your pattern will work for all the numbers in the table. needed for 8 flashlights.
$8 \times 4=$ \qquad

Try This! Describe a pattern. Then complete the table.

The campers need 5 packs of batteries. If there are 8 batteries in each pack, how many batteries will be in 5 packs?

Packs of Batteries	Number of Batteries
1	8
2	16
3	
4	32
5	

Use addition.
Describe a pattern.
Add \qquad batteries for each pack.

Use multiplication.
Describe a pattern.
Multiply the number of packs of batteries
by \qquad .

So, there will be \qquad batteries in 5 packs.

Share and Show

1. How can you describe a pattern to find the cost of 4 packs of batteries?

Packs of Batteries	1	2	3	4
Cost	$\$ 3$	$\$ 6$	$\$ 9$	

Describe a pattern in the table. Then complete the table.

© 2. | Tents | Lanterns |
| :---: | :---: |
| 2 | 4 |
| 3 | 6 |
| 4 | 8 |
| 5 | 10 |
| 6 | |
| 7 | |

Adults	1	2	3	4	5
Campers	6	12	18		

\qquad

On Your Own

Describe a pattern in the table. Then complete the table.

4. | Hours | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Miles Hiked | 2 | 4 | 6 | | |
5.

Cabins	3	4	5	6	7
Campers	27	36	45		

6.

Cabins	Beds
1	5
2	10
3	
4	20
5	
6	

7.

Adults	Students
2	12
3	18
4	
5	30
6	
7	

8.

Canoes	4	5	6	7	8
Campers	12	15	18		

9.

Canoes	2	3	4	5	6
Paddles	4	6	8		

10. THINKSMARTER Students made a craft project at camp. They used 2 small pine cone patterns and 1 large pine cone pattern. Complete the table to find how many patterns were used for the different numbers of projects.

Projects	1	2	3							
Small Pattern	2									
Large Pattern	1									

Problem Solving • Applications

(unizalici 4) Use Graphs Use the picture graph for 11-13.

11. Jena bought 3 fishing poles. How much money did she spend?
\qquad
12. Noah bought 1 fishing pole, 2 corks, and 1 carton of worms. What was the total cost?
13. WRITE Math Ryan bought 8 corks. Explain how you can use the Commutative Property to find the cost.
14. GIDEEPER The cost to rent a raft is $\$ 7$ per person. A raft can hold up to 6 people. There is a $\$ 3$ launch fee per raft.
What is the total cost for a group of 6 ? Explain.
\qquad
15. Taylor bought 4 boxes of granola bars. There are 6 bars in each box. How many granola bars did Taylor buy?
\qquad
Personal Math Trainer
16. THINKSMARTIR $\}$ Complete the table. Amir said a rule for the pattern shown in this table is "Multiply by $4 . "$ Is he correct? Explain how you know your answer is reasonable.

Cans	2	3	4		6
Peaches	8	12		20	

\qquad

Find Unknown Numbers

Lesson 5.2

Essential Question How can you use an array or a multiplication table to find an unknown factor or product?

Operations and Algebraic Thinking3.0A. 4 Also 3.OA.1, 3.0A.3, 3.0A. 7 MATHEMATICAL PRACTICES MP.2, MP.4, MP.5, MP. 6

Unlock the Problem

Tanisha plans to invite 24 people to a picnic. The invitations come in packs of 8 . How many packs of invitations does Tanisha need to buy?

An equation is a number sentence that uses the equal sign to show that two amounts are equal.

- How many people is Tanisha inviting? \qquad
- How many invitations are in 1 pack?

A symbol or letter can stand for an unknown factor. You can write the equation, $n \times 8=24$, to find how many packs of invitations Tanisha needs. Find the number, n, that makes the equation true.

?

Use an array.

- Show an array of 24 tiles with 8 tiles in each row by completing the drawing.

- Count how many rows of 8 tiles there are. Think: What number times 8 equals 24 ?

There are \qquad rows of 8 tiles. The unknown factor is \qquad . $n=$ \qquad
\qquad $\times 8=24$ Check.
\qquad $=24 \checkmark$ The equation is true.

So, Tanisha needs \qquad packs of invitations.

1

Use a multiplication table.

$$
3 \times 8=
$$

Think: The symbol, \square, stands for the unknown product.

Find the product 3×8 where row 3 and column 8 meet.

The unknown product is \qquad .

$$
\begin{aligned}
& \square= \\
& 3 \times 8= \\
& 24=\quad \text { Check. } \\
& \quad \text { The equation is true. }
\end{aligned}
$$

	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10
2	0	2	4	6	8	10	12	14	16	18	20
3	0	3	6	9	12	15	18	21	24	27	30
4	0	4	8	12	16	20	24	28	32	36	40
5	0	5	10	15	20	25	30	35	40	45	50
6	0	6	12	18	24	30	36	42	48	54	60
7	0	7	14	21	28	35	42	49	56	63	70
8	0	8	16	24	32	40	48	56	64	72	80
9	0	9	18	27	36	45	54	63	72	81	90
10	0	10	20	30	40	50	60	70	80	90	100

Share and Show

MATH
 BOARD

1. What is the unknown factor shown by this array?

$$
\begin{aligned}
& 5 \times \square=35 \\
&= \\
&
\end{aligned}
$$

Find the unknown number.
2. $d \times 3=27$
$d=$ \qquad
3. $6 \times 5=$
\square
\qquad
84. $c=5 \times 4$
$c=$ \qquad
6
5. $\times 2=14$ $\square=$ \qquad
9. $8 \times 9=z$
8. $7 \times \times=42$
$z=$ \qquad
Math
Mathematical Practices
Explain how you know if you are looking for the number of rows or the number in each row when you make an array to find an unknown factor.
\qquad

On Your Own

Find the unknown number.

10. $\square=9 \times 2$
11. $28=4 \times m$
12. $y \times 3=9$
$m=$ \qquad
$y=$ \qquad
13. $7 \times 9=g$
$g=$ \qquad
14. $5 \times p=40$
$p=$ \qquad
15. $w=8 \times 7$
$w=$ \qquad
16. $36=\times 6$
17. $8 \times e=72$
= \qquad
$e=$ \qquad
18. $9 \times \pi=27$
19. $a=6 \times 10$
$a=$ \qquad
20. $2 \times 5=d$
$d=$ \qquad
21. $32=8 \times n$
$n=$ \qquad
22. $a=6 \times 4$
23. $7=7 \times n$
$n=$ \qquad
24. $w \times 3=15$
$w=$ \qquad
25. $\star=8 \times 6$
$\star=$ \qquad

26. $3 \times 6=k \times 9$
$k=$ \qquad
27. $4 \times y=2 \times 6$
$y=$ \qquad
28. $5 \times g=36-6$

$$
g=
$$

\qquad
29. $6 \times 4=\square \times 3$
30. $9 \times d=70+2$
$d=$ \qquad
31. $8 \times h=60-4$
$h=$ \qquad
32. HTDEEPER Invitations cost $\$ 3$ for a pack of 8 . Lori gives the cashier $\$ 20$ to buy invitations and gets $\$ 11$ in change.
How many packs of invitations does Lori buy? Explain.

Problem Solving • Applications wall

Use the table for 33-36.

33. Tanisha needs 40 cups for the picnic. How many packs of cups should she buy?
34. HIDEEPER Ms. Hill buys 3 tablecloths and 2 packs of napkins. How much money does she spend?

Picnic Supplies
Number
Item in 1 Pack
Cost

Bowls	6	$\$ 10$
Cups	8	$\$ 3$
Tablecloth	1	$\$ 2$
Napkins	36	$\$ 2$
Forks	50	$\$ 3$

35. THINK SMARTER What if Tanisha needs 40 bowls for the picnic? Explain how to write an equation with a letter for an unknown factor to find the number of packs she should buy. Then find the unknown factor.

\qquad
\qquad
\qquad
36.

 number of bowls and cups for his picnic? How many packs of each will he need to buy?
\qquad
\qquad
37. THINKSMARTER For numbers 37a-37d, choose Yes or No to show whether the unknown factor is 8 .
37a. $8 \times \square=64$

- Yes
○ No
37b. $\quad \times 3=27$
○ Yes
○ No
37c. $6 \times \square=42$
- Yes
- No
37d. $\quad \times 7=56$
○ Yes
○ No
\qquad

Mid-Chapter Checkpoint

Vogabulary

Vocabulary
Choose the best term from the box.
array
equation

1. An \qquad is a number sentence that uses the equal sign to show that two amounts are equal. (p. 193)

Concepts and Skills

Describe a pattern in the table. Then complete the table. (3.0A.9)
2.

Weeks	1	2	3	4	5
Days	7	14	21		

\qquad
4.

Project Teams	Members
3	9
4	12
5	
6	18
7	

Find the unknown number. (3.0A.4)
6. $m \times 5=30$

$$
m=
$$

\qquad
9. $4 \times 8=p$
$p=$ \qquad
10. $25=y \times 5$
$y=$ \qquad
5.

Tables	Chairs
1	8
2	16
3	
4	32
5	

3.

Tickets	2	3	4	5	6
Cost	$\$ 8$	$\$ 12$	$\$ 16$		

8. $n=2 \times 10$
$n=$ \qquad
9. $\times 10=10$
\qquad
10. Describe a pattern in the table. (3.0A.9)

Packages	1	2	3	4	5
Stickers	6	12	18	24	30

13. What number makes the equation true? (3.0А.4)

$$
a \times 8=72
$$

14. Mia bought 2 copies of the same book. She spent $\$ 18$. What was the cost of one book? (3.00.4)
15. Kyle saves $\$ 10$ every week for 6 weeks. How much money will Kyle have in Week 6 ? (3.0A.9)

Weeks	1	2	3	4	5	6
Amount	$\$ 10$	$\$ 20$	$\$ 30$	\square		\square

16. There are 24 students in the class. They arrange their desks in rows with 6 desks in each row. How many rows are there? (3.0A.4)

Problem Solving •

Use the Distributive Property

Essential Question How can you use the strategy draw a diagram to multiply with multiples of 10 ?

Number and Operations in Base Ten3.NBT. 3 Also 3.0A.3, 3.0A.5, 3.0A. 7 MATHEMATICAL PRACTICES MP.1, MP.3, MP.4, MP. 7

Unlock the Problem

The school assembly room has 5 rows of chairs with 20 chairs in each row. If the third-grade classes fill 3 rows of chairs, how many third graders are at the assembly?

Read the Problem

What do I need to find?

I need to find how many are at the assembly.

What information do I need to use?

There are \qquad chairs in each row.

The third graders fill \qquad rows of chairs.

Read the Problem
What do I need to find?
I need to find how many
are at the assembly.

-

How will I use the information?

The Distributive Property tells me I can
\qquad the factor 20 to multiply.
$3 \times 20=3 \times(10+$ \qquad

Solve the Problem

Draw a diagram. Finish the shading to show 3 rows of 20 chairs.

I can use the sum of the products of the smaller rectangles to find how many third graders are at the assembly.
$3 \times 10=$ \qquad $3 \times 10=$ \qquad
\qquad $+$ \qquad $=$ \qquad
$3 \times 20=$ \qquad
So, \qquad third graders are at the assembly.

1. Explain how breaking apart the factor 20 makes finding the product easier. \qquad

(1) Try Another Problem

Megan is watching a marching band practice. The band marches by with 4 rows of people playing instruments. She counts 30 people in each row. How many people march in the band?

Read the Problem What do I need to find?

What information do I need to use?

How will I use the information?

Solve the Problem

Record the steps you used to solve the problem.

2. How can you check to see if your answer is reasonable?
\qquad
\qquad
3. Explain how you can use the Distributive Property to help you find a product.
\qquad
\qquad

Name

Share and Show

MATH BOARD

81. People filled all the seats in the front section of the theater. The front section has 6 rows with 40 seats in each row. How many people are in the front section of the theater?

Unlock the Problem

\checkmark Circle the numbers you will use.
\checkmark Use the Distributive Property and break apart a greater factor to use facts you know.
\checkmark Draw a diagram to help you solve the problem.

First, draw and label a diagram to break apart the problem into easier parts to solve.

Next, find the products of the smaller rectangles.

Then, find the sum of the products.
\qquad $+$ \qquad $+$ \qquad $+$ \qquad = \qquad
So, there are \qquad people in the front section of the theater.
2. What if seats are added to the front section of the theater so that there are 6 rows with 50 seats in each row? How many seats are in the front section?

On Your Own

3. THINK SMARTER Tova sewed 60 pieces of blue ribbon together to make a costume. Each piece of ribbon was 2 meters long. She also sewed 40 pieces of red ribbon together that were each 3 meters long. Did Tova use more blue ribbon or red ribbon? Explain.

4.

Carina draws this diagram to show that $8 \times 30=210$.
Explain her error.

\qquad
\qquad
\qquad
\qquad
5. WRITE Math Tamika wants to display 10 trophies on a table in a rectangular array. How many different ways can Tamika arrange the trophies? Explain your answer.
\qquad
\qquad
6. GחDEFPER The drama club has 350 tickets to sell. They sell 124 tickets on Monday and 98 tickets on Tuesday. How many tickets does the drama club have left to sell?
7. THINKSMARIER Select the equations that show the Distributive Property. Mark all that apply.
(A) $3 \times 20=(3 \times 10)+(3 \times 10)$
(B) $(7+3)+8=7+(3+8)$
(C) $(5 \times 10)+(5 \times 10)=5 \times 20$
(D) $(9 \times 2)+(9 \times 4)=9 \times 6$
\qquad

Multiplication Strategies with Multiples of 10

Unlock the Problem

You can use models and place value to multiply with multiples of 10 .

- What is a product of 10 and the counting numbers $1,2,3$, and so on?
(1) Activity Model multiples of 10 .

Materials \quad base-ten blocks
Model the first nine multiples of 10.

What are the first nine multiples of 10 ? $10,20,30$, \qquad , \qquad , \qquad , \qquad , \qquad , \qquad
Best Care Veterinary Clinic offered free pet care classes for 5 days. Erin attended the pet care class for 30 minutes each day. How many minutes did Erin attend the class?

(One Way Use a number line.

$5 \times 30=\square \quad$ Think: $30=3$ tens

STEP 1 Complete the number line. Write the labels for the multiples of 10 .

STEP 2 Draw jumps on the number line to show 5 groups of 3 tens.

$5 \times 30=$ \qquad
So, Erin attended the pet care class for \qquad minutes.

(1) Another Way Use place value.

MODEL

THINK
$5 \times 30=5 \times$ \qquad tens
$=\ldots$ tens $=$ \qquad
\qquad
\qquad

So, $5 \times 30=$ \qquad .

Try This!

$4 \times 50=$ \qquad \times \qquad tens
$=$ \qquad tens $=$ \qquad

Explain why 5×30 has one zero in the product and 4×50 has two zeros in the product.

Share and Show

MATH
 BOARD

Use a number line to find the product.

1. $3 \times 40=$ \qquad Think: There are 3 jumps of 40 .

© 2. $8 \times 20=$ \qquad

Use place value to find the product.
3. $3 \times 70=3 \times$ \qquad tens
$=\quad$ ___ tens $=$
\qquad
4. $50 \times 2=$ \qquad tens $\times 2$

Will the product of 50×2 be the same as the product of 2×50 ? Explain.
\qquad

On Your Own

Use a number line to find the product.

5. $7 \times 20=$ \qquad

6. $3 \times 50=$ \qquad

Use place value to find the product.

7. $6 \times 60=6 \times$ \qquad tens
$=$ \qquad tens $=$ \qquad
8. $50 \times 7=$ \qquad tens $\times 7$
$=\ldots$ tens $=$ \qquad

Problem Solving • Applications

Use the table for 9-11.
9. The cost of a bottle of shampoo is $\$ 9$. If the clinic sells their entire supply of shampoo, how much money will they receive?
10. What's the Question? Each bag of treats has 30 treats. The answer is 240 .

Best Care Clinic Pet Supplies	
Item	Amount
Cat toys	10 packs
Treats	8 bags
Shampoo	20 bottles
Vitamins	3 boxes

\qquad
11. THINKSMARTER There are 4 bottles of vitamins in each box of vitamins. Each bottle of vitamins has 20 vitamins. If the clinic wants to have a supply of 400 vitamins, how many more boxes should
 they order?

Unlock the Problem

 needs to set up chairs for 155 people to attend the school career day program. So far she has set up 6 rows with 20 chairs in each row. How many more chairs does Hiromi need to set up?
a. What do you need to find?
\qquad
b. What operations will you use to find how many more chairs Hiromi needs to set up?

\qquad
c. Write the steps you will use to solve the problem.
d. Complete the sentences.

Hiromi needs to set up \qquad chairs for people to attend the program.

She has set up \qquad rows with \qquad chairs in each row.

So, Hiromi needs to set up \qquad more chairs.
\qquad

Multiply 1-Digit Numbers by Multiples of 10

Essential Question How can you model and record multiplying 1-digit whole numbers by multiples of 10 ?

Number and Operations in Base Ten3.NBT. 3

Also 3.0A.3, 3.0A. 7
MATHEMATICAL PRACTICES
MP.4, MP.5, MP.7, MP. 8

Unlock the Problem

The community center offers 4 dance classes. If 30 students sign up for each class, how many students sign up for dance class?
(I) Activity Use base-ten blocks to model 4×30.

Materials $=$ base-ten blocks

- How many equal groups are there?
- How many are in each group?

STEP 1 Model 4 groups of 30.

(
ורדרדרוררד

STEP 2 Combine the tens. Regroup 12 tens as 1 hundred 2 tens.

\qquad
So, \qquad students sign up for dance class.

Try This! Find $7 \times \mathbf{4 0}$.

Use a quick picture to record your model. Draw a stick for each ten. Draw a square for each hundred.

STEP 1 Model \qquad groups of
\qquad .
© Houghton Mifflin Harcourt Publishing Company
$=\square=\square=\square=$
So, $7 \times 40=$ \qquad .

STEP 2 Combine the tens. Regroup 28 tens as
\qquad hundreds \qquad tens.

Mathematical Practices

Will the product of 7×40 be the same as 4×70 ? Explain.

P Example Use place value and regrouping.

Find 9×50.

So, $9 \times 50=$ \qquad .

Share and Show

1. Use the quick picture to find 5×40.
$5 \times 40=$ \qquad

Find the product. Use base-ten blocks or draw a quick picture on your MathBoard.
2. $7 \times 30=$ \qquad 3. $\quad[=2 \times 90$
4. $8 \times 40=$ \qquad 5.

Find the product.

8
6. $\begin{array}{r}80 \\ \times \quad 9 \\ \hline\end{array}$
7. 70
$\begin{array}{r}7 \\ \times \\ \hline\end{array}$
8. 90
$\times 4$
9. 60
$\times 8$
Mathematical Practices
Explain how you can use place value to solve Exercise 9.
\qquad

On Your Own

Find the product. Use base-ten blocks or draw a quick picture on your MathBoard.
10. $2 \times 70=$ \qquad 11. $8 \times 50=$ \qquad
12. \qquad $=3 \times 90$
13. $2 \times 80=$ \qquad

Find the product.

14. 80

15. 60

16. 90
$\begin{array}{r}8 \\ \times \quad 8 \\ \hline\end{array}$
17. 80 $\begin{array}{r}8 \\ \times \quad 8 \\ \hline\end{array}$

Practice: Copy and Solve Find the product.

18. 6×70
19. 9×90
20. 70×8
21. 90×7

22. $a \times 80=480$
$a=$ \qquad
23. $b \times 30=30$
$b=$ \qquad
24. $7 \times \square=420$
$\square=$ \qquad
25. $50 \times \Delta=0$
$\Delta=$ \qquad

Problem Solving • Applications (reold

26. THINKSMARTER Ava's class bought 6 packages of balloons for a school celebration. Each package had 30 balloons. If 17 balloons were left over, how many balloons were used for the party?

27. Sense or Nonsense? Lori says that 8 is not a factor of 80 because 8 does not end in zero. Does Lori's statement make sense? Explain.
\qquad
28. Min 200 books in all. Each member read 5 books. Write an equation to find the number of members in the book club. Use a letter to stand for the unknown factor.

Unlock the Problem

29. GIDEEPER Frank has a 2-digit number on his baseball uniform. The number is a multiple of 10 and has 3 for one of its factors. What three numbers could Frank have on his uniform?
a. What do you need to find?
\qquad
b. What information do you need to use?

\qquad
c. How can you solve the problem?
d. Complete the sentences.

Frank has a \qquad on his uniform.

The number is a multiple of \qquad .

One factor of the number is \qquad .

Frank could have \qquad , \qquad , or
\qquad on his uniform.

Personal Math Trainer

30. THINKSMARTER \dagger Baker Farm grows and sells carrots to local grocery stores. The stores bundle the carrots to sell. Which grocery store bought the greatest number of carrots from Baker Farm? How many carrots did the store buy?

Grocery Store	Number of Carrots in 1 Bundle	Number of Bundles
Buy-More Foods	6	90
Lower Price Foods	8	60
Yummy Foods	7	80
Healthy Foods	9	70

\qquad

Chapter 5 Review/Test

1. The camping club wants to rent rafts. Each raft can hold 8 people. Which equation could be used to find how many rafts are needed for 32 people?
(A) $8 \times 32=$
(B) $32 \times \square=8$
(C) $\quad \times 8=32$
(D) $32 \times 8=$
2. Select the equations that show the Distributive Property. Mark all that apply.
(A)

$$
8 \times 20=8 \times(10+10)
$$

(B) $5 \times 60=5 \times(20+40)$
(C) $30 \times 6=6 \times 30$
(D) $9 \times(4+3)=9 \times 7$
3. Choose the number from the box that makes the sentence true.

A library has 48 shelves of fiction books. There are 6 shelves in each cabinet.

There are | 7 |
| :---: |
| 8 |
| 9 | cabinets of fiction books in the library.

4. For numbers $4 \mathrm{a}-4 \mathrm{~d}$, choose True or False for each equation.
4a.
$5 \times(4+4)=8 \times 5$
○ True

- False
4b.
$8 \times(3+3)=8 \times 5$
- True
False
4c. $(3 \times 5)+(5 \times 5)=8 \times 5$
○ True
False
4d. $\quad(3 \times 2)+(8 \times 3)=8 \times 5$
\bigcirc True
False

5. Alya planted 30 trays of flowers. Each tray held 8 flowers. Javon planted 230 flowers. Did Alya plant more flowers than Javon, the same number of flowers as Javon, or fewer flowers than Javon?
(A) She planted more flowers than Javon.
(B) She planted the exact same number of flowers as Javon.
(C) She planted fewer flowers than Javon.
6. For numbers 6a-6d, choose Yes or No to show whether the unknown factor is 6 .
6a. $4 \times \square=32$
Yes
○ No
6b. $\square \times 6=36$
Yes
○ No
6c. $8 \times=49$
○ Yes
No
6d. $\square \times 30=180$
\bigcirc Yes
○ No
7. Each train can carry 20 cars. Use the number line to find how many cars 6 trains can carry.

\qquad
8. Samantha made this multiplication model. Complete the equation that represents the model.

\qquad \times \qquad $=$ \qquad
9. A printer prints newsletters for many groups every month. Which group uses the greatest number of pieces of paper?

Group	Number of pieces of paper in newsletter	Number of copies of newsletter printed
Garden Ladies	5	70
Book Lovers Club	6	80
Model Train Fans	7	60
Travel Club	8	50

10. A store has 30 boxes of melons. Each box holds 4 bags. Each bag holds 2 melons. What is the total number of melons in the store?
11. Heather's puppy weighs 23 pounds. He has been gaining 3 pounds every month as he grows. If this pattern continues, how much will the puppy weigh 5 months from now?
12. Tim describes a pattern. He says the rule for the pattern shown in the table is "Add 3." Is his rule correct? Explain how you know.

Packages	1	2	3	4	5
Markers	4	8	12	16	20

\qquad
\qquad
\qquad
13. This shows a part of a multiplication table. Find the missing numbers. Explain how you found the numbers.

14. Find a rule for this table.

Tanks	3	4	5	6	7
Fish	240	320	400	480	560

Rule: \qquad
How would the table change if the rule was "Multiply by 8"? Explain.
\qquad
\qquad
15. Devon has 80 books to pack in boxes. She packs 20 books in each box. How many boxes does she need?

Write an equation using the letter n to stand for the unknown factor. Explain how to find the unknown factor.
\qquad
\qquad
\qquad
16. The bookstore has 6 shelves of books about animals. There are 30 books on each shelf. How many books about animals does the bookstore have?

Shade squares to make a diagram to show how you can use the Distributive Property to find the number of books about animals in the bookstore.

\square
17. Cody saves all his nickels. Today he is getting them out of his piggy bank and wrapping them to take to the bank. He finds he has 360 nickels. It takes 40 nickels to fill each paper wrapper and make a roll. How many wrappers does he need?

Part A

Write an equation using n for the unknown factor. Find the number of rolls needed.
\qquad \times \qquad $=$ \qquad

Part B

Explain how you solved this problem and how you know your answer is correct.
\qquad
\qquad
\qquad
\qquad
18. Ruben is collecting cans for the recycling contest at school. He makes two plans to try to collect the most cans.

Plan A: Collect 20 cans each week for 9 weeks.
Plan B: Collect 30 cans each week for 7 weeks.

Part A

Which plan should Ruben choose? \qquad

Part B

Explain how you made your choice.
\qquad
\qquad
\qquad
\qquad
\qquad

Understand Division

Show What You Know

Check your understanding of important skills.
Name \qquad
Count Back to Subtract Use the number line. Write the difference.
\qquad

Count Equal Groups Complete.

3.

\qquad groups
\qquad in each group
2. $9-4=$ \qquad

4.

\square groups
\qquad in each group

Multiplication Facts Through 9 Find the product.

6. \qquad $=7 \times 7$
7. $3 \times 9=$ \qquad
8. $8 \times 5=$ \qquad

lath
 etective

The table shows 3 different ways you can score points in basketball. Corina scored 12 points in a basketball game. Be a Math Detective to find the greatest number of field goals she could have scored. Then find the greatest number of 3-pointers she could have scored.

Vocabulary Builder

Visualize It

Complete the bubble map by using the words with a \checkmark.

Problem Solving • Model Division

Essential Question How can you use the strategy act it out to solve problems with equal groups?

Unlock the Problem (Warld

Stacy has 16 flowers. She puts an equal number of flowers in each of 4 vases. How many flowers does Stacy put in each vase?

Use the graphic organizer below to solve the problem.

Read the Problem

What do I need to find?

I need to find the number
of \qquad Stacy puts in
each \qquad .

What information do I need to use?

Stacy has \qquad flowers.
She puts an equal number of flowers in each of
\qquad vases.

How will I use the

 information?I will act out the problem
by making equal \qquad with counters.

Solve the Problem

Describe how to act out the problem to solve.

First, count out \qquad counters.

Next, make \qquad equal groups. Place 1 counter at a time in each group until all 16 counters are used.

Last, draw the equal groups by completing the picture below.

So, Stacy puts \qquad flowers in each vase.

() Try Another Problem

Jamal is at the pet store. He buys 21 dog treats. If he plans to give each dog 3 treats, how many dogs does he feed?

Read the Problem
What do I need to find?

Solve the Problem
Describe how to act out the problem to solve.

What information do I need to use?

How will I use the information?

- How can you check your answer is reasonable? \qquad
\qquad
\qquad

Share and Show

```
MATH
BOARD
```

1. Mariana is having a party. She has 16 cups. She puts them in 2 equal stacks. How many cups are in each stack?

Unlock the Problem

, Use the Problem Solving MathBoard
لUnderline important facts.
\checkmark Choose a strategy you know.

First, decide how to act out the problem.
You can use counters to represent the \qquad .

You can draw \qquad to represent the stacks.

Then, draw to find the number of \qquad in each stack.

There are \qquad groups. There are \qquad counters in each group.

So, there are \qquad cups in each stack.
2. 24 cups and puts 4 cups in each stack? If she already made 4 stacks, how many more stacks can she make with the remaining cups?

On Your Own

3. THINKSMARTIR At Luke's school party, the children get into teams of 5 to play a game. If there are 20 boys and 15 girls, how many teams are there?
4. FIDEEPER Anne put 20 party hats and 20 balloons on 4 tables.
 If she put the same number on each one, how many hats and balloons did she put on each table?

Use the table for 5-6.

5. Sadie's plates came in packages of 5 . How many packages of plates did she buy?
 4 packages of napkins and 3 packages of cups. Which item had more in each package? How many more? Explain how you found your answer.

Sadie's Party Supplies

Item	Number
Plates	30
Napkins	28
Cups	24

WRITE Math Show Your Work

Lesson 6.2

\qquad

Size of Equal Groups

Essential Question How can you model a division problem to find how many in each group?

Operations and Algebraic Thinking-3.0A. 2
Also 3.0A. 3
MATHEMATICAL PRACTICES MP.1, MP.4, MP.5, MP. 7

Unlock the Problem

Hector has 12 rocks from a nearby state park. He puts an equal number of his rocks in each of 3 boxes. How many rocks are in each box?

When you multiply, you put equal groups

- What do you need to find?
- Circle the numbers you need to use. together. When you divide, you separate into equal groups.

You can divide to find the number in each group.

1. Activity Use counters to model the problem.

Materials \quad - counters $■$ MathBoard

```
STEP 1
```

Use 12 counters.

STEP 2

Draw 3 circles on your MathBoard. Place 1 counter at a time in each circle until all 12 counters are used. Draw the rest of the counters to show your work.

There are \qquad counters in each group.

So, there are \qquad rocks in each box.

Try This!

Madison has 15 rocks. She puts an equal number of rocks in each of 5 boxes. How many rocks are in each box?

STEP 1
Draw 5 squares to show 5 boxes.

STEP 2

Draw 1 counter in each square to show the rocks. Continue drawing 1 counter at a time in each box until all 15 counters are drawn.

There are \qquad counters in each group.

So, there are \qquad rocks in each box.

1. How many counters did you draw? \qquad
2. How many equal groups did you make? \qquad
3. How many counters are in each group? \qquad
\qquad

Share and Show

1. Jon has 8 counters. He makes 4 equal groups.

Draw a picture to show the number of counters in each group.

Mathematical Practices
Explain how you made the groups equal.

Use counters or draw a quick picture on your
MathBoard. Make equal groups. Complete the table.

	Counters	Number of Equal Groups	Number in Each Group
2.	10	2	
3.	24	6	

On Your Own

Use counters or draw a quick picture on your
MathBoard. Make equal groups. Complete the table.

	Counters	Number of Equal Groups	Number in Each Group
4.	14	7	
5.	21	3	

6. HIDEEPER Cameron and Jody collected 20 stamps. Cameron $^{\text {a }}$ says they can put an equal number of stamps on 5 pages of their album. Jody says they can put an equal number on 4 pages.
Whose statement makes sense? Explain.
\qquad

Problem Solving • Applications (arald

Use the table for 7-8.
7. Madison puts all of her photos in a photo album. She puts an equal number of photos on each of 4 pages in her album. How many photos are on each page?

Photos	
Name	Number of Photos
Madison	28
Joe	25
Ella	15

8. THINKSMARIER Joe and Ella combine their photos. Then they put an equal number on each page of an 8-page photo album. How many photos are on each page?

 shells. Can she share the sea shells equally among the 6 people in her family? Explain.
\qquad
\qquad
\qquad
\qquad
9. THINKSMARTER Zana has 9 rocks from a trip. She puts an equal number of rocks in each of 3 bags. How many rocks are in each bag?

Circle the amount to complete the sentence.

There are | 3 |
| ---: |
| 6 |
| 12 |
| 27 | rocks in each bag.

\qquad

Operations and Algebraic Thinking-3.0A. 2
Also 3.OA. 3
MATHEMATICAL PRACTICES MP.1, MP.4, MP.5, MP. 7
connect You have learned how to divide to find the number in each group. Now you will learn how to divide to find the number of equal groups.

Unlock the Problem

Juan has 12 shells and some boxes. He wants to put his shells in groups of 3 . How many boxes does he need for his shells?

P Make equal groups.

- Look at the 12 counters.
- Circle a group of 3 counters.
- Continue circling groups of 3 until all 12 counters are in groups.

There are \qquad groups of counters.

So, Juan needs \qquad boxes for his shells.

Explain how the drawing would change if Juan wanted to put his shells in groups of 4.

Try This!

Sarah has 15 shells. She wants to put each group of 5 shells in a box. How many boxes does she need for her shells?

STEP 1

Draw 15 counters.

STEP 2

Make a group of 5 counters by drawing a circle around them.
Continue circling groups of 5 until all 15 counters are in groups.

There are \qquad groups of 5 counters.

So, Sarah needs \qquad boxes for her shells.

- THINKSMARTER What if Sarah puts her 15 shells in groups of 3 ?

How many boxes does she need?
Draw a quick picture to show your work.

\qquad

Share and Show

1. Tamika has 12 counters. She puts them in groups of 2 . Draw a picture to show the number of groups.
\square

Explain how you find the number of equal groups when you divide.

Draw counters on your MathBoard. Then circle equal groups. Complete the table.

	Counters	Number of Equal Groups	Number in Each Group
2.	20		4
3.	24		3

On Your Own

Draw counters on your MathBoard. Then circle equal groups. Complete the table.

	Counters	Number of Equal Groups	Number in Each Group
$\mathbf{4 .}$	18		2
5.	16		8
5.			

6. THINK SMARIER A store has 18 red beach balls and 17 green beach balls in boxes of 5 beach balls each. How many boxes of beach balls are at the store?

 24 beach towels in stacks of 6 towels each. How many stacks of beach towels are at the store?
a. What do you need to find? \qquad
\qquad
b. How will you use what you know about making equal groups to solve the problem? \qquad
\qquad
c. Draw equal groups to find how many stacks of beach towels there are at the store.
d. Complete the sentences.

The store has \qquad beach towels.

There are \qquad towels in each stack.

So, there are \qquad stacks of beach towels at the store.
8. GחDEEPER Write a problem about dividing beach toys into equal groups. Then solve the problem.
\qquad
\qquad
\qquad
\qquad

9. THINKSMARIER Dan's train is

27 inches long. If each train car is 3 inches long, how many train cars are there?

Choose a number from the box to complete the sentence.7

There are \qquad train cars.
\qquad

Essential Question How can you use bar models to solve division problems?

Operations and Algebraic Thinking-3.0A. 2
Also 3.0A. 3
MATHEMATICAL PRACTICES MP.1, MP.4, MP.5, MP. 7

Unlock the Problem

A dog trainer has 20 dog treats for 5 dogs
in his class. If each dog gets the same number of treats, how many treats will each dog get?
-What do you need to find?
(1) Activity 1 use counters to find how many in each group.
Materials \quad counters $■$ MathBoard

- Use 20 counters.
- Draw 5 circles on your MathBoard.
- Place 1 counter at a time in each circle until all 20 counters are used.
- Draw the rest of the counters to show your work.

There are \qquad counters in each of the 5 groups.

A bar model can show how the parts of a problem are related.

- Complete the bar model to show 20 dog treats divided into 5 equal groups.

So, each dog will get \qquad treats.

(1) Activity 2 Draw to find how many equal groups.

A dog trainer has 20 dog treats. If the dog trainer gives 5 treats to each dog in the class, how many dogs are in the class?

- Look at the 20 counters.
- Circle a group of 5 counters.
- Continue circling groups of 5 until all 20 counters are in groups.

There are \qquad groups of 5 counters.
dogs

So, there are \qquad dogs in the class.

20 dog treats

Here are two ways to record division.

Write:

Read: Twenty divided by five equals four.

Share and Show

MATH BOARD

$$
\text { divisor } \rightarrow \underset{\substack{5 \longdiv { 2 0 }}}{\substack{4 \\ \text { dividend }}} \leftarrow
$$

Describe how you solved the problem. Use the terms dividend, divisor, and quotient in your explanation.

1. Complete the picture to find $12 \div 4$. \qquad

\qquad

Write a division equation for the picture.

$\checkmark 2$.

$\sigma 3$

On Your Own

Write a division equation for the picture.
4.

Practice: Copy and Solve Make equal groups to find the quotient. Draw a quick picture to show your work.
6. $20 \div 2$
7. $27 \div 9$
8. $20 \div 5$
9. $18 \div 3$

Complete the bar model to solve. Then write a division equation for the bar model.
10. There are 24 books in 4 equal stacks. How many books are in each stack?

24 books
11. There are 8 matching socks. How many pairs of socks can you make?

Problem Solving • Applications (arald

Use the table for 12-13.

12.

(.) box of Chew Sticks to share equally between his 2 dogs. Mia bought one box of Chewies to share equally among her 5 dogs. How many more treats will each of Pat's dogs get than each of Mia's dogs? Explain.
\qquad

Dog Treats	

\qquad
\qquad
\qquad
13. THINKSMARTER Kevin bought a box of Puppy Chips for his dog. If he gives his dog 5 treats each day, for how many days will one box of treats last?
14. HIDEEPER Write and solve a problem for $42 \div 7$ in which the quotient is the number of groups.
\qquad
\qquad
\qquad
15. THINK SMARIER Ed buys 5 bags of treats. He buys 15 treats in all. How many treats are in each bag?

15 treats
___ treats

Relate Subtraction and Division

Unlock the Problem

Serena and Mandy brought a total of 12 newspapers to school for the recycling program. Each girl brought in one newspaper each day. For how many days did the girls bring in newspapers?

- How many newspapers were brought in altogether?

> How many newspapers did the two girls bring in altogether each day?

I One Way Use repeated subtraction.

- Start with 12.
- Subtract 2 until you reach 0 .
- Count the number of times you subtract 2.

Since you subtract 2 six times,

Number of
times you
subtract 2 :
2
3
4
5
there are \qquad groups of 2 in 12.

So, Serena and Mandy brought in newspapers for \qquad days.

$$
\text { Write: } 12 \div 2=6 \text { or } 2 \longdiv { 1 2 }
$$

Read: Twelve divided by two equals six.

ERROR Alert

Be sure to keep subtracting 2 until you are unable to subtract 2 anymore.

1) Another Way count back on a number line.

- Start at 12.
- Count back by 2 s as many times as you can. Draw the rest of the jumps on the number line.
- Count the number of times you jumped back 2.
You jumped back by 2 six times.
There are \qquad jumps of 2 in 12.
$12 \div 2=$ \qquad

Explain in your own
 words how you found the answer.

- What do your jumps of 2 represent? \qquad Share and Show

1. Draw the rest of the jumps on the number line to complete the division equation. $12 \div 4=$ \qquad

Write a division equation.

0

© 3.

\qquad

On Your Own

Write a division equation.

4. $\begin{array}{r}28 \\ -\quad 7 \\ \hline 21\end{array}$

5.

\qquad

8. THINKSMARTER Write a word problem that can be solved by using one of the division equations above.
\qquad
\qquad

Use repeated subtraction or a number line to solve.
9. $18 \div 6=$ \qquad 10. $14 \div 7=$ \qquad
12. $3 \longdiv { 2 4 }$

Problem Solving • Applications

Use the graph for 13-15.

13.

(1) 2 equal piles. How many box tops are in each pile?
14. THINK SMARIER Paige brought an equal number of box tops to school each day for 5 days. Alma also brought an equal number of box tops each day for 5 days. How many box tops did the two students bring in altogether each day? Explain.

Box Top Collections

[^1]
Personal Math Trainer

16. THINKSMARTER $\}$ Maya collected 4 box tops each day. She collected 20 box tops in all. For how many days did Maya collect box tops?

Draw jumps on the number line to model the problem.

\qquad days
\qquad

(V) Mid-Chapter Checkpoint

Vocabulary

Vocabulary
Choose the best term from the box to complete the sentence.
divide
divisor

1. You \qquad when you separate into equal
groups. (p. 223)

Concepts and Skills

Use counters or draw a quick picture on your MathBoard.
Make or circle equal groups. Complete the table. (3.0A.2)

	Counters	Number of Equal Groups	Number in Each Group
2.	6	2	
3.	30		5
4.	28	7	

Write a division equation for the picture. (3.0A.2)
5.

Write a division equation. (3.OA.3)

7. 36

8.

8.

9. Victor plants 14 seeds in some flowerpots. If he puts 2 seeds in each pot, how many flowerpots does he use? (3.0A.2)
10. Desiree has 20 stickers. She gives the same number of stickers to each of 5 friends. What equation can be used to find the number of stickers each friend receives? (3.0A.3)
11. Jayden modeled a division equation with some counters. What division equation matches the model? (3.0A.2)

12. Lillian bought 24 cans of cat food. There were 4 cans in each pack. How many packs of cat food did Lillian buy? (3.0A.2)
packs

24 cans
\qquad

Model with Arrays

Essential Question How can you use arrays to solve division problems?

Operations and Algebraic
 Thinking-3.0A. 3 Also 3.0A. 2

MATHEMATICAL PRACTICES MP.4, MP.6, MP.7, MP. 8

Investigate

Materials ${ }^{-1}$ square tiles
You can use arrays to model division and find equal groups.
A. Count out 30 tiles. Make an array to find how many rows of 5 are in 30 .
B. Make a row of 5 tiles.
C. Continue to make as many rows of 5 tiles as you can.

How many rows of 5 did you make? \qquad

Draw Conclusions

1. Explain how you used the tiles to find the number of rows of 5 in 30 .
\qquad
\qquad
2. What multiplication equation could you write for the array? Explain.
\qquad
\qquad
3. Tell how to use an array to find how many rows of 6 are in 30.

Make Connections

You can write a division equation to show how many rows of 5 are in 30 . Show the array you made in Investigate by completing the drawing below.

Math Idea

You can divide to find the number of equal rows or to find the number in each row.
$30 \div 5=$ \square

There are \qquad rows of 5 tiles in 30 .

So, $30 \div 5=$ \qquad .

Try This!

Count out 24 tiles. Make an array with the same number of tiles in 4 rows. Place 1 tile in each of the 4 rows. Then continue placing 1 tile in each row until you use all the tiles. Draw your array below.

- How many tiles are in each row? \qquad
-What division equation can you write for your array?

Share and Show

Use square tiles to make an array. Solve.

1. How many rows of 3 are in 18 ?
© 2. How many rows of 6 are in 12?
\qquad
2. How many rows of 7 are in 21 ?
3. How many rows of 8 are in 32 ?
\qquad

Make an array. Then write a division equation.
5. 25 tiles in 5 rows
\qquad
7. 28 tiles in 4 rows
\qquad

Problem Solving • Applications

9. THINKSMARTER Tell how to use an array to find how many rows of 8 are in 40.
\qquad
\qquad
10. 14 tiles in 2 rows
11. 27 tiles in 9 rows
\qquad
\qquad ,

Math
Spot
Spot
10. Mrninict (4) Model Mathematics Show two ways you could make an array with tiles for $18 \div 6$. Shade squares on the grid to record the arrays.

Unlock the Problem

 seedlings to plant in his garden. He wants to plant 4 seedlings in each row. How many rows of tomato seedlings will Thomas plant?

a. What do you need to find?
\qquad
b. What operation could you use to solve the problem? \qquad
c. Draw an array to find the number of rows of tomato seedlings.
d. What is another way you could have solved the problem?
e. Complete the sentences.

Thomas has \qquad tomato seedlings.

He wants to plant \qquad seedlings in each \qquad .

So, Thomas will plant \qquad rows of tomato seedlings.
12. GחDEEPER There were 20 plants sold at a store on Saturday, and 30 plants sold at the store on Sunday. Customers bought 5 plants each. How many customers in all bought the plants?
13. THINKSMARTER Paige walked her dog 15 times in 5 days. She walked him the same number of times each day. How many times did Paige walk her dog each day?

Shade squares to make an array to model the problem.
\qquad times
\qquad

Relate Multiplication and Division

Operations and Algebraic
Thinking-3.0A.6 Also 3.0A.2, 3.0А.3, 3.0A.4, 3.0A. 7

Unlock the Problem

Pam went to the fair. She went on the same ride 6 times and used the same number of tickets each time. She used 18 tickets. How many tickets did she use each time she went on the ride?

P One Way Use bar models.

You can use bar models to understand how multiplication and division are related.

Complete the bar model to show 18 tickets divided into 6 equal groups.

Write: $18 \div 6=$ \qquad
So, Pam used \qquad tickets each time she went on the ride.

Multiplication and division are opposite operations, or inverse operations.

You can think about multiplication to solve a division problem.

To solve $18 \div 6=\square$, think $6 \times \square=18$.
Since $6 \times 3=18$, then $18 \div 6=3$.

What if the problem said Pam went on the ride 6 times and used 3 tickets each time? How many tickets did Pam use in all?

Complete the bar model to show 6 groups of 3 tickets.

Write: $6 \times 3=$ \qquad

- Circle the numbers you need to use.

> What do you need to find?

©

P) Another Way Use an array.

You can use an array to see how multiplication and division are related.

Show an array with 18 counters in 3 equal rows by completing the drawing.

There are \qquad counters in each row.

Write: $18 \div 3=$ \qquad _

Write: $3 \times 6=$ \qquad

Share and Show

1. Use the array to complete the equation.
Think: There are 3 counters in each row.
MATH
BOARD
BOARD

$6 \div 2=$ \qquad
Complete.
2.

3 rows of \qquad $=15$
$3 \times$ \qquad $=15$
$15 \div 3=$ \qquad
3.

2 rows of \qquad $=12$
$2 \times$ \qquad $=12$
$12 \div 2=$ \qquad

The same array can be used to find the total number if you know there are 3 rows with 6 counters in each row.

Name \qquad

On Your Own

Complete.

5 rows of \qquad $=30$
$5 \times$ \qquad $=30$
$30 \div 5=$ \qquad

$4 \times$ \qquad $=20$
$20 \div 4=$ \qquad
9.

4 rows of \qquad $=28$
$4 \times$ \qquad $=28$
$28 \div 4=$ \qquad

Complete the equations.

10. $7 \times$ \qquad $=21$ $21 \div 7=$ \qquad 11. $8 \times$ \qquad $=16$ $16 \div 8=$ \qquad
11. $4 \times$ \qquad $=32$
$32 \div 4=$ \qquad 13. $6 \times$ \qquad $=24$ $24 \div 6=$ \qquad

12. $3 \times 3=27 \div$ \qquad
13. $16 \div 2=$ \qquad $\times 2$
14. $9=$ \qquad $\div 4$
15. $5=$ \qquad $\div 7$
16. $42 \div 7=$ \qquad $\times 2$
17. $30 \div$ \qquad $=2 \times 3$
18. Justin and Ivan went to the fair when all rides were $\$ 2$ each. Each boy went on the same number of rides, and spent $\$ 10$. How many rides did each boy go on?

Problem Solving • Applications argid

Use the table for 21-22.

21. Mr. Jerome paid $\$ 24$ for some students to get into the fair. How many students did Mr . Jerome pay for?

Ventura County Fair	
Price of Admission	
Adults	$\$ 6$
Students	$\$ 3$
Children 5 and under free	

22. IHINKSMARTER Garrett is 8 years old. He and his family are going to the county fair. What is the price of admission for Garrett, his 2 parents, and baby sister?

 ride. The number of seats in each car is the same. If there are 5 cars on the ride, how many seats are in each car?
Complete the bar model to show the problem. Then answer the question.

20 seats
24. FIDEEPER How many days are there in 2 weeks? Write and solve a related word problem to represent the inverse operation.
25. THINKSMARIER There are 35 prizes in 5 equal rows.

How many prizes are in each row?
Complete each equation to represent the problem.
$5 \times$ \qquad $=35$
$35 \div 5=$ \qquad
\qquad prizes

Write Related Facts

Essential Question How can you write a set of related multiplication and division facts?

Unlock the Problem

Related facts are a set of related multiplication and division equations. What related facts can you write for 2,4 , and 8 ?

(1) Activity

Materials $■$ square tiles

STEP 1

Use 8 tiles to make an array with 2 equal rows.

Draw the rest of the tiles.
How many tiles are in each row?
Write a division equation for the array using the total number of tiles as the dividend and the number of rows as the divisor.
\qquad \div \qquad
\qquad

- What model can you use to show how multiplication and division are related?

Write a multiplication equation for the array.
\qquad \times \qquad $=$ \qquad

STEP 2

Now, use 8 tiles to make an array with 4 equal rows.
Draw the rest of the tiles.
How many tiles are in each row?
Write a division equation for the array using the total number of tiles as the dividend and the number of rows as the divisor.
\qquad \div \qquad $=$ \qquad

So, $8 \div 2=$ \qquad $2 \times 4=$ \qquad ,
$8 \div 4=$ \qquad , and $4 \times 2=$ \qquad are related facts. -

Try This! Draw an array with 4 rows of 4 tiles.

Your array shows the related facts for 4,4 , and 16 .
$4 \times 4=$ \qquad $16 \div 4=$ \qquad
Since both factors are the same, there are only two equations in this set of related facts.
set of related facts that has only two equations.

Math

Look at the multiplication and division equations in a set of related facts. What do you notice about the products and dividends? Explain.

Write the related facts for the array.

5. Why do the related facts for the array in Exercise 2 have only two equations?
(ब) 4.

\qquad
\qquad
\qquad

On Your Own

Write the related facts for the array.
6.

7.

\qquad
\qquad
8.

Write the related facts for the set of numbers.
9. $2,5,10$
\qquad
\qquad
\qquad
\qquad
10. $3,8,24$
\qquad
\qquad
\qquad
\qquad
11. $6,6,36$
\qquad
\qquad
\qquad
\qquad

Complete the related facts.
12. $4 \times 7=$ \qquad $7 \times \ldots=28$ $28 \div \ldots=4$ $28 \div 4=$ \qquad
13. $5 \times$ \qquad $=30$
$6 \times$ \qquad $=30$
$30 \div 6=$ \qquad
$30 \div 5=$ \qquad
14. \qquad $\times 9=27$
\qquad $\times 3=27$
\qquad $\div 9=3$
$27 \div$ \qquad $=9$
15. Write a set of related facts that has only two equations. Draw an array to show the facts.
\qquad

Problem Solving • Applications

Use the table for 16-17.

 Others Ty has a package of glitter dough. He says he can give 9 friends 5 equal sections. Describe his error. What is the correct answer?

Clay Supplies	
Item	Number in Package
Clay	12 sections
Clay tool set	11 tools
Glitter dough	36 sections

\qquad

WRITE Math Show Your Work
17. THINK SMARTER Mr. Lee divides 1 package of clay and 1 package of glitter dough equally among 4 students. How many more glitter dough sections than clay sections does each student get?

18. [TDDEEPE) Write a word problem that can be solved by using $35 \div 5$. Solve your problem.
\qquad
\qquad
\qquad
19. IHINKSMARTER Select the equations that represent the array. Mark all that apply.
(A) $2 \times 10=20$
(D) $20 \div 2=10$
(B) $20 \div 4=5$
(E) $4 \times 5=20$
(C) $5 \times 4=20$
(F) $20 \div 5=4$
\qquad

Division Rules for 1 and 0

What rules for division can help you divide with 1 and 0 ?
If there is only 1 fishbowl, then all the fish must go in that fishbowl.

Rule A: Any number divided by 1 equals that number.

If there is the same number of fish and fishbowls, then 1 fish goes in each fishbowl.

Try This! There are 3 fish and 1 fishbowl. Draw a quick picture to show the fish in the fishbowl.

Write the equation your picture shows.
\qquad \div \qquad $=$

Explain how Rule A is related to the Identity Property of Multiplication.

Try This! There are 3 fish and 3 fishbowls. Draw a quick picture to show the fish divided equally among the fishbowls.

Write the equation your picture shows.

Rule B: Any number (except 0) divided by itself equals 1.

If there are 0 fish and 4 fishbowls, there will not be any fish in the fishbowls.

Try This! There are 0 fish and 3 fishbowls. Draw a quick picture to show the fishbowls.

Write the equation your picture shows.
\qquad \div \qquad $=$ \qquad

Rule C: Zero divided by any number (except 0) equals 0 .

If there are 0 fishbowls, then you cannot separate the fish equally into fishbowls. Dividing by 0 is not possible.

Rule D: You cannot divide by 0 .

Share and Show

MATH
BOARD

1. Use the picture to find $2 \div 2$. \qquad

Explain what happens when you divide a number (except 0) by itself.

Find the quotient.
2. $7 \div 1=$ \qquad 3. $8 \div 8=$ \qquad 64. $0 \div 5=$ \qquad $\checkmark 5$. \qquad $=6 \div 6$

On Your Own

Find the quotient.

6. $0 \div 8=$ \qquad
7. $5 \div 5=$ \qquad
8. $2 \div 1=$ \qquad 9. $0 \div 7=$ \qquad
9. $5 \longdiv { 0 }$
10. $1 \longdiv { 9 }$
11. $7 \longdiv { 7 }$
12. $1 0 \longdiv { 1 0 }$

Practice: Copy and Solve Find the quotient.
14. $6 \div 1$
15. $25 \div 5$
16. $0 \div 6$
17. $18 \div 3$
18. $14 \div 2$
19. $9 \div 9$
20. $28 \div 4$
22. $3 \longdiv { 2 7 }$
23. $5 \longdiv { 1 0 }$
24. $3 \longdiv { 0 }$
25. $1 \longdiv { 0 }$

Problem Solving • Applications

26. THINKSMARTER/ Claire has 7 parakeets. She puts 4 of them in a cage. She divides the other parakeets equally among 3 friends to hold. How many parakeets does each friend get to hold?

27. HIDEEPER Lena has 5 parrots. She gives each parrot 1 grape in the morning and 1 grape in the evening. How many grapes does she give to her parrots each day?
28. 21 cages. Use what you know about division rules to find the number of birds in each cage. Explain your answer.
29. THINKSMARTER For numbers 29a-29c, select True or False for each equation.
29a. $4 \div 4=1$
○ True
O False
29b. $6 \div 1=1$
\bigcirc True
\bigcirc False
29c. $1 \div 5=1$
\bigcirc True
O False

Connect tol Reading

Compare and Contrast

You have learned the rules for division with 1. Compare and contrast them to help you learn how to use the rules to solve problems.

Compare the rules. Think about how they are alike.
Contrast the rules. Think about how they are different.
Read: Rule A: Any number divided by 1 equals that number.
Rule B: Any number (except 0) divided by itself equals 1 .
Compare: How are the rules alike?

- Both are division rules for 1 .

Contrast: How are the rules different?

- Rule A is about dividing a number by 1 . The quotient is that number.
- Rule B is about dividing a number (except 0) by itself. The quotient is always 1 .

Read the problem. Write an equation. Solve.
Write Rule A or Rule B to tell which rule you used.
30. Jamal bought 7 goldfish at the pet store. He put them in 1 fishbowl. How many goldfish did he put in the fishbowl?
31. Ava has 6 turtles. She divides them equally among 6 aquariums. How many turtles does she put in each aquarium?
\qquad

Chapter 6 Review/Test

1. For numbers la-1d, select True or False for each equation.
1a. $3 \div 1=1$

- True
False
1b. $0 \div 4=0$
\bigcirc True
False
1c. $7 \div 7=1$
○ True
False
1d. $6 \div 1=6$
○ True
False

2. Elizabeth has 12 horses on her farm. She puts an equal number of horses in each of 3 pens. How many horses are in each pen?

Circle a number that makes the sentence true.

There are | 4 |
| :---: |
| 9 |
| 36 | horses in each pen.

3. Chris plants 25 pumpkins seeds in 5 equal rows. How many seeds does Chris plant in each row?

Make an array to represent the problem. Then solve the problem.

4. Becca spent 24 minutes walking around a track. It took her 3 minutes to walk each time around the track. How many times did Becca walk around the track?

Make equal groups to model the problem. Then explain how you solved the problem.
5. There are 7 cars in an amusement park ride. There are 42 people divided equally among the 7 cars. An equal number of people ride in each car. How many people ride in one car?

\qquad
6. Select the equations that represent the array. Mark all that apply.

(A) $3 \times 5=\square$
(D) $5 \times \square=15$
(B) $2 \times \square=12$
(E) $12 \div 3=$
(C) $\square 3=5$
(F) $15 \div 5=$
\qquad
7. Eduardo visited his cousin for 28 days over the summer. There are 7 days in each week. How long, in weeks, was Eduardo's visit?

Part A

Draw jumps on the number line to model the problem.

Part B

Write a division equation to represent the model.
\qquad weeks
8. A workbook is 64 pages long. If each chapter is 8 pages long, how many chapters are there?
\qquad chapters
9. There are 56 apples packed in 7 baskets with the same number of apples in each basket. How many apples are in each basket?

For numbers 9a-9d, choose Yes or No to tell whether the equation represents the problem.
9a. $56+7=$ \square
Yes
\bigcirc No
9b. $7 \times \square=56$
YesNo
9c. $56 \div \square=8$
○ Yes
\bigcirc No
9d. $\quad 56-\square=8$
\bigcirc Yes
\bigcirc No
10. Stefan has 24 photos to display on some posters. Select a way that he could display the photos in equal groups on the posters. Mark all that apply.
(A) 6 photos on each of 4 posters
(D) 5 photos on each of 5 posters
(B) 7 photos on each of 3 posters
(E) 3 photos on each of 8 posters
(C) 4 photos on each of 6 posters
(F) 7 photos on each of 4 posters
11. Debbie made this array to model a division equation. Which equation did Debbie model? Mark all that apply.

(A) $14 \div 7=2$
(C) $28 \div 7=4$
(B) $28 \div 4=7$
(D) $14 \div 2=7$
12. Mrs. Edwards made a total of 40 fingers on some gloves she knitted. How many gloves did Mrs. Edwards knit?

13. Make true equations. Select a number to complete the equation.

$7 \div 7=$
$7 \div 1=$ \qquad

$$
0 \div 7=
$$

\qquad
14. The coach separated the 18 players at lacrosse practice into 3 different groups. How many players were in each group?
15. Write a division equation to represent the repeated subtraction.

16. Write related facts for the array. Explain why there are not more related facts.

17. Darius bakes 18 muffins for his friends. He gives each of his friends an equal number of muffins and has none left over.

Part A

Draw a picture to show how Darius divided the muffins and complete the sentence.
\square
Darius gave muffins to \qquad
\qquad friends.

Part B

Could Darius have given all of his muffins equally to 4 of his friends? Explain why or why not.
18. Circle numbers to complete the related facts.

7
9
64
80

$\left.72 \div$| 7 |
| :---: |
| 8 |
| 9 |
| 64 | \right\rvert\,$=8$

19. Use the numbers to write a related multiplication and division facts.

20. Tyrone took 16 pennies from his bank and put them in 4 equal stacks. How many pennies did Tyrone put in each stack? Show your work.

Division Facts and Strategjes

Show What You Know

Check your understanding of important skills.
Name \qquad

Think Addition to Subtract Write the missing numbers.

1. $10-3=\square$

Think: $3+\square=10$
$3+\ldots=10$
So, $10-3=$ \qquad .
Missing Factors Write the missing factor.
2. $12-8=\square$

Think: $8+\square=12$
$8+\quad=12$
So, $12-8=$ \qquad .
3. $2 \times$ \qquad $=10$
4. $42=$ \qquad $\times 7$
5. \qquad $\times 6=18$

Multiplication Facts Through 9 Find the product.
6. \qquad $=6 \times 9$
7. $3 \times 8=$ \qquad 8. $4 \times 4=$ \qquad

On Monday, the students in Mr. Carson's class worked in pairs. On Tuesday, the students worked in groups of 3. On Wednesday, the students worked in groups of 4. Each day the students made equal groups with no student left out of a group. Be a Math Detective to find how many students could be in Mr. Carson's class.

Vocabulary Builder

Visualize It

Sort the review words into the Venn diagram.

Multiplication Words

Review Words

divide
dividend
divisor
equation
factor
inverse operations
multiply
product
quotient
related facts

Preview Word
order of operations

Understand Vocabulary

Complete the sentences by using the review and preview words.

1. An \qquad is a number sentence that uses the equal sign to show that two amounts are equal.
2. The \qquad is a special set of rules that gives the order in which calculations are done to solve a problem.
3. \qquad are a set of related multiplication and division equations.
\qquad

Divide by 2

Essential Question What does dividing by 2 mean?

Unlock the Problem

There are 10 hummingbirds and 2 feeders in Marissa's backyard. If there are an equal number of birds at each feeder, how many birds are at each one?

1) Activity 1

Use counters to find how many in each group.
Materials $■$ counters $■$ MathBoard

MODEL

- Use 10 counters.
- Draw 2 circles on your MathBoard.
- Place 1 counter at a time in each circle until all 10 counters are used.
- Draw the rest of the counters to show your work.

- What do you need to find?
- Circle the numbers you need to use.
- What can you use to help solve the problem? \qquad
\qquad in all
\qquad equal groups
\qquad in each group
RECORD
$10 \div 2=5$ or $2 \longdiv { 1 0 }$
Read: Ten divided by two equals five.

There are \qquad counters in each of the 2 groups. So, there are \qquad hummingbirds at each feeder.

A hummingbird can fly right, left, up, down, forward, backward, and even upside down!

Explain what each number in $10 \div 2=5$ represents from the word problem.

1. Activity 2 Draw to find how many equal groups.

There are 10 hummingbirds in Tyler's backyard. If there are 2 hummingbirds at each feeder, how many feeders are there?

Math Idea

You can divide to find the number in each group or to find the number of equal groups.

MODEL

- Look at the 10 counters.
- Circle a group of 2 counters.
- Continue circling groups of 2 until all 10 counters are in groups.

THINK

\qquad in all
\qquad in each group
\qquad equal groups

RECORD

$$
10 \div 2=5 \text { or } 2 \longdiv { 5 }
$$

Read: Ten divided by two equals five.

There are \qquad groups of 2 counters.

So, there are \qquad feeders.

Share and Show

MATH MOARD

1. Complete the picture to find $6 \div 2$. \qquad
Describe another division equation that could be written for the picture you drew.

Write a division equation for the picture.
2.

103.

$\$ 4$.

On Your Dwn

Write a division equation for the picture.
5.

6.

7.

Find the quotient. You may want to draw a quick picture to help.
8. $2 \div 2=$ \qquad
9. \qquad $=10 \div 2$
10. \qquad
11. \qquad $=18 \div 2$
12. $16 \div 2=$ \qquad 13. \qquad $=0 \div 2$
14.

2 $\sqrt{8}$
15.
$2 \longdiv { 1 2 }$
16.
$2 \longdiv { 2 0 }$

Reason Abstractly Algebra Find the unknown number.
17. \qquad $\div 2=5$
18. \qquad $\div 2=2$
19. \qquad $\div 2=3$
20. \qquad $\div 2=8$

Problem Solving • Applications

Use the table for 21-22.

21. HIDEEPER Two hummingbirds of the same type have a total mass of 10 grams. Which type of hummingbird are they? Write a division equation to show how to find the answer.

Hummingbirds

Type	Mass (in grams)
Magnificent	7
Ruby-throated	3
Violet-crowned	5

22. THINKSMARIER There are 3 Ruby-throated hummingbirds and 2 of another type of hummingbird at a feeder. The birds have a mass of 23 grams in all. What other type of hummingbird is at the feeder? Explain.

WRITE Math. Show Your Work
\qquad

Divide by 10

Essential Question What strategies can you use to divide by 10 ?

Operations and Algebraic

Thinking-3.0A. 7 Also 3.0A.2,
3.0A.3, 3.0A.4,3.0A. 6

MATHEMATICAL PRACTICES
MP.1, MP.2, MP.5, MP. 8

Unlock the Problem

There are 50 students going on a field trip to the Philadelphia Zoo. The students are separated into equal groups of 10 students each. How many groups of students are there?

- What do you need to find?
- Circle the numbers you need to use.

P One Way use repeated subtraction.

- Start with 50.
- Subtract 10 until you reach 0 .
- Count the number of times you subtract 10.

$\begin{array}{r} 50 \\ -10 \\ \hline 40 \end{array}$				
1	2	3	4	5

You subtracted 10 five times. $50 \div 10=$ \qquad

So, there are \qquad groups of 10 students.

P) Other Ways

(A) Use a number line.

- Start at 50 and count back by 10s until you reach 0 .
- Count the number of times you jumped back 10.

You jumped back by 10 five times.
$50 \div 10=$ \qquad

How is counting on a number line to divide by 10 different from counting on a number line to multiply by 10 ?

(B) Use a multiplication table.

Divide. $50 \div 10=$
Since division is the opposite of multiplication, you can use a multiplication table to find a quotient.

Think of a related multiplication fact.
$\times 10=50$
STEP 1 Find the factor, 10, in the top row.
STEP 2 Look down to find the product, 50.
STEP 3 Look left to find the unknown factor, \qquad .

Since \qquad $\times 10=50$, then $50 \div 10=$ \qquad .

In Step 1, is the divisor or the dividend the given factor in the related multiplication fact?

In Step 2, is the divisor or the dividend the product in the related multiplication fact?

The quotient is the unknown factor.

Share and Show

1. Use repeated subtraction to find $30 \div 10$.

Think: How many times do you subtract 10?

Find the unknown factor and quotient.
2. $10 \times _=40 \quad=40 \div 10$

Find the quotient.

4. \qquad $=20 \div 10$
5. $1 0 \longdiv { 5 0 }$
© $3.10 \times$
6. $1 0 \longdiv { 7 0 }$ \qquad $=60 \quad 60 \div 10=$ \qquad
(1) 7. $90 \div 10=$ \qquad
\qquad

On Your Own

Find the unknown factor and quotient.
8. $10 \times$ \qquad $=70 \quad 70 \div 10=$ \qquad 9. $10 \times$ \qquad $=10$ $10 \div 10=$ \qquad
10. $10 \times$ \qquad $=80$
$80 \div 10=$ \qquad 11. \qquad $\times 2=12$ $\ldots=12 \div 2$

Find the quotient.
12. $50 \div 10=$ \qquad 13. \qquad $=60 \div 10$
14. $16 \div 2=$ \qquad
16. $10 \div 2=$ \qquad 17. $30 \div 10=$ \qquad 18. $\quad=20 \div 2$
20. $1 0 \longdiv { 2 0 }$
21. $1 0 \longdiv { 1 0 0 }$
15. $90 \div 10=$ \qquad
19. \qquad $=0 \div 10$
\qquad

Problem Solving • Applications waild

Use the picture graph for 30-32.

30. Lyle wants to add penguins to the picture graph. There are 30 stickers of penguins. How many symbols should Lyle draw for penguins?
31. GIDEEPER Write a word problem using information from the picture graph. Then solve your problem.

\qquad
\qquad
32. THINKSMARIIER/Sense or Nonsense? Lena wants to put the monkey stickers in an album. She says she will use more pages if she puts 5 stickers on a page instead of 10 stickers on a page. Is she correct? Explain.
33.

 like an unknown factor problem.
\qquad
\qquad
\qquad
34. THINKSMARTER Lilly found 40 seashells. She put 10 seashells in each bucket. How many buckets did Lilly use? Show your work.
\qquad buckets
\qquad

Divide by 5

Essential Question What does dividing by 5 mean?

Operations and Algebraic Thinking3.0A. 3 Also 3.0A.2, 3.0A. 7

MATHEMATICAL PRACTICES MP.1, MP.2, MP.5, MP. 7

Unlock the Problem
Kaley wants to buy a new cage for Coconut, her guinea pig. She has saved 354. If she saved a nickel each day, for how many days has she been saving?

> - How much is a nickel worth?

P) One Way Count up by 5 s.

- Begin at 0.
- Count up by 5 s until you reach 35.

5, 10, \qquad , \qquad , \qquad , \qquad , \qquad

- Count the number of times you count up.

You counted up by 5 seven times. $35 \div 5=$ \qquad So, Kaley has been saving for \qquad days.

1) Another Way

123
4
5
6
7

Count back on a number line.

- Start at 35.
- Count back by 5 s until you reach 0 . Complete the jumps on the number line.
- Count the number of times you jumped back 5.

You jumped back by 5 \qquad times.
$35 \div 5=$ \qquad _ -

Strategies for Multiplying and Dividing with 5

You have learned how to use doubles to multiply. Now you will learn how to use doubles to divide by 5 .
(Use 10 s facts, and then take half to multiply with 5.
When one factor is 5 , you can use a 10 s fact.
$5 \times 2=$

First, multiply by 10.
After you multiply, take half of the product.
$10 \times 2=$ \qquad
$20 \div 2=$ \qquad
So, $5 \times 2=$ \qquad .
$30 \div 5=$
 you can use a 10 s fact.
$30 \div 10=$ \qquad
After you divide, double the quotient.
$3+$ \qquad $=$ \qquad
So, $30 \div 5=$ \qquad .

Share and Show

MATH BOARD

1. Count back on the number line to find $15 \div 5$.

\qquad
Mathematical Practices

Explain how counting up to solve a division problem is like counting back on a number line.

Use count up or count back on a number line to solve.
2. $10 \div 2=$ \qquad

(6) 3. $20 \div 5=$ \qquad

Find the quotient.

4. $50 \div 5=$ \qquad
5. $5 \div 5=$ \qquad 6. $45 \div 5=$ \qquad
\qquad

On Your Own

Use count up or count back on a number line to solve.
7. $30 \div 5=$ \qquad

8. $25 \div 5=$ \qquad

Find the quotient.
9. $\quad=20 \div 5$
10. $40 \div 5=$ \qquad 11. \qquad $=18 \div 2$
12. $0 \div 5=$ \qquad
13. $35 \div 5=$ \qquad
14. \qquad $=10 \div 5$
15. $40 \div 10=$ \qquad 16. \quad _ $=4 \div 2$
17. $1 0 \longdiv { 3 0 }$
18. $2 \longdiv { 1 6 }$
19. $5 \longdiv { 4 5 }$
20. $5 \longdiv { 1 5 }$

21.

\times	1	2	3	4	5
10					
5					

22.

\div	10	20	30	40	50
10					
5					

Problem Solving • Applications

 hay, pellets, and vegetables. If Wonder Hay comes in a 5 -pound bag and costs $\$ 15$, how much does 1 pound of hay cost?
\qquad
24. Guinea pigs sleep about 45 hours every 5 days with their eyes open. About how many hours a day do guinea pigs sleep?
25. HTDEEPER The clerk at the pet supply store works 45 hours a week. He works an equal number of hours on Monday through Friday. He works an extra 5 hours on Saturday. How many hours does he work on each weekday?
26. THINKSMARIER/Pose a Problem Maddie went to a veterinary clinic. She saw the vet preparing some carrots for the guinea pigs.

Write a division problem that can be solved using the picture of carrots. Draw circles to group the carrots for your problem.

Pose a problem.
\qquad

- Group the carrots in a different way. Then write a problem for the new groups. Solve your problem.
\qquad
\qquad
\qquad

27. THINKSMARIER Circle the unknown factor and quotient.

$$
5 \times \begin{aligned}
& 5 \\
& 6 \\
& 7
\end{aligned}=35 \quad \begin{aligned}
& 5 \\
& 6 \\
& 7
\end{aligned}=35 \div 5
$$

\qquad

Divide by 3

Essential Question What strategies can you use to divide by 3?

Operations and Algebraic
Thinking-3.0A.7 Also 3.OA.2, 3.0A.3,3.0A.4,3.0A. 6

MATHEMATICAL PRACTICES MP.1, MP.4, MP.5, MP. 6

? Unlock the Problem

For field day, 18 students have signed up for the relay race. Each relay team needs 3 students. How many teams can

- What do you need to find?
- Circle the numbers you need to use.
- Look at the 18 counters below.
- Circle as many groups of 3 as you can.
- Count the number of groups.

I. One Way Make equal groups.

There are \qquad groups of 3 .

So, \qquad teams can be made.

You can write $18 \div 3=$ \qquad or $3 \longdiv { 1 8 }$.

Suppose the question asked how many students would be on 3 equal teams. How would you model 3 equal teams? Would the quotient be the same?

P) Other Ways

A Count back on a number line.

- Start at 18.
- Count back by 3s as many times as you can. Complete the jumps on the number line.

ERROR Alert

Be sure to count back the same number of spaces each time you jump back on the number line.

- Count the number of times you jumped back 3.

You jumped back by 3 \qquad times.

B Use a related multiplication fact.

Since division is the opposite of multiplication, think of a related multiplication fact to find $18 \div 3$.
$\square \times 3=18$
$6 \times 3=18$

Think: What number completes the multiplication fact?

So, $18 \div 3=$ \qquad or $3 \longdiv { 1 8 }$.

- What if 24 students signed up for the relay race and there were 3 students on each team? What related multiplication fact would you use to find the number of teams?

Share and Show

1. Circle groups of 3 to find $12 \div 3$. \qquad

Find the quotient.

2
2. $6 \div 3=$ \qquad 3. $\quad=14 \div 2$
64. $21 \div 3=$
5. $_=30 \div 5$

On Your Own

Practice: Copy and Solve Find the quotient. Draw a quick picture to help.
6. $9 \div 3$
7. $10 \div 5$
8. $18 \div 2$
9. $24 \div 3$

Find the quotient.
10. \qquad $=12 \div 2$
11. $40 \div 5=$ \qquad
12. $60 \div 10=$ \qquad
13. $\ldots=20 \div 10$
14. $27 \div 3=$ \qquad 15. \quad _ $=0 \div 3$
16. $12 \div 3=$ \qquad 17.
18. $3 \longdiv { 1 5 }$
19. $2 \longdiv { 4 }$
20. $5 \longdiv { 2 0 }$
21. $3 \longdiv { 1 8 }$
22. $2 \longdiv { 1 6 }$
23. $3 \longdiv { 1 2 }$
24. $3 \longdiv { 6 }$
25. $5 \longdiv { 3 5 }$
26. $3 \longdiv { 3 }$
27. $1 0 \longdiv { 7 0 }$
28. $3 \longdiv { 3 0 }$
29. $1 0 \longdiv { 5 0 }$

30. $25 \bigcirc 5=10 \div 2$
31. $3 \times 3=6 \bigcirc 3$
32. $16 \bigcirc 2=24-16$
33. $13+19=8$
 4
34. 14
 $2=6 \times 2$
35. $21 \div 3=5$
 2

Problem Solving • Applications

Use the table for 36-37.
36. GIDEEPER relay race. How many students are on each team? Write a division equation that shows the number of students on each team.

37. THINK ${ }^{\text {SMARIER }}$ Students doing the jump-rope race and the beanbag toss compete in teams of 3 . How many more teams participate in the jump-rope race than in the beanbag toss? Explain how you know.

\qquad
\qquad
38.

(1) Make Sense of Problems Michael puts ts cards into stacks of 3 . The answer is 7 stacks. What's the question?
\qquad
39. THINK SMARTER Jorge made $\$ 24$ selling water at a baseball game. He wants to know how many bottles of water he sold. Jorge used this number line to help him.

Write the division equation that the number line represents.
\qquad \div \qquad $=$ \qquad
\qquad

Divide by 4

Essential Question What strategies can you use to divide by 4?

A tree farmer plants 12 red maple trees in 4 equal rows. How many trees are in each row?

(1) One Way Make an array.

- Look at the array.
- Continue the array by drawing 1 tile in each of the 4 rows until all 12 tiles are drawn.
- Count the number of tiles in each row.

There are \qquad tiles in each row.

So, there are \qquad trees in each row.

Write: \qquad \div \qquad $=$ \qquad or $4 \longdiv { 1 2 }$

Read: Twelve divided by four equals three.

P) Other Ways

(A) Make equal groups.

- Draw 1 counter in each group.
- Continue drawing 1 counter at a time until all 12 counters are drawn.

There are \qquad counters in each group.

- What strategy could you use to solve the problem?
(B) Use factors to find $12 \div 4$.

The factors of 4 are 2 and 2 .

To divide by 4 , use the factors.
$12 \div 4=n$
Divide by 2.
Then divide by 2 again.

$12 \div 4=$ \qquad

Use a related multiplication fact.

$$
\begin{aligned}
12 \div 4 & =n \\
4 \times n & =12 \\
4 \times 3 & =12
\end{aligned}
$$

Think: What number completes the multiplication fact?
$12 \div 4=$ \qquad or $4 \longdiv { 1 2 }$

Try This! Use factors of 4 to find $16 \div 4$.

The factors of 4 are 2 and 2.
$16 \div 4=$

Divide by 2.
$16 \div 2=$ \qquad
Think: Dividing by the factors of the divisor is the same as dividing by the divisor.

Then divide by 2 again.

\qquad
So, $16 \div 4=$ \qquad .

Share and Show

1. Use the array to find $28 \div 4$. \qquad

Explain how you used the array to find the quotient.

Find the quotient.

2. \qquad $=21 \div 3$
3. $8 \div 4=$ \qquad
4. \qquad $=40 \div 5$
© 5. $24 \div 4=$
Find the unknown number.
5. $20 \div 4=a$
6. $12 \div 2=p$
7. $27 \div 3=$
Δ
© $9.12 \div 4=t$
$a=$ \qquad $p=$ \qquad
$\Delta=$ \qquad
$t=$ \qquad
\qquad

On Your Own

Practice: Copy and Solve Draw tiles to make an array.
Find the quotient.
10. $30 \div 10$
11. $15 \div 5$
12. $40 \div 4$
13. $16 \div 2$

Find the quotient.
14. $12 \div 3=$ \qquad
15. $20 \div 4=$ \qquad 16. \qquad $=0 \div 4$
17. $\quad=36 \div 4$
18. $4 \longdiv { 2 8 }$
19. $2 \longdiv { 1 8 }$
20. $4 \longdiv { 1 6 }$
21. $5 \longdiv { 2 5 }$

Find the unknown number.
22. $45 \div 5=b$
23. $20 \div 10=e$
24. $8 \div 2=$
25. $24 \div 3=h$
$b=$ \qquad

$$
e=
$$

$\square=$ \qquad

$$
h=
$$

26. $4 \div 4=p$
27. $24 \div 4=t$
28. $16 \div 4=s$
29. $32 \div 4=$

$$
p=
$$

$$
t=
$$

$s=$ \qquad
\qquad

Algebra Complete the table.
30.

\div	9	12	15	18
3				

31.

\div	20	24	28	32
4				

32. $14 \div \ldots=7$
33. $30 \div \ldots=6$
34. $8 \div$ \qquad $=2$
35. $24 \div$ \qquad $=8$
36. $36 \div$ \qquad $=9$
37. $40 \div$ \qquad $=4$
38. $3 \div$ \qquad $=1$
39. $35 \div$ \qquad $=7$

Problem Solving • Applications

Use the table for 40-41.

40. GIDEEPER Douglas planted the birch trees in 4 equal rows. Then he added 2 more birch trees to each row. How many birch trees did he plant in each row?
41. THINKSMARIER Mrs. Banks planted the oak trees in 4 equal rows. Mr. Webb planted the dogwood trees in 3 equal rows. Who planted more trees in each row? How many more? Explain how you know.

WRITE Math

 Show Your Work42. mowing lawns each week. He earns the same amount of money for each lawn. If he mows 4 lawns, how much does Bryan earn for each lawn? Explain how you found your answer.
43. THINKSMARTER For numbers 43a-43d, select True or False for each equation.
43a. $0 \div 4=4$
○ TrueFalse
43b. $4 \div 4=1$
○ True
\bigcirc False
43c. $20 \div 4=6$
○ True
○ False
43d. $24 \div 4=8$
\bigcirc True
\bigcirc False

Divide by 6

Essential Question What strategies can you use to divide by 6?

Unlock the Problem

Ms. Sing needs to buy 24 juice boxes for the class picnic. Juice boxes come in packs of 6 . How many packs does Ms. Sing need to buy?

P) One Way make equal groups.

- Draw 24 counters.
- Circle as many groups of 6 as you can.
- Count the number of groups.

There are \qquad groups of 6 .

So, Ms. Sing needs to buy \qquad packs of juice boxes.

You can write \qquad \div \qquad $=$ \qquad or $6 \longdiv { 2 4 }$.

- Circle the number that tells you how many juice boxes come in a pack.
- How can you use the information to solve the problem?

P Other Ways

A Use a related multiplication fact.
dividend divisor quotient

$24 \div 6=$ \qquad or
$6 \longdiv { 2 4 }$
$24 \div 6$

B Use factors to find $24 \div 6$.
The factors of 6 are 3 and 2 .

To divide by 6, use the factors.
$24 \div 6=$
Divide by 3.
Then divide by 2 .
$24 \div 6=$ \qquad

- How does knowing $6 \times 9=54$ help you find $54 \div 6$?

Share and Show

1. Continue making equal groups to find $18 \div 6$. \qquad

Find the unknown factor and quotient.
4. $\ldots=0 \div 2$
5. $6 \div 6=$ \qquad 6. \quad _ $=28 \div 4$
67. $42 \div 6=$ \qquad
\qquad

On Your Own

Find the unknown factor and quotient.
8. $6 \times$ \qquad $=30$ $30 \div 6=$ \qquad 9. \qquad $\times 6=48$ $48 \div 6=$ \qquad
10. $2 \times$ \qquad $=16$ \qquad $=16 \div 2$
11. $5 \times$ \qquad $=45$
$工=45 \div 5$

Find the quotient.
12. $12 \div 6=$ \qquad
13. $\quad=6 \div 1$
14. \qquad $=60 \div 6$
15. $27 \div 3=$ \qquad
16. $5 \longdiv { 3 5 }$
17. $6 \longdiv { 4 2 }$
18. $6 \longdiv { 6 }$
19. $2 \longdiv { 1 0 }$

Find the unknown number.
20. $24 \div 6=n$
21. $40 \div 5=$
22. $60 \div 10=m$

$$
n=
$$

= \qquad
ай
23. $18 \div 6=$

$$
\square=
$$

24. $20 \div \square=4$
25. $24 \div _=8$
26. $16 \div$ \qquad 27. $3 \div$ \qquad $=3$
27. $42 \div$ \qquad $=7$
28. $30 \div$ \qquad $=10$
29. $10 \div$ \qquad $=2$
30. $32 \div$ \qquad $=4$
31. THINKSMARIER Derek has 2 boxes of fruit snacks. There are 12 fruit snacks in each box. If he eats 6 fruit snacks each day, how many days will the fruit snacks last? Explain.

Problem Solving • Applications Warld

33. HIDEEPER Cody baked 12 muffins. He keeps 6 muffins. How many muffins can he give to each of his 6 friends if each friend gets the same number of muffins?

 36 stickers to give to 6 friends. She says she can give each friend only 5 stickers. Use a division equation to describe Mary's error.
34. WRITE Math Pose a Problem Write and solve a word problem for the bar model.

30
\qquad
\qquad
\qquad
\qquad
36. IHINKSMARTER Each van can transport 6 people. How many vans are needed to transport 48 people to an event? Explain the strategy you used to solve the problem.
\qquad vans
\qquad

(V) Mid-Chapter Checkpoint

Goncepts and Skills

1. Explain how to find $20 \div 4$ by making an array.
(3.0A.3)
\qquad
\qquad
\qquad
2. Explain how to find $30 \div 6$ by making equal groups.
(3.0A.3)
\qquad
\qquad
\qquad

Find the unknown factor and quotient. (3.0A.7)
3. $10 \times \square=50 \quad=50 \div 10$
4. $2 \times \longrightarrow=16$

$$
=16 \div 2
$$

5. $2 \times=20$
$\underline{=}=20 \div 2$
6. $5 \times$ \qquad $=20$
$\underline{Z}=20 \div 5$

Find the quotient. (3.0A. 3,3, .OA. 7)
7. \qquad $=6 \div 6$
8. $21 \div 3=$ \qquad 9. \qquad $=0 \div 3$
10. $36 \div 4=$ \qquad
11. $5 \longdiv { 3 5 }$
12. $4 \longdiv { 2 4 }$
13. $6 \longdiv { 5 4 }$
14. $3 \longdiv { 9 }$
15. Carter has 18 new books. He plans to read 3 of them each week. How many weeks will it take Carter to read all of his new books? (3.0A.7)
16. Gabriella made 5 waffles for breakfast. She has 25 strawberries and 15 blueberries to put on top of the waffles. She will put an equal number of berries on each waffle. How many berries will Gabriella put on each waffle? (3.0А.3)
17. There are 60 people at the fair waiting in line for a ride. Each car in the ride can hold 10 people. Write an equation that could be used to find the number of cars needed to hold all 60 people. (3.0A.7)
18. Alyssa has 4 cupcakes. She gives 2 cupcakes to each of her cousins. How many cousins does Alyssa have? (3.0A.3)
\qquad

Divide by 7

Essential Question What strategies can you use to divide by 7?

Operations and Algebraic Thinking-
3.0A. 7 Also 3.0A.2, 3.0A.3, 3.0A.4, 3.0A. 6

MATHEMATICAL PRACTICES MP.2, MP.4, MP.6, MP. 8

Unlock the Problem

Yasmin used 28 large apples to make 7 loaves of apple bread. She used the same number of apples for each loaf. How many apples did Yasmin use for each loaf?

- Do you need to find the number of equal groups or the number in each group?
-What label will your answer have?

P) One Way Make an array.

- Draw 1 tile in each of 7 rows.
- Continue drawing 1 tile in each of the 7 rows until all 28 tiles are drawn.
- Count the number of tiles in each row.

There are \qquad tiles in each row.

So, Yasmin used \qquad for each loaf.

You can write $28 \div 7=$ \qquad or $7 \longdiv { 2 8 }$.

Why can you use division to solve the problem? Explain.

(1) Other Ways

A Use a related multiplication fact.
$28 \div 7=a$
$7 \times a=28$
$7 \times 4=28$
Think: What number $28 \div 7=$ \qquad or $7 \longdiv { 2 8 }$ completes the multiplication fact?
(B) Make equal groups.

- Draw 7 circles to show 7 groups.
- Draw 1 counter in each group.
- Continue drawing 1 counter at a time until all 28 counters are drawn.

There are \qquad counters in each group.

Share and Show

1. Use the related multiplication fact to find $42 \div 7$.
$6 \times 7=42$
$42 \div 7=$ \qquad
Mathematical Practices
Explain why you can use a related multiplication fact to solve a division problem.

Find the unknown factor and quotient.
2. $7 \times$ \qquad $=7$
$7 \div 7=$ \qquad 3. $7 \times$ \qquad $=35$ $35 \div 7=$ \qquad

Find the quotient.
4. $4 \div 2=$ \qquad 5. $56 \div 7=$ \qquad 6. $_=20 \div 5$
$\circlearrowleft 7$. \qquad $=21 \div 7$
\qquad

On Your Own

Find the unknown factor and quotient.
8. $3 \times=9 \quad=9 \div 3$
10. \qquad $\times 7=63 \quad 63 \div 7=$ \qquad

Find the quotient.
12. $48 \div 6=$ \qquad 14. \qquad $=42 \div 6$
15. \qquad $=18 \div 2$
11. $4 \times$ \qquad $=32$ \qquad $=32 \div 4$
13. $7 \div 1=$ \qquad
9. $7 \times _=49$
$49 \div 7=$ \qquad

Unlock the Problem

28. THINKSMARTER Gavin sold 21 bagels to 7 different people. Each person bought the same number of bagels. How many bagels did Gavin sell to each person?
a. What do you need to find? \qquad
\qquad
b. How can you use a bar model to help you decide which operation to use to solve the problem? \qquad
\qquad
\qquad
c. Complete the bar model to help you find the number of bagels Gavin sold to each person.

d. What is another way you could have solved the problem?
\qquad
\qquad
29. FIDEEPER There are 35 plain bagels and 42 wheat bagels on 7 shelves in the bakery. Each shelf has the same number of plain bagels and the same number of wheat bagels. How many bagels are on each shelf?
e. Complete the sentences.

Gavin sold \qquad bagels to \qquad different people.

Each person bought the same number of \qquad .

So, Gavin sold \qquad bagels to each person.
30. THINK SMARIER Write the correct symbol that makes the equations true.

\qquad

Divide by 8

Essential Question What strategies can you use to divide by 8?

Operations and Algebraic Thinking3.0A.3, 3.0A. 4 Also 3.0A.2, 3.OA.6, 3.0A. 7

MATHEMATICAL PRACTICES
MP.2, MP.4, MP.6, MP. 7

Unlock the Problem

At Stephen's camping store, firewood is sold in bundles of 8 logs. He has 32 logs to put in bundles. How many bundles of firewood can he make?

- What will Stephen do with the 32 logs?

(1) One Way Use repeated subtraction.

- Start with 32.
- Subtract 8 until you reach 0 .
- Count the number of times you subtract 8 .

ERROR Alert

Continue to subtract the divisor, 8 , until the difference is less than 8.

You subtracted 8 \qquad times.

So, Stephen can make \qquad bundles of firewood.

You can write $32 \div 8=$ \qquad or $8 \longdiv { 3 2 }$.
(1) Another Way Use a related multiplication fact.
$32 \div 8=\square \times 8=32$
$4 \times 8=32$

Think: What number completes the multiplication fact?
$32 \div 8=$ \qquad or $8 \longdiv { 3 2 }$

Mathematical Practices
How does knowing $4 \times 8=32$ help you find $32 \div 8$?

(1) Example Find the unknown divisor.

Stephen has a log that is 16 feet long. If he cuts the \log into pieces that are 2 feet long, how many pieces will Stephen have?

Divide. $16 \div=2$
You can also use a multiplication table to find the divisor in a division problem.

Think: $\square \times 2=16$
STEP 1 Find the factor, 2, in the top row.
STEP 2 Look down to find the product, 16.
STEP 3 Look left to find the unknown factor.
The unknown factor is \qquad .

| | $=$ | |
| ---: | :--- | ---: | :--- |
| $\times 2$ | $=16 \quad$ Check. | |
| | $=16 \checkmark \quad$ The equation is true. | |

Math
 Talk
 Mathematical Practices

Explain how to use the multiplication table to find the unknown dividend for $\square \div 8=5$.

So, Stephen will have \qquad pieces.

Share and Show

1. Use repeated subtraction to find $24 \div 8$. \qquad

Think: How many times do you subtract 8?
Find the unknown factor and quotient.
2. $8 \times$ \qquad $=56$
$56 \div 8=$ \qquad
© 3. \qquad $\times 8=40$
$40 \div 8=$ \qquad

Find the quotient.
4. $18 \div 3=$ \qquad 5. \qquad $=48 \div 8$
6. $56 \div 7=$ \qquad $\circlearrowleft 7$. \qquad $=32 \div 8$
\qquad

On Your Own

Find the unknown factor and quotient.
8. $8 \times$ \qquad $=8$
$8 \div 8=$ \qquad 9. \qquad $\times 5=35$
\qquad $=35 \div 5$
10. $6 \times$ \qquad $=18$
$18 \div 6=$ \qquad
11. $8 \times$ \qquad $=72$ \qquad $=72 \div 8$

Find the quotient.
12. $28 \div 4=$ \qquad
13. $42 \div 7=$
14. \qquad $=3 \div 3$
15. \qquad $=28 \div 7$
16. $8 \longdiv { 0 }$
$1 7 . 6 \longdiv { 2 4 }$
18. $8 \longdiv { 6 4 }$
19. $1 \longdiv { 8 }$

Find the unknown number.
20. $72 \div t=9$

$$
t=
$$

21. $t \div 8=2$
\qquad
$t=$
22. $64 \div \Delta=8$
$\Delta=$ \qquad
23. $m \div 8=10$
$m=$ \qquad
24. $\triangle \div 2=10$
25. $40 \div \square=8$
$=$ \qquad
26. $25 \div k=5$
$k=$ \qquad
27. $54 \div n=9$
$n=$ \qquad
28. solved by using one of the division facts above.
\qquad
\qquad
Manimalici (4) Use Symbols Algebra Write,,$+- \times$, or \div.
29. $6 \times 6=32 \bigcirc 4$
30. $12 \bigcirc 3=19-15$
31. $40 \div 8=35 \bigcirc 7$

Problem Solving • Applications

Use the table for 32-33.
32. (GIDEEPER There are 32 people who plan to camp over the weekend. Describe two different ways the campers can sleep using 4 tents.

Tent Sizes	
Type	Number of People
Cabin	10
Vista	8
Trail	4

33. THINK SMARTER There are 36 people camping at Max's family reunion. They have cabin tents and vista tents. How many of each type of tent do they need to sleep exactly 36 people if each tent is filled? Explain.
\qquad
\qquad
\qquad
\qquad
34. Josh is dividing 64 bags of trail mix equally among 8 campers. How many bags of trail mix will each camper get?
35. THINK SMARIER Circle the unknown factor and quotient.

$8 \times$| 6 |
| :---: |
| 7 |
| 8 |\(=48 \quad \begin{aligned} \& 6

\& 7

\& 8\end{aligned}=48 \div 8\)
\qquad

Divide by 9

Essential Question What strategies can you use to divide by 9 ?

Operations and Algebraic
Thinking-3.0A.7 Also 3.0A.2,
3.OA.3, 3.0A.4, 3.0A.5, 3.0A.6

MATHEMATICAL PRACTICES
MP.2, MP.4, MP. 6

Unlock the Problem

Becket's class goes to the aquarium. The 27 students from the class are separated into 9 equal groups. How many students are in each group?

- Do you need to find the number of equal groups or the number in each group?

P One Way Make equal groups.

- Draw 9 circles to show 9 groups.
- Draw 1 counter in each group.
- Continue drawing 1 counter at a time until all 27 counters are drawn.
\square

There are \qquad counters in each group.

So, there are \qquad in each group.

You can write $27 \div 9=$ \qquad or $9 \longdiv { 2 7 }$.

[Other Ways

(A) Use factors to find $27 \div 9$.

The factors of 9 are 3 and 3 .

To divide by 9 , use the factors.
$27 \div 9=s$
Divide by 3.
Then divide by 3 again.

$$
\begin{aligned}
& 27 \div 3=9 \\
& 9 \div 3=3
\end{aligned}
$$

$27 \div 9=$ \qquad

B Use a related multiplication fact.

$$
27 \div 9=s
$$

$$
\begin{array}{ll}
9 \times s=27 & \text { Think: What number } \\
9 \times 3=27 & \text { completes the } \\
\text { multiplication fact? }
\end{array}
$$

$27 \div 9=$ \qquad or $9 \longdiv { 2 7 }$

- What multiplication fact can you use to find $63 \div 9$? \qquad

Shape and Show

MATH

 BOARD1. Draw counters in the groups to find $18 \div 9$. \qquad

Find the quotient.

2. \qquad $=45 \div 9$
3. $36 \div 6=$ \qquad
4. $9 \div 1=$ \qquad
$\circlearrowleft 5$. \qquad
5. $7 \longdiv { 2 8 }$
6. $9 \longdiv { 9 }$
7. $5 \longdiv { 4 0 }$
8. $9 \longdiv { 3 6 }$
\qquad

On Your Own

10. $8 \div 2=$ \qquad 11. \qquad $=72 \div 9$
11. $56 \div 8=$ \qquad 13. \qquad $=27 \div 9$
12. \qquad $=5 \div 1$
13. \qquad $=36 \div 4$
14. $81 \div 9=$ \qquad 17. $30 \div 5=$ \qquad
15. $4 \longdiv { 1 2 }$
16. $9 \longdiv { 6 3 }$
17. $2 \longdiv { 1 6 }$
18. $5 \longdiv { 2 5 }$

Find the unknown number.
22. $64 \div 8=e$
23. $0 \div 9=g$
24. $\square=20 \div 4$
25. $s=9 \div 9$
$e=$ \qquad
$g=$ \qquad
$\square=$ \qquad
$s=$ \qquad

MAR:

26.

\div	24	40	32	48
8				

27.

\div	54	45	72	63
9				

28. GTDEEPER Sophie has two new fish. She feeds one fish 4 pellets and the other fish 5 pellets each day. If Sophie has fed her fish 72 pellets, for how many days has she had her fish? Explain.
\qquad
\qquad
 aquarium carries 9 students. If 63 third-grade students go to the aquarium, what multiplication fact can you use to find the number of vans that will be needed?

? Unlock the Problem

30.

THINKSMARTER Carlos has 28 blue tang fish and 17 yellow tang fish in one large fish tank. He wants to separate the fish so that there are the same number of fish in each of 9 smaller tanks. How
 many tang fish will Carlos put in each smaller tank?
a. What do you need to find? \qquad
\qquad
b. Why do you need to use two operations to solve the problem? \qquad
\qquad
c. Write the steps to find how many tang fish Carlos will put in each smaller tank.
d. Complete the sentences.

Carlos has \qquad blue tang fish and \qquad yellow tang fish in one large fish tank.

He wants to separate the fish so that there are the same number
of fish in each of \qquad smaller tanks.

So, Carlos will put \qquad fish in each smaller tank.
31. THINKSMARIER Complete the chart to show the quotients.

\div	27	18	45	36
9				

Problem Solving • Two-Step Problems

Essential Question How can you use the strategy act it out to solve two-step problems?

Operations and Algebraic Thinking-3.0A.8 Also 3.OA.2, 3.0A.3, 3.0A. 7

Unlock the Problem

Madilyn bought 2 packs of pens and a notebook for $\$ 11$. The notebook cost $\$ 3$. Each pack of pens cost the same amount. What is the price of 1 pack of pens?

Read the Problem

What do I need to find?
I need to find the price of
1 pack of \qquad .

What information do I need to use?

Madilyn spent \qquad in all.

She bought \qquad packs of
\qquad notebook.

The notebook cost \qquad .

How will I use the

 information?I will use the information to
\qquad out the problem.

Solve the Problem

Describe how to act out the problem.

Start with 11 counters. Take away 3 counters.

Now I know that 2 packs of pens cost \qquad .

Next, make \qquad equal groups with the 8 remaining counters.

So, the price of 1 pack of pens is \qquad .

Why do you need to use two operations to solve the problem? Explain.

() Try Another Problem

Chad bought 4 packs of T-shirts. He gave 5 T-shirts to his brother. Now Chad has 19 shirts. How many T-shirts were in each pack?

Read the Problem	Solve the Problem What do I need to find? Describe how to act out the problem.
What information do I need	
to use?	

- How can you use multiplication and subtraction to check your answer?

Name

Share and Show

MATH

BOARD

1. Mac bought 4 packs of toy cars. Then his

Unlock the Problem

\checkmark Circle the question.
\checkmark Underline the important facts.
\checkmark Choose a strategy you know. friend gave him 9 cars. Now Mac has 21 cars. How many cars were in each pack?

Act out the problem by using counters or the picture and by writing equations.

First, subtract the cars Mac's friend gave him.

Then, divide to find the number of cars in each pack.

c, cars in 4 packs \downarrow		number of packs \downarrow		p, number in each pack \downarrow
12	\div	-	$=$	p
				p

So, there were \qquad cars in each pack.
(2. IHINKSMARTER What if Mac bought 8 packs of cars and then he gave his friend 3 cars? If Mac has 13 cars now, how many cars were in each pack?

On Your Own

3. THINKSMARTER Ryan gave 7 of his model cars to a friend. Then he bought 6 more cars. Now Ryan has 13 cars. How many cars did Ryan start with?

4. HIDEEPER Chloe bought 5 sets of books. She donated 9 of her books to her school. Now she has 26 books. How many books were in each set?
5. Raul bought 2 packs of erasers. He found 2 erasers in his backpack. Now Raul has 8 erasers. How many erasers were in each pack?
\qquad
6. Hilda cuts a ribbon into 2 equal pieces. Then she cuts 4 inches off one piece. That piece is now 5 inches long. What was the length of the original ribbon?
\qquad
 restaurant. She did not see the movie first. She shopped right after she ate. In what order did Rose do these activities? Explain how you know.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Personal Math Trainer
8. THINKSMARTER Eleni bought 3 packs of crayons. She then found 3 crayons in her desk. Eleni now has 24 crayons. How many crayons were in each pack she bought? Explain how you solved the problem.
\qquad
\qquad

Order of Operations

Essential Question Why are there rules such as the order of operations?

Operations and Algebraic Thinking3.0A. 8 Also 3.0A.1, 3.0A.2, 3.0A.3, 3.0A. 7

Investigate

CONNECT You can use what you know about acting out a two-step problem to write one equation to describe and solve a two-step problem.

- If you solved a two-step problem in a different order, what do you think might happen?

Use different orders to find $4+16 \div 2$.
A. Make a list of all the possible orders you can use to find the answer to $4+16 \div 2$.
\qquad
B. Use each order in your list to find the answer. Show the steps you used.
\qquad \longrightarrow

Draw Gonclusions

1. Did following different orders change the answer? \qquad
 type of operation, how does the order in which you perform the operations affect the answer?
2. Explain the need for setting an order of operations that everyone follows.

Make Connections

When solving problems with more than one type of operation, you need to know which operation to do first.
A special set of rules, called the order of operations, gives the order in which calculations are done in a problem.

First, multiply and divide from left to right.
Then, add and subtract from left to right.
Meghan buys 2 books for $\$ 4$ each. She pays with a $\$ 10$ bill.
How much money does she have left?
You can write $\$ 10-2 \times \$ 4=c$ to describe and solve the problem.
Use the order of operations to solve $\$ 10-2 \times \$ 4=c$.

STEP 1

Multiply from left to right. $\$ 10-2 \times \$ 4=c$ $\$ 10-\$ 8=c$

STEP 2

Subtract from left to right.

$$
\begin{aligned}
\$ 10-\$ 8 & =c \\
\$ 2 & =c
\end{aligned}
$$

\qquad left.

- Does your answer make sense? Explain.

Mathematical Practices
What operation should you do first to find: $12-6 \div 2$ and $12 \div 6-2$? What is the answer to each problem?

Share and Show

Write correct if the operations are listed in the correct order. If not correct, write the correct order of operations.

1. $4+5 \times 2$ multiply, add
\qquad
2. $12+16 \div 4$ add, divide
3. $4+6 \div 3$ divide, add
4. $9+2 \times 3$ add, multiply
5. $36-7 \times 3$ multiply, subtract
\qquad

Follow the order of operations to find the unknown number. Use your MathBoard.
7. $63 \div 9-2=f$
8. $7-5+8=y$
69. $3 \times 6-2=h$
$f=$ \qquad
$y=$ \qquad
$h=$ \qquad
10. $80-64 \div 8=n$
11. $3 \times 4+6=a$
12. $2 \times 7 \div 7=c$
$a=$ \qquad
$c=$ \qquad

Problem Solving • Applications

(make the equation true.
13. 2, 6, and 5
\qquad $+$ \qquad \times \qquad $=16$
15. 8,9 , and 7
\qquad \times \qquad - \qquad $=47$
14. 4,12 , and 18

$$
-\quad-\quad \div \quad=15
$$

19. THINKSMARTER For numbers 19a-19d, select True or False for each equation.

19a.	$24 \div 3+5=13$	OTrue	OFalse
19b.	$5+2 \times 3=21$	OTrue	OFalse
19c.	$15-3 \div 3=14$	OTrue	OFalse
19d.	$18 \div 3 \times 2=12$	OTrue	OFalse

Connect to Social Studies

Picture Book Art

The Eric Carle Museum of Picture Book Art in Amherst, Massachusetts, is the first museum in the United States that is devoted to picture book art. Picture books introduce literature to young readers.

The museum has 3 galleries, a reading library, a café, an art studio, an auditorium, and a museum shop.

Souvenir Prices	
Souvenir	Price
Firefly Picture Frame	$\$ 25$
Exhibition Posters	$\$ 10$
Caterpillar Note Cards	$\$ 8$
Caterpillar Pens	$\$ 4$
Sun Note Pads	$\$ 3$

The table shows prices for some souvenirs in the bookstore in the museum.
20. Kallon bought 3 Caterpillar note cards and 1 Caterpillar pen. How much did he spend on souvenirs?
21. HIDEEPER Raya and 4 friends bought their teacher 1 Firefly picture frame. They shared the cost equally. Then Raya bought an Exhibition poster. How much money did Raya spend in all? Explain.
\qquad
\qquad
\qquad
\qquad

Chapter 7 Review/Test

1. Ming divided 35 marbles between 7 different friends. Each friend received the same number of marbles. How many marbles did Ming give to each friend?

$$
\begin{aligned}
& 35 \div 7=a \\
& 7 \times a=35
\end{aligned}
$$

(A) 4
(C) 6
(B) 5
(D) 7
2. Mrs. Conner has 16 shoes.

Select one number from each column to show the division equation represented by the picture.
$16 \div \frac{?}{(\text { divisor })}=\frac{?}{(\text { quotient })}$

Divisor	Quotient
$\bigcirc 1$	\bigcirc
$\bigcirc 2$	\bigcirc
$\bigcirc 4$	$\bigcirc 8$
$\bigcirc 16$	$\bigcirc 16$

3. Twenty boys are going camping. They brought 5 tents.

An equal number of boys sleep in each tent. How many boys will sleep in each tent?

boys
4. Circle a number for the unknown factor and quotient that makes the equation true.

5. Mrs. Walters has 30 markers. She gives each student 10 markers. How many students received the markers?
30
-10

20 $\frac{-10}{10} \quad$| 10 |
| ---: |
| -10 |
| 0 |

Write a division equation to represent the repeated subtraction.
\qquad \div \qquad

$$
=
$$

\qquad
6. Complete the chart to show the quotients.

\div	27	36	45	54
9				

7. For numbers 7a-7e, select True or False for each equation.
7a. $12 \div 6=2$

- True
False
7b. $24 \div 6=3$
- True
False
7c. $30 \div 6=6$
- True
False
7d. $42 \div 6=7$
○ True
False
7e. $48 \div 6=8$
- True
False
\qquad

8. Alicia says that $6 \div 2+5$ is the same as $5+6 \div 2$. Is Alicia correct or incorrect? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
9. Keith arranged 40 toy cars in 8 equal rows. How many toy cars are in each row?
toy cars
10. Bella made $\$ 21$ selling bracelets. She wants to know how many bracelets she sold. Bella used this number line.

Write the division equation that the number line represents.
\qquad \div \qquad $=$ \qquad
11. Each picnic table seats 6 people. How many picnic tables are needed to seat 24 people? Explain the strategy you used to solve the problem.
\qquad
\qquad
12. Finn bought 2 packs of stickers. Each pack had the same number of stickers. A friend gave him 4 more stickers. Now he has 24 stickers in all. How many stickers were in each pack? Explain how you solved the problem.
13. Ana used 49 strawberries to make 7 strawberry smoothies. She used the same number of strawberries in each smoothies. How many strawberries did Ana use in each smoothie?
\qquad strawberries
14. For numbers 14a-14e, use the order of operation to select True or False for each equation.
14a. $\quad 81 \div 9+2=11$

- True
False
14b. $6+4 \times 5=50$
○ True
False
14c. $10+10 \div 2=15$True
False
14d. $\quad 12-3 \times 2=6$
\bigcirc True
False
14e. $20 \div 4 \times 5=1$
○ True
False

15. A flower shop sells daffodils in bunches of 9 . It sells 27 daffodils. How many bunches of daffodils does the shop sell?
\qquad
16. Aviva started a table showing a division pattern.

\div	20	30	40	50
10				
5				

Part A

Complete the table.
Compare the quotients when dividing by 10 and when dividing by 5 . Describe a pattern you see in the quotients.

Part B

Find the quotient, a.
$70 \div 10=a$
$a=$ \qquad
How could you use a to find the value of n ? Find the value of n.
$70 \div 5=n$
$n=$ \qquad
17. Ben needs 2 oranges to make a glass of orange juice. If oranges come in bags of 10 , how many glasses of orange juice can he make using one bag of oranges.
18. For numbers 18a-18e, select True or False for each equation.
18a. $0 \div 9=0$
○ True
False
18b. $9 \div 9=1$
○ True
False
18c. $27 \div 9=4$
○ True
\bigcirc False
18d. $54 \div 9=6$
○ True
False
18e. $90 \div 9=9$
○ True
False
19. Ellen is making gift baskets for four friends. She has 16 prizes she wants to divide equally among the baskets. How many prizes should she put in each basket?
20. Emily is buying a pet rabbit. She needs to buy items for her rabbit at the pet store.

Part A

Emily buys a cage and 2 bowls for $\$ 54$. The cage costs $\$ 40$. Each bowl costs the same amount. What is the price of 1 bowl? Explain the steps you used to solve the problem.

Part B

Emily also buys food and toys for her rabbit. She buys a bag of food for $\$ 20$. She buys 2 toys for $\$ 3$ each. Write one equation to describe the total amount Emily spends on food and toys. Explain how to use the order of operations to solve the equation.
\qquad
\qquad

Critical Area
 Fuctions

Project

Coins in the U.S.

Many years ago, a coin called a piece of eight was sometimes cut into 8 equal parts. Each part was equal to one eighth $\left(\frac{1}{8}\right)$ of the whole. Now, U.S. coin values are based on the dollar. Four quarters are equal in value to 1 dollar. So, 1 quarter is equal to one fourth $\left(\frac{1}{4}\right)$ of a dollar.

Get Started

Work with a partner. In which year were the Missouri state quarters minted? Use the Important Facts to help you. Then write fractions to answer these questions:

1. 2 quarters are equal to what part of a dollar?
2. 1 nickel is equal to what part of a dime?
3. 2 nickels are equal to what part of a dime?

Important Facts

- The U.S. government minted state quarters every year from 1999 to 2008 in the order that the states became part of the United States.
- 1999—Delaware, Pennsylvania, New Jersey, Georgia, Connecticut
- 2000-Massachusetts, Maryland, South Carolina, New Hampshire, Virginia
- 2001—New York, North Carolina, Rhode Island, Vermont, Kentucky
- 2002-Tennessee, Ohio, Louisiana, Indiana, Mississippi
- 2003-Illinois, Alabama, Maine, Missouri, Arkansas
- 2004—Michigan, Florida, Texas, Iowa, Wisconsin
- 2005-California, Minnesota, Oregon, Kansas, West Virginia
- 2006-Nevada, Nebraska, Colorado, North Dakota, South Dakota
- 2007-Montana, Washington, Idaho, Wyoming, Utah
- 2008-Oklahoma, New Mexico, Arizona, Alaska, Hawaii

8 Understand Fractions

Show What You Know

Check your understanding of important skills.
Name \qquad
$>$ Equal Parts Circle the shape that has equal parts.
1.

2.

\square

- Combine Plane Shapes Write the number of \square needed to cover the shape.

3.

4.

5.

\qquad triangles
\square triangles

Count Equal Groups Complete.
6.

7.

\qquad
in each group

PMath
 etective

Casey shared a pizza with some friends. They each ate $\frac{1}{3}$ of the pizza. Be a Math Detective to find how many people shared the pizza.

Vocabulary Builder

Visualize It

Complete the bubble map by using the words with a $\sqrt{ }$.

Preview Words

denominator
\checkmark eighths
equal parts
\checkmark fourths
fraction
fraction greater than 1
\checkmark halves
numerator
\checkmark sixths
\checkmark thirds
unit fraction
\checkmark whole

Understand Vocabulary

Read the description. Write the preview word.

1. It is a number that names part of a whole or part of a group. \qquad
2. It is the part of a fraction above the line, which tells how many parts are being counted.
3. It is the part of a fraction below the line, which tells how many equal parts there are in the whole or in the group. \qquad
4. It is a number that names 1 equal part of a whole and has 1 as its numerator. \qquad
\qquad

Equal Parts of a Whole

Unlock the Problem

Lauren shares a sandwich with her brother. They each get an equal part. How many equal parts are there?

1
Each whole shape below is divided into equal parts. A whole is all of the parts of one shape or group. Equal parts are - What do you need to find? exactly the same size.

sixths

eighths

Lauren's sandwich is divided into halves.
So, there are \qquad equal parts.

- Draw a picture to show a different way Lauren's sandwich could have been divided into halves.

Math Talk

Mathematical Practices
Are your halves the same shape as your classmates' halves? Explain why both halves represent the same size.

Try This! Write whether the shape is divided into

 equal parts or unequal parts.(A)

4 \qquad parts fourths
B

6 \qquad parts sixths
C

2 \qquad parts These are not halves.

ERROR Alert

Be sure the parts are equal in size.

Share and Show

MATH BOARD

1. This shape is divided into 3 equal parts. What is the name for the parts?

Write the number of equal parts. Then write the name for the parts.

equal parts
3.

\qquad equal parts
\qquad
(6) 4.

equal parts
 \qquad

\qquad

Write whether the shape is divided into equal parts or unequal parts.
5.

parts
6.

parts
$\varangle 7$.
 parts

On Your Own

Write the number of equal parts. Then write the name for the parts.
8.

\qquad equal parts
\qquad
11.

\qquad equal parts
\qquad
9.

\qquad equal parts
12.

\qquad equal parts
\qquad

Write whether the shape is divided into equal parts or unequal parts.
14.

15.

parts
10.

\qquad equal parts
13.

\qquad equal parts
16.

parts
17. Draw lines to divide the circle into 8 eighths.

18. GПDEEPER Thomas wants to divide a square piece of paper into 4 equal parts. Draw two different quick pictures to show what his paper could look like.

Problem Solving • Applications

Use the pictures for 19-20.
19. Mrs. Rivera made 2 pans of corn casserole for a large family dinner. She cut each pan into parts. What is the name of the parts in A ?
20. THINKSMARTER Alex said his mom divided Pan B into eighths. Does his statement make sense? Explain.

Pan A

Pan B
 divided into 4 equal parts.

22. HIDEEPER Shakira cut a triangle out of paper. She wants to divide the triangle into 2 equal parts. Draw a quick picture to show what her triangle could look like.
23. THINK SMARTER Parker divides a fruit bar into 3 equal parts. Circle the word that makes the sentence true.

The fruit bar is divided into | thirds |
| :--- |
| halves |
| fourths |.

\qquad

Equal Shares

Essential Question Why do you need to know how to make equal shares?

Unlock the Problem

Four friends share 2 small pizzas equally. What are two ways the pizza could be divided equally? How much pizza will each friend get?

P) Draw to model the problem.

Draw 2 circles to show the pizzas.

I) One Way

There are \qquad friends.

So, divide each pizza into 4 slices.

There are \qquad equal parts.

Each friend can have 2 equal parts. Each friend will get 2 eighths of all the pizza.

- How might the two ways be different?

(I) Another Way

There are \qquad friends.

So, divide all the pizza into 4 slices.

There are \qquad equal parts.

Each friend can have 1 equal part. Each friend will get 1 half of a pizza.

Math
Mathematical Practices
Explain why both ways let the

Try This! Four girls share 3 oranges equally. Draw a quick picture to find out how much each girl gets.

- Draw 3 circles to show the oranges.
- Draw lines to divide the circles equally.
- Shade the part 1 girl gets.
- Describe what part of an orange each girl gets.

1) Example

Melissa and Kyle are planning to share one pan of lasagna with 6 friends. They do not agree on the way to cut the pan into equal parts. Will each friend get an equal share using Melissa's way? Using Kyle's way?

Melissa's Way

Kyle's Way

- Will Melissa's shares and Kyle's shares have the same shape? \qquad
- Will their shares using either way be the same size? \qquad
So, each friend will get an \qquad share using either way.
- Explain why both ways let the friends have the same amount.

Share and Show

MATH MOARD

1. Two friends share 4 oranges equally. Use the picture to find how much each friend gets.

Think: There are more oranges than friends.

Mathematical Practices

Explain another way the oranges could have been divided. Tell how much each friend will get.

Draw lines to show how much each person gets. Write the answer.
2. 8 sisters share 3 eggrolls equally.

On Your Own

Draw lines to show how much each person gets. Write the answer.
4. 3 classmates share 2 granola bars equally.
5. 4 brothers share 2 sandwiches equally.

Draw to show how much each person gets. Shade the amount that one person gets. Write the answer.
6. 8 friends share 4 sheets of construction paper equally.
7. (equally.
8. HIDEEPER Maria prepared 5 quesadillas. She wants to share them equally among 8 of her neighbors. How much of a quesadilla will each neighbor get?

Unlock the Problem

9. THINKSMARTER Julia holds a bread-baking class. She has 4 adults and 3 children in the class. The class will make 2 round loaves of bread. If Julia plans to give each person, including herself, an equal part of the baked breads, how much bread will each person get?
a. What do you need to find? \qquad
\qquad
b. How will you use what you know about drawing equal shares to solve the problem? \qquad
\qquad
c. Draw a quick picture to find the share of bread each person will get.
d. So, each person will get
\qquad of a loaf of bread.
10. THINIS SMARIER Lara and three girl friends share three sandwiches equally.

$$
\square \square \square
$$

How much does each girl get? Mark all that apply.
(A) 3 fifths of a sandwich
(C) 1 whole sandwich
(B) 3 fourths of a sandwich
(D) one half and 1 fourth of a sandwich

Essential Question What do the top and bottom numbers of a fraction tell?
A fraction is a number that names part of a whole or part of a group.

In a fraction, the top number tells how many equal parts are being counted. The bottom number tells how many equal $\longrightarrow \frac{1}{6}$ parts are in the whole or in the group.

A unit fraction names 1 equal part of a whole. It has 1 as its top number. $\frac{1}{6}$ is a unit fraction.

Unlock the Problem

Luke's family picked strawberries. They put the washed strawberries in one part of a fruit platter. The platter had 6 equal parts. What fraction of the fruit platter had strawberries?

Find part of a whole.

Shade 1 of the 6 equal parts.
Read: one sixth Write: $\frac{1}{6}$

So, \qquad of the platter had strawberries.

0Use a fraction to find a whole. This shape \square is $\frac{1}{4}$ of the whole. Here are examples of what the whole could look like.

Explain how you can make a whole if you know what one equal part looks like.
©

Try This! Look again at the examples at the bottom of page 329.
Draw two other pictures of how the whole might look.

Share and Show

1. What fraction names the shaded part? \qquad
Think: 1 out of 3 equal parts is shaded.
Mathematical Practices
Explain how you knew what number to write as the bottom number of the fraction in Exercise 1.

Write the number of equal parts in the whole. Then write the fraction that names the shaded part.
2.

\qquad equal parts
5.

\qquad equal parts
3.

equal parts
\qquad
6.

\qquad equal parts
64.

\qquad equal parts
\qquad
7.

\qquad equal parts
\qquad

On Your Own

Write the number of equal parts in the whole. Then write the fraction that names the shaded part.
8.

\qquad equal parts
11.

\qquad equal parts
9.

\qquad equal parts
\qquad
12.

\qquad equal parts
10.

\qquad equal parts
13. GIDEEPER

\qquad equal parts

14. $\frac{1}{2}$ is

15. $\frac{1}{3}$ is \square
16. $\frac{1}{6}$ is

17. $\frac{1}{4}$ is \square

Problem Solving • Applications

Use the pictures for 18-19.

18. The missing parts of the pictures show what Kylie and Dylan ate for lunch. What fraction of the pizza did Dylan eat?

Kylie's Lunch	Dylan's Lunch
sandwich	

20. (1) divide the square into 6 pieces as shown. Then he shaded part of the square. Diego says he shaded $\frac{1}{6}$ of the square. Is he correct? Explain how you know.

\qquad
\qquad
21. THINISMARTER Riley and Chad each have a granola bar broken into equal pieces. They each eat one piece, or $\frac{1}{4}$, of their granola bar. How many more pieces do Riley and Chad need to eat to finish both granola bars? Draw a picture to justify your answer.

\qquad
22. THINK SMARIER What fraction names the shaded part? Explain how you know how to write the fraction.

\qquad

Fractions of a Whole

Essential Question How does a fraction name part of a whole?

Number and Operations-Fractions-3.NF. 1 Also 3.G. 2 MATHEMATICAL PRACTICES MP.2, MP.4, MP. 7

Unlock the Problem

The first pizzeria in America opened in New York in 1905. The pizza recipe came from Italy. Look at Italy's flag. What fraction of the flag is not red?

\square
Name equal parts of a whole.
A fraction can name more than 1 equal part of a whole.

The flag is divided into 3 equal parts, and 2 parts are not red.

2 parts not red $\quad \rightarrow 2 \leftarrow$ numerator
3 equal parts in all $\rightarrow \overline{3} \leftarrow$ denominator
Read: two thirds or two parts out of three equal parts

Write: $\frac{2}{3}$

Math Idea

When all the parts are shaded, one whole shape is equal to all of its parts. It represents the whole number 1.

$$
\frac{3}{3}=1
$$

So, \qquad of the flag is not red.

The numerator tells how many parts are being counted.
The denominator tells how many equal parts are in the whole or in the group.

You can count equal parts, such as sixths, to make a whole.

One $\frac{1}{6}$ part
$\frac{1}{6}$
For example, $\frac{6}{6}=$ one whole, or 1 .
$\frac{3}{6}$

Four $\frac{1}{6}$ parts

$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
Six $\frac{1}{6}$		

6

Try This! Write the missing word or number to name

 the shaded part.
(A)

\qquad sixths
$\frac{2}{6}$

$\frac{5}{8}$ eighths

D

$$
\overline{6}, \text { or } 1
$$

six sixths, or one whole

Share and Show

1. Shade two parts out of eight equal parts.

Write a fraction in words and in numbers to name the shaded part.

Explain what the numerator and denominator of a fraction tell you.

Think: Each part is $\frac{1}{8}$.

Read: \qquad eighths

Write: \qquad

Write the fraction that names each part. Write a fraction in words and in numbers to name the shaded part.
2.

Each part is \qquad .
\qquad fourths
3.

Each part is \qquad .
\qquad sixths
(8) 4.

Each part is \qquad .
\qquad fourths
\qquad

On Your Own

Write the fraction that names each part. Write a fraction in words and in numbers to name the shaded part.
5.

Each part is \qquad .
\qquad eighths
8.

Each part is \qquad .
\qquad fourths
\qquad
6.

Each part is \qquad .
\qquad thirds
9.

Each part is \qquad .
\qquad halves
\qquad
\qquad
Shade the fraction circle to model the fraction.
Then write the fraction in numbers.
11. six out of eight

12. three fourths

15. five sixths

7.

Each part is \qquad .
\qquad sixths
10.

Each part is \qquad .
\qquad
eighths
13. three out of three

16. one out of four

Problem Solving • Applications world

Use the diagrams for 17-18.

17. HIDEEPER Mrs. Ormond ordered pizza. Each pizza had 8 equal slices. What fraction of the pepperoni pizza was eaten? What fraction of the cheese

Pepperoni

Cheese

Veggie pizza is left?
18. THINKSMARIER Pose a Problem Use the picture of the veggie pizza to write a problem that includes a fraction. Solve your problem.
\qquad

19. Manimilit 3 Verify the Reasoning of Others Kate says that $\frac{2}{4}$ of the rectangle is shaded. Describe her error. Use the model to write the correct fraction
 for the shaded part.
\qquad
\qquad
\qquad
20. THINKSMARTER Select a numerator and a denominator for the fraction that names the shaded part of the shape.

Numerator	Denominator
$○ 2$	$\bigcirc 3$
$\bigcirc 3$	$\bigcirc 5$
$\bigcirc 5$	$\bigcirc 6$
$\bigcirc 6$	$\bigcirc 8$

\qquad

Fractions on a Number Line

Essential Question How can you represent and locate fractions on a number line?

Number and Operations-Fractions-3.NF.2a, 3.NF.2b Also 3.NF. 2
MATHEMATICAL PRACTICES MP.1, MP.4, MP. 7

f Unlock the Problem

Billy's family is traveling from his house to his grandma's house. They stop at gas stations when they are $\frac{1}{4}$ and $\frac{3}{4}$ of the way there. How can you represent those distances on a number line?

You can use a number line to show fractions. The length from one whole number to the next whole number represents one whole. The line can be divided into any number of equal parts, or lengths.

(1) Activity Locate fractions on a number line.

Materials \square fraction strips
Billy's House

STEP 1 Divide the line into four equal lengths, or fourths.
Place four $\frac{1}{4}$-fraction strips end-to-end above the line to help.
STEP 2 At the end of each strip, draw a mark on the line.
STEP 3 Count the fourths from zero to 1 to label the distances from zero.
STEP 4 Think: $\frac{1}{4}$ is 1 out of 4 equal lengths.
Draw a point at $\frac{1}{4}$ to represent the distance from 0 to $\frac{1}{4}$. Label the point G1.

STEP 5 Think: $\frac{3}{4}$ is 3 out of 4 equal lengths.
Draw a point at $\frac{3}{4}$ to represent the distance from 0 to $\frac{3}{4}$. Label the point $G 2$.

Example Complete the number line to name the point.

Materials \quad color pencils
Write the fraction that names the point on the number line.
Think: This number line is divided into six equal lengths, or sixths.
The length of one equal part is \qquad .
0 1

Shade the fraction strips to show the location of the point.
There are \qquad out of \qquad equal lengths shaded.
The shaded length shows $\frac{5}{6}$.
So, \qquad names the point.

Share and Show

1. Complete the number line. Draw a point to show $\frac{2}{3}$.

Explain what the length between each mark on this number line represents.

Write the fraction that names the point.

2. point A \qquad 3. point B \qquad © 4. point C \qquad
\qquad

On Your Own

Use fraction strips to help you complete the number line. Then locate and draw a point for the fraction.
5. $\frac{2}{6}$

6. $\frac{1}{2}$

7. $\frac{2}{3}$

Write the fraction that names the point.

8. point C \qquad 9. point D \qquad 10. point E \qquad

Unlock the Problem

11. THINK SMARTER Javia ran 8 laps around a track to run a total of 1 mile on Monday. How many laps will she need to run on Tuesday to run $\frac{3}{8}$ of a mile?
a. What do you need to find?
\qquad
\qquad
\qquad ,
b. How will you use what
 you know about number lines to help you solve the problem?
\qquad
\qquad
\qquad
\qquad
c.

Mapinmanical

4) Use Models Make a model to solve the problem.
d. Complete the sentences.

There are \qquad laps in 1 mile.

Each lap represents \qquad of a mile.
\qquad laps represent the distance of three eighths of a mile.

So, Javia will need to run \qquad laps to run $\frac{3}{8}$ of a mile.
12. THINK SMARTER Locate and draw point F on the number line to represent the fraction $\frac{2}{4}$.

\qquad

(1) Mid-Chapter Checkpoint

Vocabulary

Vocabulary
Choose the best term from the box to complete the sentence.

1. A \qquad is a number that names part of a whole or part of a group. (p. 329)
2. The \qquad tells how many equal parts are in the whole or in the group. (p. 333)

Concepts and Skills

Write the number of equal parts. Then write the name for the parts. (3.NF.1)
3.

\qquad equal parts
4.

\qquad equal parts
5.

\qquad equal parts

Write the number of equal parts in the whole. Then write the fraction that names the shaded part. (3.NF.1)
6.
 equal parts
7.

equal parts
8.

\qquad equal parts

Write the fraction that names the point. (3.NF.2a, 3.NF.2b)

9. point A \qquad 10. point B \qquad 11. point C \qquad
12. Jessica ordered a pizza. What fraction of the pizza has mushrooms? (3.NF.1)

13. Which fraction names the shaded part? (3.NF.1)

14. Six friends share 3 oatmeal squares equally. How much of an oatmeal square does each friend get? (3.NF.1)

\qquad

Relate Fractions and Whole Numbers

Essential Question When might you use a fraction greater than 1 or a whole number?

Number and Operations-Fractions-3.NF.3c Also 3.NF.2, 3.NF.2b, 3.G. 2

MATHEMATICAL PRACTICES
MP.1, MP.4, MP.6, MP. 7

Unlock the Problem

Steve ran 1 mile and Jenna ran $\frac{4}{4}$ of a mile. Did Steve and Jenna run the same distance?

P Locate 1 and $\frac{4}{4}$ on a number line.

- Shade 4 lengths of $\frac{1}{4}$ and label the number line.
- Draw a point at 1 and $\frac{4}{4}$.

Math Idea

If two numbers are located at the same point on a number line, then they are equal and represent the same distance.

Since the distance \qquad and \qquad end at the same point, they are equal.

So, Steve and Jenna ran the \qquad distance.

Try This! Complete the number line. Locate and draw points at $\frac{3}{6}, \frac{6}{6}$, and 1 .

(A) Are $\frac{3}{6}$ and 1 equal? Explain.

Think: Do the distances end at the same point?

So, $\frac{3}{6}$ and 1 are \qquad .
(B) Are $\frac{6}{6}$ and 1 equal? Explain.

Think: Do the distances end at the same point?
\qquad
\qquad
So, $\frac{6}{6}$ and 1 are \qquad .

Connect The number of equal parts the whole is divided into is the denominator of a fraction. The number of parts being counted is the numerator. A fraction greater than 1 has a numerator greater than its denominator.

1) Examples

Each shape is 1 whole. Write a whole number and a fraction greater than 1 for the parts that are shaded.

Remember
$4 \leftarrow$ numerator
$\overline{1} \leftarrow$ denominator

There are 2 wholes.
Each whole is divided into 4 equal parts, or fourths.

$$
2=\frac{8}{4}
$$

There are \qquad equal parts shaded.

There are 3 wholes.

Each whole is divided into 1 equal part.

$$
3=\frac{3}{1}
$$

There are \qquad equal parts shaded.

1. Explain what each whole is divided into 1 equal part means in Example B.
\qquad
Read $\frac{3}{1}$ as three ones.
2. How do you divide a whole into 1 equal part?

Try This!

Each shape is 1 whole. Write a whole number and a fraction greater than 1 for the parts that are shaded.

\qquad

Share and Show

MATH BOARD

1. Each shape is 1 whole. Write a whole number and a fraction greater than 1 for the parts that are shaded.

There are \qquad wholes.

Each whole is divided into
\qquad equal parts.

There are \qquad equal parts shaded.

Use the number line to find whether the two numbers are equal. Write equal or not equal.

2. $\frac{1}{8}$ and $\frac{8}{8}$ \qquad
3. $\frac{8}{8}$ and 1 \qquad 4. 1 and $\frac{4}{8}$ \qquad

On Your Dwn

Use the number line to find whether the two numbers are equal. Write equal or not equal.

Mathematical Practices

Explain how you know whether the two fractions are equal or not equal in Exercise 4.
5. $\frac{0}{3}$ and 1 \qquad
6. 1 and $\frac{2}{3}$ \qquad 7. $\frac{3}{3}$ and 1 \qquad

Each shape is 1 whole. Write a fraction for the parts that are shaded.
8.

10.

$2=$
11.

$2=$ \qquad
 or fraction greater than 1 . Then write it as a whole number.
12. $\frac{8}{4}=$ \qquad

13. $\frac{6}{6}=$ \qquad
\square
14. $\frac{5}{1}=$ \qquad

Problem Solving • Applications (real

15. FIDEEPER Jeff rode his bike around a bike trail that was $\frac{1}{3}$ of a mile long. He rode around the trail 9 times. Write a fraction greater than 1 for the distance. How many miles did Jeff ride?
16. THINKSMARTER

What's the Error? Andrea drew the number line below. She said that $\frac{9}{8}$ and 1 are equal. Explain her error.

17. THINKSMARTER Each shape is 1 whole. Which numbers name the parts that are shaded? Mark all that apply.
(A) 4
(C) $\frac{26}{6}$
(E) $\frac{6}{4}$
(B) 6
(D) $\frac{24}{6}$
\qquad

Fractions of a Group

Essential Question How can a fraction name part of a group?

Unlock the Problem

Jake and Emma each have a collection of marbles.
What fraction of each collection is blue?
(1) You can use a fraction to name part of a group.

Read: three eighths, or three out of eight Write: $\frac{3}{8}$

So, \qquad of Jake's marbles are blue.

Emma's Marbles

Read: one fourth, or one out of four Write: $\frac{1}{4}$

So, \qquad of Emma's marbles are blue.

Try This! Name part of a group.

Draw 2 red counters and 6 yellow counters.
\square

So, \qquad of the counters are red and \qquad are not red.

Fractions Greater Than 1

Sometimes a fraction can name more than a whole group.

Daniel collects baseballs. He has collected 8 so far. He puts them in cases that hold 4 baseballs each. What part of the baseball cases has Daniel filled?

Think: 1 case $=1$
Daniel has two full cases of 4 baseballs each.

So, 2 , or $\frac{8}{4}$, baseball cases are filled.

Try This! Complete the whole number and the fraction greater than 1 to name the part filled.

A

Think: 1 pan = 1

©

Think: 1 box $=1$

1. What fraction of the counters are red? \qquad

Think: How many red counters are there?

How many counters are there in all?

Explain another way to name the fraction for Exercise 3.

Write a fraction to name the red part of each group.

2.

$\bigcirc 3$.

\qquad

Write a whole number and a fraction greater than 1 to name the part filled.

Think: 1 carton = 1
$\checkmark 5$.

Think: 1 container = 1
\qquad

On Your Own

Write a fraction to name the blue part of each group.
6.

7.

8.

\square
9.

Write a whole number and a fraction greater than 1 to name the part filled.
10.

Think: 1 container = 1
11. THINKSMARTER

Think: 1 carton = 1
\qquad

Draw a quick picture on your MathBoard. Then write a fraction to name the shaded part of the group.
12. Draw 8 circles.

Shade 8 circles.
13. Draw 8 triangles.

Make 4 groups.
Shade 1 group.
14. Draw 4 rectangles. Shade 2 rectangles.

Problem Solving • Applications

Use the graph for 15-16.

15. HIDEEPER The bar graph shows the winners of the Smith Elementary School Marble Tournament. How many games were played? What fraction of the games did Scott win?

School Marble Tournament

 games did Robyn NOT win?
17. IHINIS SMARTER Li has 6 marbles. Of them, $\frac{1}{3}$ are blue. The rest are red. Draw a picture to show Li's marbles.
\square
18. WRITE Math What's the Question? A bag has 2 yellow cubes, 3 blue cubes, and 1 white cube. The answer is $\frac{1}{6}$.
\qquad
19. THINK SMARTER Makayla picked some flowers. What fraction of flowers are yellow or red? What fraction of the flowers are NOT yellow or red? Show your work.

\qquad

Find Part of a Group Using Unit Fractions

Essential Question How can a fraction tell how many are in part of a group?

Number and Operations-Fractions-3.NF. 1 MATHEMATICAL PRACTICES MP.4, MP. 5

Unlock the Problem

Audrey buys a bouquet of 12 flowers. One third of them are red. How many of the flowers are red?

- How many flowers does Audrey buy in all?
- What fraction of the flowers are
red? \qquad

Materials $■$ two-color counters $■$ MathBoard

- Put 12 counters on your MathBoard.
- Since you want to find $\frac{1}{3}$ of the group, there should be \qquad equal groups. Draw the counters below.

- Circle one of the groups to show \qquad .

Then count the number of counters in that group.
There are \qquad counters in 1 group. $\frac{1}{3}$ of $12=$ \qquad
So, \qquad of the flowers are red. and one third of them are yellow? Use your MathBoard and counters to find how many of the flowers are yellow.

Explain how you can use the numerator and denominator in a fraction to find part of a group.

Try This! Find part of a group.

Raul picks 20 flowers from his mother's garden.
One fourth of them are purple. How many of the
flowers are purple?

STEP 1 Draw a row of 4 counters.
Think: To find $\frac{1}{4}$, make 4 equal groups.

STEP 2 Continue to draw as many rows of 4 counters as you can until you have 20 counters.

STEP 3 Then circle \qquad equal groups.

Think: Each group represents $\frac{1}{4}$ of the flowers.

There are \qquad counters in 1 group.
$\frac{1}{4}$ of $20=$ \qquad

So, \qquad of the flowers are purple.

Share and Show

1. Use the model to find $\frac{1}{2}$ of 8 . \qquad
Think: How many counters are in 1 of the 2 equal groups?
Mathematical Practices
Explain why you count the number of counters in just one of the groups in Exercise 1.

Circle equal groups to solve. Count the number of flowers in 1 group.

2. $\frac{1}{4}$ of $8=$ \qquad
(3). $\frac{1}{3}$ of $6=$ \qquad

(4. $\frac{1}{6}$ of $12=$ \qquad

\qquad

On Your Own

Circle equal groups to solve. Count the number of flowers in 1 group.
5. $\frac{1}{4}$ of $12=$ \qquad

8. $\frac{1}{3}$ of $9=$ \qquad 1000
000
11. $\frac{1}{6}$ of $30=$ \qquad

6. $\frac{1}{3}$ of $15=$ \qquad $\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
9. $\frac{1}{6}$ of $18=$

12. $\frac{1}{3}$ of $12=$

7. $\frac{1}{4}$ of $16=$ \qquad

10. $\frac{1}{8}$ of $8=$ \qquad

13. THINKSMARIER

THINKSMARTER

Draw counters. Then circle equal groups to solve.
14. $\frac{1}{8}$ of $16=$ \qquad

15. $\frac{1}{6}$ of $24=$ \qquad

Problem Solving • Applications

Use the table for 16-17.

16.

(प) the seed packs Ryan bought are violet seeds. How many packs of violet seeds did Ryan buy? Draw counters to solve.

Flower Seeds Bought

Name	Number of Packs
Ryan	8
Brooke	12
Cole	20

17. FIDEEPER One third of Brooke's seed packs and one fourth of Cole's seed packs are daisy seeds. How many packs of daisy seeds did they buy altogether? Explain how you know.
\qquad
\qquad
\qquad
18. THINKISMARIER Sense or Nonsense? Sophia bought 12 pots. One sixth of them are green. Sophia said she bought 2 green pots. Does her answer make sense? Explain how you know.

\qquad
\qquad
19. THINKSMARTER A florist has 24 sunflowers in a

WRITE Math Show Your Work
\qquad
container. Mrs. Mason buys $\frac{1}{4}$ of the flowers. Mr. Kim buys $\frac{1}{3}$ of the flowers. How many sunflowers are left? Explain how you solved the problem.

Problem Solving • Find the Whole Group Using Unit Fractions

Essential Question How can you use the strategy draw a diagram to solve fraction problems?

nessNumber and Operations-Fractions-3.NF. 1 MATHEMATICAL PRACTICES MP.1, MP.4, MP.5, MP. 6

Unlock the Problem

Cameron has 4 clown fish in his fish tank. One third of the fish in the tank are clown fish. How many fish does Cameron have in his tank?

Use the graphic organizer to help you solve the problem.

Read the Problem
 What do I need to find?

I need to find \qquad are in
Cameron's fish tank.

What information do I need to use?

\qquad clown fish.
Cameron has
\qquad of the fish in the tank are clown fish.

How will I use the information?

I will use the information in the problem to draw a \qquad .

Solve the Problem

Describe how to draw a diagram

 to solve.The denominator in $\frac{1}{3}$ tells you
that there are \qquad equal parts in the whole group. Draw 3 circles to show \qquad equal parts.

Since 4 fish are $\frac{1}{3}$ of the whole group, draw \qquad counters in the first circle.

Since there are \qquad counters
in the first circle, draw \qquad counters in each of the remaining circles. Then find the total number of counters.

So, Cameron has \qquad fish in his tank.

1) Try Another Problem

A pet store has 2 gray rabbits. One eighth of the rabbits at the pet store are gray. How many rabbits does the pet store have?

Read the Problem

What information do I need to use?

How will I use the information?
 answer is reasonable?
\qquad
\qquad
2. How did your diagram help you solve the problem? \qquad

Share and Show

MATH
 BOARD

1. Lily has 3 dog toys that are red. One fourth of all her dog toys are red. How many dog toys does Lily have?

Unlock the Problem

\checkmark Circle the question.
\checkmark Underline important facts.
$\sqrt{ }$ Put the problem in your own words.
\checkmark Choose a strategy you know.

First, draw \qquad circles to show \qquad equal parts.

Next, draw \qquad toys in \qquad circle since
\qquad circle represents the number of red toys.

Last, draw \qquad toys in each of the remaining circles.
Find the total number of toys.
So, Lily has \qquad dog toys.
2. THINKSMARIER What if Lily has 4 toys that are red? How many dog toys would she have?
\qquad
3. The pet store sells bags of pet food. There are 4 bags of cat food. One sixth of the bags of food are bags of cat food. How many bags of pet food does the pet store have?
4. Rachel owns 2 parakeets. One fourth of all her birds are parakeets. How many birds does Rachel own?

On Your Own

5. THINKSMARTER Before lunchtime, Abigail and Teresa each read some pages from different books. Abigail read 5, or one fifth, of the pages in her book. Teresa read 6, or one sixth, of the pages in her book. Whose book had more pages?
How many more pages?
 friends share 5 meat pies. Each friend first eats half of a meat pie. How much more meat pie does each friend need to eat to finish all the meat pies and share them equally? Draw a quick picture to solve.
6. FIDDEPPER Braden bought 4 packs of dog treats. He gave 4 treats to his neighbor's dog. Now Braden has 24 treats left for his dog. How many dog treats were in each pack? Explain how you know.
7. THINK SMARIER Two hats are $\frac{1}{3}$ of the group. How many hats are in the whole group?

\qquad hats
\qquad

(V) Chapter 8 Review/Test

1. Each shape is divided into equal parts. Select the shapes that show thirds. Mark all that apply.

(A)

(B)

(C)

(D)
2. What fraction names the shaded part of the shape?

(A) 8 sixths
(B) 8 eighths
(C) 6 eighths
(D) 2 sixths
3. Omar shaded a model to show the part of the lawn that he finished mowing. What fraction names the shaded part?
Explain how you know how to write the fraction.

4. What fraction names point A on the number line?

5. Jamal folded this piece of paper into equal parts. Circle the word that makes the sentence true.

The paper is folded into | sixths |
| :---: |
| eighths |
| fourths |.

6. Caleb took 18 photos at the zoo. One sixth of his photos are of giraffes. How many of Caleb's photos are of giraffes?
7. Three teachers share 2 packs of paper equally.
\square
How much paper does each teacher get? Mark all that apply.
(A) 3 halves of a pack
(B) 2 thirds of a pack
(C) 3 sixths of a pack
(D) 1 half of a pack
(E) 1 third of a pack
8. Lilly shaded this design.

Select one number from each column to show the part of the design that Lilly shaded.

Numerator	Denominator
$\bigcirc 1$	$\bigcirc 3$
$\bigcirc 3$	$\bigcirc 4$
$\bigcirc 5$	$\bigcirc 5$
$\bigcirc 6$	$\bigcirc 6$

9. Marcus baked a loaf of banana bread for a party. He cut the loaf into equal size pieces. At the end of the party, there were 6 pieces left. Explain how you can find the number of pieces in the whole loaf if Marcus told you that $\frac{1}{3}$ of the loaf was left. Use a drawing to show your work.
\qquad
\qquad
\qquad
\qquad
10. The model shows one whole. What fraction of the model is NOT shaded?

11. Together, Amy and Thea make up $\frac{1}{4}$ of the midfielders on the soccer team. How many midfielders are on the team? Show your work.
\qquad midfielders
12. Six friends share 4 apples equally. How much apple does each friend get?

$$
0000
$$

13. Each shape is 1 whole.

For numbers 13a-13e, choose Yes or No to show whether the number names the parts that are shaded.

13a. 4

- Yes

○ No
13b. 8

- Yes

○ No
13c. $\frac{8}{2}$

- Yes
- No

13d. $\frac{8}{4}$

- Yes
- No

13e. $\frac{2}{8}$

- Yes
- No
\qquad

14. Alex has 3 baseballs. He brings 2 baseballs to school. What fraction of his baseballs does Alex bring to school?
15. Janeen and Nicole each made fruit salad for a school event.

Part A

Janeen used 16 pieces of fruit to make her salad. If $\frac{1}{4}$ of the fruits were peaches, how many peaches did she use? Make a drawing to show your work.

Part B

Nicole used 24 pieces of fruit. If $\frac{1}{6}$ of them were peaches, how many peaches in all did Janeen and Nicole use to make their fruit salads? Explain how you found your answer.
\qquad
\qquad
16. There are 8 rows of chairs in the auditorium. Three of the rows are empty. What fraction of the rows are empty?
17. Tara ran 3 laps around her neighborhood for a total of 1 mile yesterday. Today she wants to run $\frac{2}{3}$ of a mile. How many laps will she need to run around her neighborhood?

\qquad laps
18. Gary painted some shapes.

Select one number from each column to show a fraction greater than 1 that names the parts Gary painted.

Numerator	Denominator
$○ 3$	$\bigcirc 3$
$○ 44$	$\bigcirc 4$
$○ 8$	$\bigcirc 8$
$○ 24$	$\bigcirc 24$

19. Angelo rode his bike around a bike trail that was $\frac{1}{4}$ of a mile long. He rode his bike around the trail 8 times. Angelo says he rode a total of $\frac{8}{4}$ miles. Teresa says he is wrong and that he actually rode 2 miles. Who is correct? Use words and drawings to explain how you know.
\qquad
\qquad
\qquad
\qquad
\qquad

Show What You Know

Check your understanding of important skills.
Name \qquad

- Halves and Fourths

1. Find the shape that is divided into 2 equal parts. Color $\frac{1}{2}$.

2. Find the shape that is divided into 4 equal parts. Color $\frac{1}{4}$.

- Parts of a Whole Write the number of shaded parts and the number of equal parts.

3.

\qquad shaded parts
\qquad equal parts
4.

\qquad shaded parts equal parts

Fractions of a Whole

Write the fraction that names the shaded part of each shape.

5.

6.

Math
etective

Hannah keeps her marbles in bags with 4 marbles in each bag. She writes $\frac{3}{4}$ to show the number of red marbles in each bag. Be a Math Detective to find another fraction to name the number of red marbles in 2 bags.

Vocabulary Builder

Visualize It

Complete the flow map by using the words with a \checkmark.

Fractions and Whole Numbers

What is it?
$\longrightarrow \quad \frac{2}{3}>\frac{1}{3}$
\square

\square	$\longrightarrow \square \frac{1}{3}, \frac{1}{4}$
\square	$\longrightarrow \quad \frac{2}{2}, \frac{4}{2}$

Understand Vocabulary
 Write the review word or preview word that answers the riddle.

1. We are two fractions that name the same amount.
2. I am the part of a fraction above the line. I tell how many parts are being counted.
3. I am the part of a fraction below the line. I tell how many equal parts are in the whole or in the group.
\qquad
\qquad

\qquad

Problem Solving • Compare Fractions

Essential Question How can you use the strategy act it out to solve comparison problems?

23Number and Operations-Fractions-3.NF.3d Also 3.NF. 1 MATHEMATICAL PRACTICES MP.1, MP.3, MP.4, MP. 5

Unlock the Problem

Mary and Vincent climbed up a rock wall at the park. Mary climbed $\frac{3}{4}$ of the way up the wall. Vincent climbed $\frac{3}{8}$ of the way up the wall. Who climbed higher?

You can act out the problem by using manipulatives to help you compare fractions.

Remember

$<$ is less than
$>$ is greater than
= is equal to

Read the Problem What do I need to find?

What information do I need

 to use?Mary climbed \qquad of the way.

Vincent climbed \qquad of the way.

How will I use the information?

I will use \qquad
and \qquad the lengths of
the models to find who climbed
\qquad .

Solve the Problem

Record the steps you used to solve the problem.

Compare the lengths.

The length of the $\frac{3}{4}$ model is \qquad than the length of the $\frac{3}{8}$ model.

So, \qquad climbed higher on the rock wall.

Math Talk

Mathematical Practices
How do you know who climbed higher?

(1) Try Another Problem

Students at day camp are decorating paper circles for placemats. Tracy finished $\frac{3}{6}$ of her placemat. Kim finished $\frac{5}{6}$ of her placemat. Who finished more of her placemat?

Read the Problem
What do I need to find?

Solve the Problem

Record the steps you used to solve the problem.

What information do I need to use?

How will I use the information?

Explain how you know that $\frac{5}{6}$ is greater than $\frac{3}{6}$ without using models.

1. How did your model help you solve the problem? \qquad
\qquad
2. Tracy and Kim each had a carton of milk with lunch. Tracy drank $\frac{5}{8}$ of her milk. Kim drank $\frac{7}{8}$ of her milk. Who drank more of her milk? Explain.

Share and Show

MATH BOARD

1. At the park, people can climb a rope ladder to its top. Rosa climbed $\frac{2}{8}$ of the way up the ladder. Justin climbed $\frac{2}{6}$ of the way up the ladder. Who climbed higher on the rope ladder?

First, what are you asked to find?

Then, model and compare the fractions. Think: Compare $\frac{2}{8}$ and $\frac{2}{6}$.
Last, find the greater fraction.

So, \qquad climbed higher on the rope ladder.
© 2. What if Cara also tried the rope ladder and climbed
$\frac{2}{4}$ of the way up? Who climbed highest on the rope ladder: Rosa, Justin, or Cara? Explain how you know.
\qquad
\qquad
\qquad
\qquad

On Your Own

 to his soccer game. Then he walked $\frac{1}{3}$ mile to his friend's house. Which distance is shorter? Explain how you know.
\qquad
\qquad

Use the table for 4-5.

4. FIDEEPER Suri is spreading jam on 8 biscuits for breakfast. The table shows the fraction of biscuits spread with each jam flavor. Which flavor did Suri use on the most biscuits?
Hint: Use 8 counters to model the biscuits.
5. WRITE Math What's the Question? The answer is strawberry.
\qquad
\qquad
6. THINK SMARIER Suppose Suri had also used plum jam on the biscuits. She frosted $\frac{1}{2}$ of the biscuits with peach jam, $\frac{1}{4}$ with raspberry jam, $\frac{1}{8}$ with strawberry jam, and $\frac{1}{8}$ with plum jam. Which flavor of jam did Suri use on the most biscuits?
\qquad
7. Ms. Gordon has many snack bar recipes. One recipe uses $\frac{1}{3}$ cup oatmeal and $\frac{1}{2}$ cup flour. Will Ms. Gordon use more oatmeal or more flour? Explain.
8. THINKSMARIER Rick lives $\frac{4}{6}$ mile from school. Noah lives $\frac{3}{6}$ mile from school.

Use the fractions and symbols to show which distance is longer.

\qquad

Compare Fractions with the
 Same Denominator

Essential Question How can you compare fractions with the same denominator?

Unlock the Problem

Jeremy and Christina are each making quilt blocks. Both blocks are the same size and both are made of 4 equal-size squares. $\frac{2}{4}$ of Jeremy's squares are green. $\frac{1}{4}$ of Christina's squares are green. Whose quilt block has more green squares?

Compare fractions of a whole.

- Shade $\frac{2}{4}$ of Jeremy's quilt block.
- Shade $\frac{1}{4}$ of Christina's quilt block.
- Compare $\frac{2}{4}$ and $\frac{1}{4}$.

The greater fraction will have the larger amount of the whole shaded.

- Circle the two fractions you need to compare.
- How are the two fractions alike?

\section*{Jeremy's Quilt Block
 | | |
| :--- | :--- |
| | |}

Math Idea

You can compare two fractions when they refer to the same whole or to groups that are the same size.

So, \qquad quilt block has more green squares.

0

Compare fractions of a group. Jen and Maggie each have 6 buttons.

- Shade 3 of Jen's buttons to show the number of buttons that are red. Shade 5 of Maggie's buttons to show the number that are red.
- Write a fraction to show the number of red buttons in each group. Compare the fractions.

Jen's Buttons

Maggie's Buttons

There are the same number of buttons in each group, so you can count the number of red buttons to compare the fractions.
$3<$ \qquad , so $\frac{}{6}<\frac{}{6}$.

So, \qquad has a greater fraction of red buttons.

At the craft store, one piece of ribbon is $\frac{2}{8}$ yard long. Another piece of ribbon is $\frac{7}{8}$ yard long. If Sean wants to buy the longer piece of ribbon, which piece should he buy?

Compare $\frac{2}{8}$ and $\frac{7}{8}$.

- Shade the fraction strips to show the locations of $\frac{2}{8}$ and $\frac{7}{8}$.
- Draw and label points on the number line to represent the distances $\frac{2}{8}$ and $\frac{7}{8}$.
- Compare the lengths. $\frac{2}{8}$ is to the left of $\frac{7}{8}$. It is closer to $\frac{0}{8}$, or \qquad .
$\frac{7}{8}$ is to the \qquad of $\frac{2}{8}$. It is closer to - , or \qquad
.
- On a number line, a fraction farther to the right is greater than a fraction to its left.
- On a number line, a fraction farther to the left is \qquad a fraction to its right.

\qquad

Share and Show

1. Draw points on the number line to show $\frac{1}{6}$ and $\frac{5}{6}$. Then compare the fractions.

Think: $\frac{1}{6}$ is to the left of $\frac{5}{6}$ on the number line.

Mathematical Practices
Explain why fractions increase in size as you move right on the number line.

Compare. Write $<,>$, or $=$.
2. $\frac{4}{8} \bigcirc \frac{3}{8}$
©3. $\frac{1}{4}$
$\frac{4}{4}$
4. $\frac{1}{2} \bigcirc \frac{1}{2}$
5.

On Your Own

Compare. Write $<,>$, or $=$.
6. $\frac{2}{4} \bigcirc \frac{3}{4}$
7. $\frac{2}{3} \bigcirc \frac{2}{3}$
8. $\frac{4}{6} \bigcirc \frac{2}{6}$
9. $\frac{0}{8} \bigcirc \frac{2}{8}$

THINKSMARTER Write a fraction less than, greater than, or equal to the given fraction.
10. $\frac{1}{2}<\square$
11. $-<\frac{12}{6}$
12. $\frac{8}{8}=\square$
13. $->\frac{2}{4}$

Problem Solving • Applications

14. Carlos finished $\frac{5}{8}$ of his art project on Monday. Tyler finished $\frac{7}{8}$ of his art project on Monday. Who finished more of his art project on Monday?
 made two loaves of bread that are the same size. Her family ate $\frac{1}{4}$ of the banana bread and $\frac{3}{4}$ of the cinnamon bread. Which loaf of bread had less left over?
15. THINKSMARTER Todd and Lisa are comparing fraction strips. Which statements are correct? Mark all that apply.
(A) $\frac{1}{4}<\frac{4}{4}$
(B) $\frac{5}{6}<\frac{4}{6}$
(C) $\frac{2}{3}>\frac{1}{3}$
(D) $\frac{5}{8}>\frac{4}{8}$

THINKSMARTER What's the Error?

17. Gary and Vanessa are comparing fractions. Vanessa models $\frac{2}{4}$ and Gary models $\frac{3}{4}$. Vanessa writes $\frac{3}{4}<\frac{2}{4}$. Look at Gary's model and Vanessa's model and describe her error.

Gary's Model

- Describe Vanessa's error.
\qquad
\qquad

18. FIDEEPER Explain how to correct Vanessa's error. Then show the correct model.

\qquad

Compare Fractions with the

Essential Question How can you compare fractions with the

- Including Markos, how many friends will be sharing pie at each table?
-What will you compare?

0Model the problem.

There will be 6 friends sharing Pie A or 8 friends sharing Pie B.
So, Markos will get either $\frac{1}{6}$ or $\frac{1}{8}$ of a pie.

- Shade $\frac{1}{6}$ of Pie A.
- Shade $\frac{1}{8}$ of Pie B.
- Which piece of pie is larger?
- Compare $\frac{1}{6}$ and $\frac{1}{8}$.

$$
\frac{1}{6} \bigcirc \frac{1}{8}
$$

So, Markos should sit at the table with \qquad friends to get more pie.

1. Which pie has more pieces? \qquad The more pieces a whole is divided into, the \qquad the pieces are.
2. Which pie has fewer pieces? \qquad -
The fewer pieces a whole is divided into, the \qquad the pieces are.

7
 Use fraction strips.

On Saturday, the campers paddled $\frac{2}{8}$ of their planned route down the river. On Sunday, they paddled $\frac{2}{3}$ of their route down the river. On which day did the campers paddle farther?

Compare $\frac{2}{8}$ and $\frac{2}{3}$.

- Place a \checkmark next to the fraction strips that show more parts in the whole.
- Shade $\frac{2}{8}$. Then shade $\frac{2}{3}$.

Compare the shaded parts.

- $\frac{2}{8}$
 $\frac{2}{3}$

So, the campers paddled farther on \qquad .

\squareUse reasoning.
For her class party, Felicia baked two trays of snacks that were the same size. After the party, she had $\frac{3}{4}$ of the carrot snack and $\frac{3}{6}$ of the apple snack left over. Was more carrot snack or more apple snack left over?

Compare $\frac{3}{4}$ and $\frac{3}{6}$.

- Since the numerators are the same, look at the denominators to compare the size of the pieces.$\frac{3}{4} \bigcirc \frac{3}{6}$
- The more pieces a whole is divided into,
the \qquad the pieces are.
- The fewer pieces a whole is divided into,
the \qquad the pieces are.
- $\frac{1}{4}$ is \qquad than $\frac{1}{6}$ because there are pieces.

Think: $\frac{1}{8}$ is less than $\frac{1}{3}$, so $\frac{2}{8}$ is less than $\frac{2}{3}$.

Share and Show

1. Shade the models to show $\frac{1}{6}$ and $\frac{1}{4}$.

Then compare the fractions.

Compare. Write $<,>$, or $=$.
2. $\frac{1}{8} \bigcirc \frac{1}{3}$
5. $\frac{4}{8} \bigcirc \frac{4}{4}$
©3. $\frac{3}{4} \bigcirc \frac{3}{8}$
6. $\frac{3}{6} \bigcirc \frac{3}{6}$
4. $\frac{2}{6} \bigcirc \frac{2}{3}$
7. $\frac{8}{4} \bigcirc \frac{8}{8}$

On Your Dwn

Compare. Write $<,>$, or $=$.
8. $\frac{1}{3} \bigcirc \frac{1}{4}$
9. $\frac{2}{3} \bigcirc \frac{2}{6}$
10. $\frac{4}{8} \bigcirc \frac{4}{2}$
11. $\frac{6}{8} \bigcirc \frac{6}{6}$
12. $\frac{1}{6} \bigcirc \frac{1}{2}$
13. $\frac{7}{8} \bigcirc \frac{7}{8}$
14. G■DEEPER James ate $\frac{3}{4}$ of his quesadilla. David ate $\frac{2}{3}$ of his quesadilla. Both are the same size. Who ate more of his quesadilla?

James said he knows he ate more because he looked at the amounts left. Does his answer make sense? Shade the models. Explain.

James

David

1 Unlock the Problem

 Hunter are biking on trails in Katy Trail State Park. They biked $\frac{5}{6}$ mile in the morning and $\frac{5}{8}$ mile in the afternoon. Did they bike a greater distance in the morning or in the afternoon?
a. What do you need to know? \qquad
b. The numerator is 5 in both fractions, so compare $\frac{1}{6}$ and $\frac{1}{8}$. Explain.
c. How can you solve the problem?
d. Complete the sentences.

In the morning, the boys biked mile. In the afternoon, they biked \qquad mile.

So, the boys biked a greater distance in the \qquad .$\frac{5}{6} \bigcirc \frac{5}{8}$
16. THINK SMARIER Zach has a piece of pie that is $\frac{1}{4}$ of a pie. Max has a piece of pie that is $\frac{1}{2}$ of a pie. Max's piece is smaller than Zach's piece. Explain how this could happen. Draw a picture to show your answer.

Personal Math Trainer
17. THINK SMARTER Before taking a hike, Kate and Dylan each ate part of same-size granola bars. Kate ate $\frac{1}{3}$ of her bar. Dylan ate $\frac{1}{2}$ of his bar. Who ate more of the granola bar? Explain how you solved the problem.
\qquad

Compare Fractions

Essential Question What strategies can you use to compare fractions?

Number and Operations-
Fractions-3.NF.3d Also 3.NF.1, 3.NF. 3

MATHEMATICAL PRACTICES
MP.1, MP.2, MP.4, MP. 6

Unlock the Problem

Luka and Ann are eating the same-size small pizzas. One plate has $\frac{3}{4}$ of Luka's cheese pizza. Another plate has $\frac{5}{6}$ of Ann's mushroom pizza. Whose plate has more pizza?
(1) Compare $\frac{3}{4}$ and $\frac{5}{6}$.

Missing Pieces Strategy

- You can compare fractions by comparing pieces missing from a whole.
- Shade $\frac{3}{4}$ of Luka's pizza and $\frac{5}{6}$ of Ann's pizza. Each fraction represents a whole that is missing one piece.
- Since $\frac{1}{6} \bigcirc \frac{1}{4}$, a smaller piece is missing from Ann's pizza.
- If a smaller piece is missing from Ann's pizza, she must have more pizza.

So, \qquad plate has more pizza.

Morgan ran $\frac{2}{3}$ mile. Alexa ran $\frac{1}{3}$ mile.
Who ran farther?
\square
Compare $\frac{2}{3}$ and $\frac{1}{3}$.

$$
\frac{}{3}>\frac{}{3}
$$

Same Denominator Strategy

- When the denominators are the same, you can compare only the number of pieces, or the numerators.

So, \qquad ran farther.

Ms. Davis is making a fruit salad with $\frac{3}{4}$ pound of cherries and $\frac{3}{8}$ pound of strawberries. Which weighs less, the cherries or the strawberries?

(I) Compare $\frac{3}{4}$ and $\frac{3}{8}$.

Same Numerator Strategy

- When the numerators are the same, look at the denominators to compare the size of the pieces.

Think: $\frac{1}{8}$ is smaller than $\frac{1}{4}$ because there are more pieces.
$3<3$

So, the \qquad weigh less.

Share and Show

1. Compare $\frac{7}{8}$ and $\frac{5}{6}$.

Think: What is missing from each whole?

Write $<,>$, or $=. \frac{7}{8} \bigcirc \frac{5}{6}$
Compare. Write $<,>$, or $=$. Write the strategy you used.
2. $\frac{1}{2} \bigcirc \frac{2}{3}$
\qquad
$\checkmark 4$

4. $\frac{3}{8} \bigcirc \frac{3}{6}$

MATH BOARD
© 3. $\frac{3}{4} \bigcirc \frac{2}{4}$
\qquad
\qquad

On Your Own

Compare. Write $<,>$, or $=$. Write the strategy you used.
6. $\frac{1}{2} \bigcirc \frac{2}{2}$
\qquad
8. $\frac{2}{3} \bigcirc \frac{5}{6}$
7. $\frac{1}{3} \bigcirc \frac{1}{4}$
9. $\frac{4}{6} \bigcirc \frac{4}{2}$
\qquad

Name a fraction that is less than or greater than the given fraction. Draw to justify your answer.
10. less than $\frac{5}{6}$ \qquad
11. greater than $\frac{3}{8}$ \qquad
12. HIDEEPER Luke, Seth, and Anja have empty glasses. Mr. Gabel pours $\frac{3}{6}$ cup of orange juice in Seth's glass. Then he pours $\frac{1}{6}$ cup of orange juice in Luke's glass and $\frac{2}{6}$ cup of orange juice in Anja's glass. Who gets the most orange juice?
\qquad
13. THINK SMARTER What's the Error? Jack says that $\frac{5}{8}$ is greater than $\frac{5}{6}$ because the denominator 8 is greater than the denominator 6 . Describe Jack's error. Draw a picture to explain your answer.
14. (س) muffins. She is using $\frac{4}{4}$ cup of honey and $\frac{4}{2}$ cups of flour. Does Tracy use more honey or more flour?
a. What do you need to know?
\qquad
b. What strategy will you use to compare the fractions?

c. Show the steps you used to solve the problem.
d. Complete the comparison.

So, Tracy uses more \qquad .
15. THINK SMARIER Compare the fractions. Circle a symbol that makes the statement true.
$\frac{2}{8}$
$>$
$>$
$<$
$=$
$\frac{1}{4} \begin{aligned} & > \\ & > \\ & =\end{aligned}$
\qquad

(V) Mid-Chapter Checkpoint

Concepts and Skills

1. When two fractions refer to the same whole, explain why the fraction with a lesser denominator has larger pieces than the fraction with a greater denominator. (3.NF.3d)
\qquad
\qquad
\qquad
2. When two fractions refer to the same whole and have the same denominators, explain why you can compare only the numerators. (3.NF.3d)
\qquad
\qquad
\qquad
Compare. Write $<,>$, or $=$. (3.NF.3d)
3. $\frac{1}{6} \bigcirc \frac{1}{4}$
4. $\frac{1}{8} \bigcirc \frac{1}{8}$
5. $\frac{2}{8} \bigcirc \frac{2}{3}$
6. $\frac{4}{2} \bigcirc \frac{1}{2}$
7. $\frac{2}{4} \bigcirc \frac{3}{4}$

Name a fraction that is less than or greater than the given fraction. Draw to justify your answer. (3.NF.3d)
12. greater than $\frac{2}{6}$ \qquad 13. less than $\frac{2}{3}$ \qquad
14. Two walls in Tiffany's room are the same size. Tiffany paints $\frac{1}{4}$ of one wall. Roberto paints $\frac{1}{8}$ of the other wall. Who painted a greater amount in Tiffany's room? (3.NF.3d)
15. Matthew ran $\frac{5}{8}$ mile during track practice. Pablo ran $\frac{5}{6}$ mile. Write a fraction that shows who ran farther. (3.NF.3d)
16. Mallory bought 6 roses for her mother. Two-sixths of the roses are red and $\frac{4}{6}$ are yellow. Write a fraction that correctly compares the amounts. (3.NF.3d)
17. Lani used $\frac{2}{3}$ cup of raisins and $\frac{3}{4}$ cup of oatmeal to bake cookies. Did Lani use less oatmeal or less raisins? (3.NF.3d)
\qquad

Compare and Order Fractions

Essential Question How can you compare and order fractions?

Unlock the Problem

Sierra, Tad, and Dale ride their bikes to school. Sierra rides $\frac{3}{4}$ mile, Tad rides $\frac{3}{8}$ mile, and Dale rides $\frac{3}{6}$ mile. Compare and order the distances from least to greatest.

- Circle the fractions you need to use.
- Underline the sentence that tells you what you need to do.

(1) Activity 1 Order fractions with the same numerator.

Materials - color pencil
You can order fractions by reasoning about the size of unit fractions.

Remember

- The more pieces a whole is divided into, the smaller the pieces are.
- The fewer pieces a whole is divided into, the larger the pieces are.

STEP 1 Shade one unit fraction for each fraction strip. is the longest unit fraction.
\qquad is the shortest unit fraction.

STEP 2 Shade one more unit fraction for each fraction strip.

Are the shaded fourths still the longest?
Are the shaded eighths still the shortest?

STEP 3 Continue shading the fraction strips so that three unit fractions are shaded for each strip.

Are the shaded fourths still the longest? \qquad
Are the shaded eighths still the shortest? \qquad
$\frac{3}{4}$ mile is the \qquad distance. $\frac{3}{8}$ mile is the \qquad distance. $\frac{3}{6}$ mile is between the other two distances.

So, the distances in order from least to greatest are
mile, \qquad mile, \qquad mile.

Try This! Order $\frac{2}{6}, \frac{2}{3}$, and $\frac{2}{4}$ from greatest to least.

Order the fractions $\frac{2}{6}, \frac{2}{3}$, and $\frac{2}{4}$ by thinking about the length of the unit fraction strip. Then label the fractions shortest, between, or longest.

Fraction	Unit Fraction	Length
$\frac{2}{6}$		
$\frac{2}{3}$		
$\frac{2}{4}$		

- When the numerators are the same, think about the

Math
Mathematical Practices
When ordering three fractions, what do you know about the third fraction when you know which fraction is the shortest and which fraction is the longest? Explain your answer.
\qquad of the pieces to compare and order fractions.

So, the order from greatest to least is \qquad , \qquad , \qquad .

(1) Activity 2 Order fractions with the same denominator.

Materials $■$ color pencil
Shade fraction strips to order $\frac{5}{8}, \frac{8}{8}$, and $\frac{3}{8}$ from least to greatest.

1								
$\frac{1}{8}$	Shade $\frac{5}{8}$							
$\frac{1}{8}$	Shade $\frac{8}{8}$							
$\frac{1}{8}$	Shade $\frac{3}{8}$							

- When the denominators are the same, the size of the pieces is the \qquad .

So, think about the \qquad of pieces to compare and order fractions.
\qquad is the shortest. \qquad is the longest.
\qquad is between the other two fractions.

So, the order from least to greatest is \qquad , \qquad , \qquad .
\qquad

Share and Show

1. Shade the fraction strips to order $\frac{4}{6}, \frac{4}{4}$, and $\frac{4}{8}$ from least to greatest.

Explain how you would order the fractions $\frac{2}{3}, \frac{1}{3}$, and $\frac{3}{3}$ from greatest to least.
\qquad is the shortest. \qquad is the longest.
\qquad is between the other two lengths. \qquad , \qquad , \qquad

Write the fractions in order from least to greatest.

(2. $\frac{1}{2}, \frac{0}{2}, \frac{2}{2}$ \qquad , \qquad , \qquad ©3. $\frac{1}{6}, \frac{1}{2}, \frac{1}{3}$ \qquad , \qquad , \qquad

On Your Own

Write the fractions in order from greatest to least.
4. $\frac{6}{6}, \frac{2}{6}, \frac{5}{6}$ \qquad , ,
5. $\frac{1}{8}, \frac{1}{4}, \frac{1}{2}$
\qquad , \qquad , \qquad

Write the fractions in order from least to greatest.

6. THINK SMARIER
$\frac{6}{3}, \frac{6}{2}, \frac{6}{8}$ \qquad , \qquad ,
7. THINKSMARTER
$\frac{4}{2}, \frac{2}{2}, \frac{8}{2}$ \qquad , \qquad ,

She needs $\frac{2}{6}$ cup of oil, $\frac{2}{3}$ cup of water, and $\frac{2}{4}$ cup of milk.
Write the ingredients from greatest to least amount.
\qquad
, \qquad , \qquad

Problem Solving • Applications

9. In fifteen minutes, Greg's sailboat went $\frac{3}{6}$ mile, Gina's sailboat went $\frac{6}{6}$ mile, and Stuart's sailboat went $\frac{4}{6}$ mile. Whose sailboat went the longest distance in fifteen minutes?

Whose sailboat went the shortest distance?
10. FIDEEPER Look back at Problem 9. Write a similar problem by changing the fraction of a mile each sailboat traveled, so the answers are different from Problem 9. Then solve the problem.
\qquad
\qquad
\qquad
\qquad
11. THINISMARTER Tom has three pieces of wood. The length of the longest piece is $\frac{3}{4}$ foot. The length of the shortest piece is $\frac{3}{8}$ foot. What might be the length of the third piece of wood?
\qquad ?
12. THINKSMARTIR Jesse ran $\frac{2}{4}$ mile on Monday, $\frac{2}{3}$ mile on Tuesday, and $\frac{2}{8}$ mile on Wednesday. Order the fractions from least to greatest.

\qquad

Model Equivalent Fractions

Essential Question How can you use models to find equivalent fractions?

Investigate

Materials $■$ sheet of paper $■$ crayon or color pencil
Two or more fractions that name the same amount are called equivalent fractions. You can use a sheet of paper to model fractions equivalent to $\frac{1}{2}$.
A. First, fold a sheet of paper into two equal parts. Open the paper and count the parts.

There are \qquad equal parts. Each part is \qquad of the paper.

Shade one of the halves. Write $\frac{1}{2}$ on each of the halves.
B. Next, fold the paper in half two times. Open the paper.

Now there are \qquad equal parts. Each part is
\qquad of the paper.

Write $\frac{1}{4}$ on each of the fourths.
Look at the shaded parts. $\frac{1}{2}=\frac{}{4}$
C. Last, fold the paper in half three times.

Now there are \qquad equal parts. Each part is
\qquad of the paper.

Write $\frac{1}{8}$ on each of the eighths.
Find the fractions equivalent to $\frac{1}{2}$ on your paper. So, $\frac{1}{2}, —$, and ——are equivalent.

Draw Gonclusions

1. Explain how many $\frac{1}{8}$ parts are equivalent to one $\frac{1}{4}$ part on your paper.
\qquad
\qquad
2. THINK SMARTER What do you notice about how the numerators changed for the shaded part as you folded the paper? \qquad
What does this tell you about the change in the number of parts? \qquad
How did the denominators change for the shaded part as you folded? \qquad
What does this tell you about the change in the size of the parts? \qquad

Math Idea

Two or more numbers that have the same value or name the same amount are equivalent.

Make Connections

You can use a number line to find equivalent fractions.
Find a fraction equivalent to $\frac{2}{3}$.
Materials \quad fraction strips

Mathematical Practices
Explain how the number of sixths in a distance on the number line is related to the number of thirds in the same distance.

STEP 1 Draw a point on the number line to represent the distance $\frac{2}{3}$.
STEP 2 Use fraction strips to divide the number line into sixths. At the end of each strip, draw a mark on the number line and label the marks to show sixths.

STEP 3 Identify the fraction that names the same point as $\frac{2}{3}$. \qquad
So, $\frac{2}{3}=\frac{}{6}$.
\qquad

Share and Show

MATH
 BOARD

Shade the model. Then divide the pieces to find the equivalent fraction.
1.

$$
\frac{1}{4}=\frac{}{8}
$$

62.

$$
\frac{2}{3}=\frac{}{6}
$$

Use the number line to find the equivalent fraction.
3.

© 4.

Problem Solving • Applications Werld

5.

 Write another fraction that is equal to 1 . Draw to justify your answer.
\qquad
\qquad
\qquad

Personal Math Trainer
6. THINK SMARTER For numbers 6a-6d, select True or False to tell whether the fractions are equivalent.
6a. $\frac{6}{6}$ and $\frac{3}{3}$
○ True
○ False

- False
6b. $\frac{4}{6}$ and $\frac{1}{3}$
○ True
6c. $\frac{2}{3}$ and $\frac{3}{6}$
\bigcirc TrueFalse
6d. $\frac{1}{3}$ and $\frac{2}{6}$
○ True
- False

Connect to Reading

Summarize

You can summarize the information in a problem by underlining it or writing the information needed to answer a question.

Read the problem. Underline the important information.
7. ITINIK SMARTER Mrs. Akers bought three sandwiches that were the same size. She cut the first one into thirds. She cut the second one into fourths and the third one into sixths. Marian ate 2 pieces of the first sandwich. Jason ate 2 pieces of the second sandwich. Marcos ate 3 pieces of the third sandwich. Which children ate the same amount of a
 sandwich? Explain.
The first sandwich was cut
into__
Marian ate__ pieces of
the sandwich. Shade the
part Marian ate.

Marian ate - of the first sandwich.

The second sandwich was cut into \qquad .

Jason ate \qquad pieces of the sandwich. Shade the part Jason ate.

Jason ate - of the second sandwich.

The third sandwich was cut into \qquad .

Marcos ate \qquad pieces of the sandwich. Shade the part Marcos ate.

Marcos ate - of the third sandwich.

Are all the fractions equivalent? \qquad

Which fractions are equivalent? \square

So, \qquad and \qquad ate the same amount of a sandwich.
\qquad

Equivalent Fractions

Essential Question How can you use models to name equivalent fractions?

Unlock the Problem

Cole brought a submarine sandwich to the picnic. He shared the sandwich equally with 3 friends. The sandwich was cut into eighths. What are two ways to describe the part of the sandwich each friend ate?

Cole grouped the smaller pieces into twos. Draw circles to show equal groups of two pieces to show what each friend ate.

There are 4 equal groups. Each group is $\frac{1}{4}$ of the whole sandwich. So, each friend ate $\frac{1}{4}$ of the whole sandwich.

How many eighths did each friend eat? \qquad
$\frac{1}{4}$ and \qquad are equivalent fractions since they both name the \qquad amount of the sandwich.

So, $\frac{1}{4}$ and \qquad of the sandwich are two ways to describe the part of the sandwich each friend ate.

Try This! Circle equal groups. Write an equivalent fraction for the shaded part of the whole.

Explain a different way you could have circled the equal groups.

(1) Example Model the problem.

Heidi ate $\frac{3}{6}$ of her fruit bar. Molly ate $\frac{4}{8}$ of her fruit bar, which is the same size. Which girl ate more of her fruit bar?

Heidi	
$\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$	

- Is $\frac{3}{6}$ greater than, less than, or equal to $\frac{4}{8}$? \qquad
So, both girls ate the \qquad amount.

Molly			
$\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$			

Try This! Each shape is $\mathbf{1}$ whole. Write an equivalent fraction for the shaded part of the models.

$$
\frac{6}{3}=\frac{}{6}
$$

Share and Show

1. Each shape is 1 whole. Use the model to find the equivalent fraction.

Explain why both fractions name the same amount.

Each shape is 1 whole. Shade the model to find the equivalent fraction.
$\bigcirc 2$.

$$
\frac{2}{4}=\frac{}{8}
$$

4. Andy swam $\frac{8}{8}$ mile in a race. Use the number line to find a fraction that is equivalent to $\frac{8}{8}$.

$$
\frac{8}{8}=\square
$$

3.

$$
\frac{12}{6}=\frac{}{3}
$$

\qquad

Circle equal groups to find the equivalent fraction.

$\bigcirc 5$.

$$
\frac{3}{6}=\frac{}{2}
$$

6.

$$
\frac{6}{6}=\frac{}{3}
$$

On Your Own

Each shape is 1 whole. Shade the model to find the equivalent fraction.
7.

$$
\frac{1}{2}=\frac{2}{}=\frac{}{8}
$$

$$
\underline{8}=\frac{4}{2}
$$

Circle equal groups to find the equivalent fraction.

9.

10.

$$
\frac{6}{8}=\frac{}{4}
$$

$$
\frac{2}{6}=\frac{}{3}
$$

11. Write the fraction that names the shaded part of each circle.

Which pairs of fractions are equivalent? \qquad
 6 equal pieces and ate 4 of them. Josh cut his small pizza, which is the same size, into 3 equal pieces and ate 2 of them. Write fractions for the amount they each ate. Are the fractions equivalent? Draw to explain.

Problem Solving • Applications

13. GחDEEPER Christy bought 8 muffins. She chose 2 apple, 2 banana, and 4 blueberry. She and her family ate the apple and banana muffins for breakfast. What fraction of the muffins did they eat? Write an equivalent fraction.
Draw a picture.
14. THINKSMARTER After dinner, $\frac{2}{3}$ of the corn bread is left. Suppose 4 friends want to share it equally. What fraction names how much of the whole pan of corn bread each friend will get? Use the model on the right. Explain your answer.

15. There are 16 people having lunch. Each person wants $\frac{1}{4}$ of a pizza. How many whole pizzas are needed? Draw a picture to show your answer.
16. Lucy has 5 oatmeal bars, each cut in half. What fraction names all of the oatmeal bar halves? $\overline{2}$ What if Lucy cuts each part of the oatmeal bar into 2 equal pieces to share with friends? What fraction names all of the oatmeal bar pieces now? $\overline{4}$
 $\overline{2}$ and $\overline{4}$ are equivalent fractions.
17. THINK SMARTER Mr. Peters made a pizza. There is $\frac{4}{8}$ of the pizza left over. Select the fraction that are equivalent to the part of the pizza that is left over. Mark all that apply.
(A) $\frac{5}{8}$
(B) $\frac{3}{4}$
(C) $\frac{2}{4}$
(D) $\frac{1}{2}$

\qquad

Chapter 9 Review/Test

1. Alexa and Rose read books that have the same number of pages. Alexa's book is divided into 8 equal chapters. Rose's book is divided into 6 equal chapters. Each girl has read 3 chapters of her book.
Write a fraction to describe what part of the book each girl read. Then tell who read more pages. Explain.
2. David, Maria, and Simone are shading same-sized index cards for a science project. David shaded $\frac{2}{4}$ of his index card. Maria shaded $\frac{2}{8}$ of her index card and Simone shaded $\frac{2}{6}$ of her index card.

For 2a-2d, choose Yes or No to indicate whether the comparisons are correct.
2a. $\frac{2}{4}>\frac{2}{8}$

- Yes
○ No
2b. $\frac{2}{8}>\frac{2}{6}$
- Yes
○ No
2c. $\frac{2}{6}<\frac{2}{4}$
- Yes
- No
2d. $\frac{2}{8}=\frac{2}{4}$
Yes
- No

3. Dan and Miguel are working on the same homework assignment. Dan has finished $\frac{1}{4}$ of the assignment. Miguel has finished $\frac{3}{4}$ of the assignment. Which statement is correct? Mark all that apply.
(A) Miguel has completed the entire assignment.
(B) Dan has not completed the entire assignment.
(C) Miguel has finished more of the assignment than Dan.
(D) Dan and Miguel have completed equal parts of the assignment.
4. Bryan cut two peaches that were the same size for lunch. He cut one peach into fourths and the other into sixths. Bryan ate $\frac{3}{4}$ of the first peach. His brother ate $\frac{5}{6}$ of the second peach. Who ate more peach? Explain the strategy you used to solve the problem.
5. A nature center offers 2 guided walks. The morning walk is $\frac{2}{3}$ mile. The evening walk is $\frac{3}{6}$ mile. Which walk is shorter? Explain how you can use the model to find the answer.

$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$	
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

6. Chun lives $\frac{3}{8}$ mile from school. Gail lives $\frac{5}{8}$ mile from school.

Use the fractions and symbols to show which distance is longer.

7. Mrs. Reed baked four pans of lasagna for a family party. Use the rectangles to represent the pans.

Part A

Draw lines to show how Mrs. Reed could cut one pan of lasagna into thirds, one into fourths, one into sixths, and one into eighths.

Part B

At the end of the dinner, equivalent amounts of lasagna in two pans were left. Use the models to show the lasagna that might have been left over. Write two pairs of equivalent fractions to represent the models.
8. Tom rode his horse for $\frac{4}{6}$ mile. Liz rode her horse for an equal distance. What is an equivalent fraction that describes how far Liz rode? Use the models to show your work.

9. Avery prepares 2 equal-size oranges for the bats at the zoo. One dish has $\frac{3}{8}$ of an orange. Another dish has $\frac{1}{4}$ of an orange. Which dish has more orange? Show your work.
10. Jenna painted $\frac{1}{8}$ of one side of a fence. Mark painted $\frac{1}{6}$ of the other side of the same fence. Use $>,=$, or $<$ to compare the parts that they painted.
11. Bill used $\frac{1}{3}$ cup of raisins and $\frac{2}{3}$ cup of banana chips to make a snack.

For 11a-11d, select True or False for each comparison.
11a. $\frac{1}{3}>\frac{2}{3}$
11b. $\frac{2}{3}=\frac{1}{3}$
11c. $\frac{1}{3}<\frac{2}{3}$

- True
- True
- True
- True

False
False

- False

11d. $\frac{2}{3}>\frac{1}{3}$ \qquad

2. Jorge, Lynne, and Crosby meet at the playground. Jorge lives $\frac{5}{6}$ mile from the playground. Lynne lives $\frac{4}{6}$ mile from the playground. Crosby lives $\frac{7}{8}$ mile from the playground.

Part A

Who lives closer to the playground, Jorge or Lynne?
Explain how you know.

Part B

Who lives closer to the playground, Jorge or Crosby? Explain how you know.
\qquad
\qquad
\qquad
13. Ming needs $\frac{1}{2}$ pint of red paint for an art project. He has 6 jars that have the following amounts of red paint in them. He wants to use only 1 jar of paint. Mark all of the jars of paints that Ming could use.
(A) $\frac{2}{3}$ pint
(D) $\frac{3}{4}$ pint
(B) $\frac{1}{4}$ pint
(E) $\frac{3}{8}$ pint
(C) $\frac{4}{6}$ pint
(F) $\frac{2}{6}$ pint
14. There are 12 people having lunch. Each person wants $\frac{1}{3}$ of a sub sandwich. How many whole sub sandwiches are needed? Use the models to show your answer.

\qquad sub sandwiches
15. Mavis mixed $\frac{2}{4}$ quart of apple juice with $\frac{1}{2}$ quart of cranberry juice. Compare the fractions. Choose the symbol that makes the statement true.

$$
\frac{2}{4} \begin{gathered}
< \\
= \\
>
\end{gathered}
$$

16. Pat has three pieces of fabric that measure $\frac{3}{6}, \frac{5}{6}$, and $\frac{2}{6}$ yards long. Write the lengths in order from least to greatest.
17. Cora measures the heights of three plants. Draw a line to match each height on the left to the word on the right that describes its place in the order of heights.
$\frac{4}{6}$ foot

- least
$\frac{4}{4}$ foot -
- between
$\frac{4}{8}$ foot -
- greatest

18. Danielle drew a model to show equivalent fractions.

Use the model to complete the number sentence.
$\frac{1}{2}=$ \qquad $=$ \qquad
19. Floyd caught a fish that weighed $\frac{2}{3}$ pound. Kira caught a fish that weighed $\frac{7}{8}$ pound. Whose fish weighed more? Explain the strategy you used to solve the problem.
\qquad
\qquad
\qquad
\qquad
20. Sam went for a ride on a sailboat. The ride lasted $\frac{3}{4}$ hour.

What fraction is equivalent to $\frac{3}{4}$?

critialarea MeOSUIEment

CRIIICAL AREA Developing understanding of the structure of rectangular arrays and of area

Projecł

Plan a Playground

Is there a playground at your school, in your neighborhood, or in a nearby park? Playgrounds provide a fun and safe outdoor space for you to climb, swing, slide, and play.

Get Started

Suppose you want to help plan a playground for a block in your neighborhood.

- Draw a large rectangle on the grid paper to show a fence around your playground. Find the distance around your playground by counting the number of units on each side. Record the distance.
- Use the Important Facts to help you decide on features to have in your playground. Shade parts of your playground to show each feature's location. Then find the number of unit squares the feature covers and record it on your plan.

Important Facts

Playground Features

\author{

- Bench
 - Seesaw
 - Jungle Gym
 - Playhouse
 - Sandbox
 - Slide
 - Swing Set
 - Water Fountain
}

Δ This drawing shows a plan for a playground.

Completed by

Chapter
 Ifme, Length, Liquid volume; and Mass

Show What You Know

Check your understanding of important skills.
Name \qquad
Time to the Half Hour Read the clock. Write the time.
1.

2.

Skip Count by Fives

Skip count by fives. Write the missing numbers.
3. $5,10,15$, \qquad 25, \qquad 35
4. 55,60 , \qquad 70, \qquad , \qquad 85

Inches Use a ruler to measure the length to the nearest inch.

about \qquad inches
about \qquad

Math
 etective

You can look at the time the sun rises and sets to find the amount of daylight each day. The table shows the time the sun rose and set from January 10 to January 14 in Philadelphia, Pennsylvania. Be a Math Detective to find which day had the least daylight and which day had the most daylight. inch

Sunrise and Sunset Times		
Date	Sunrise	Sunset
Jan 10	7:22 A.M.	4:55 P.м.
Jan 11	7:22 A.M.	4:56 P.м.
Jan 12	7:22 A.M.	4:57 Р.м.
Jan 13	7:21 A.M.	4:58 P.M.
Jan 14	7:21 A.M.	4:59 P.M.

Vocabulary Builder

Visualize It .

Complete the graphic organizer by using the words with a \checkmark. Write the words in order from the greatest to the least length of time.

Understand Vocabulary
Write the word that answers the riddle.

Review Words
analog clock
digital clock
fourth
half
half hour
\checkmark hour (hr)
inch (in.)
\checkmark quarter hour

Preview Words

A.M.

elapsed time
gram (g)
kilogram (kg)
liquid volume
liter (L)
mass
midnight
\checkmark minute (min)
noon
P.M.

1. I am written with times after midnight and before noon.
2. I am the time when it is 12:00 in the daytime.
3. I am the amount of liquid in a container.
4. I am the time that passes from the start of an activity to the end of that activity.
5. I am the amount of matter in an object.
\qquad

Time to the Minute

Essential Question How can you tell time to the nearest minute?

Measurement and Data-

 3.MD. 1MATHEMATICAL PRACTICES MP.2, MP.3, MP. 6

Unlock the Problem

Groundhog Day is February 2. People say that if a groundhog can see its shadow on that morning, winter will last another 6 weeks. The clock shows the time when the groundhog saw its shadow. What time was it?

(1) Example

Look at the time on this clock face.

- What does the hour hand tell you?
- What does the minute hand tell you?

In 1 minute, the minute hand moves from one mark to the next on a clock. It takes 5 minutes for the minute hand to move from one number to the next on a clock.

You can count on by fives to tell time to five minutes. Count zero at the 12.
$0,5,10,15$, \qquad , \qquad , \qquad --

So, the groundhog saw its shadow at \qquad . .

- Underline the question.
- Where will you look to find the time?

Write: 7:35

Read:

- seven \qquad
- thirty-five minutes after \qquad

-

Time to the Minute

Count by fives and ones to help you.

(1) One Way find minutes after the hour.

Look at the time on this clock face.

- What does the hour hand tell you?
- What does the minute hand tell you?

Count on by fives and ones from the 12 on the clock to where the minute hand is pointing. Write the missing counting numbers next to the clock.

When a clock shows 30 or fewer minutes after the hour, you can read the time as a number of minutes after the hour.

Write: \qquad
Read:

- twenty-three minutes after \qquad
- one \qquad

(I) Another Way Find minutes before the hour.

Look at the time on this clock face.

- What does the hour hand tell you?
- What does the minute hand tell you?

Now count by fives and ones from the 12 on the clock back to where the minute hand is pointing. Write the missing counting numbers next to the clock.

When a clock shows 31 or more minutes after the hour, you can read the time as a number of minutes before the next hour.

Write: 2:43
Read:

- seventeen \qquad before three
- two \qquad

ERROR Alert

Remember that time after the hour uses the previous hour, and time before the hour uses the next hour.
\qquad

Share and Show

1. How would you use counting and the minute hand to find the time shown on this clock? Write the time.
\qquad

Write the time. Write one way you can read the time.
2.

| 6 \qquad 64.

Mathematical Practices
Explain how you know when to stop counting by fives and start counting by ones when counting minutes after an hour.

On Your Own

Write the time. Write one way you can read the time.

5.
6.

7.

\qquad
\qquad

Mayinical 2) Represent a Problem Write the time another way.
8. 34 minutes after 5
\qquad
10. 22 minutes after 11
11. 5 minutes before 12

Problem Solving • Applications (acold

Use the clocks for 12-13.

12. How many minutes later in the day did the groundhog in Pennsylvania see its shadow than the groundhog in New York?
\qquad
Time of Day the Groundhog
Saw Its Shadow
13. GIDEEPER What if the groundhog in Pennsylvania saw its shadow 5 minutes later? What time would this be?
14. If you look at your watch and the hour hand is between the 8 and the 9 and the minute hand is on the 11 , what time is it?
15. THINKSMARIER What time is it when the hour hand and the minute hand are both pointing to the same number? Aiden says it is $6: 30$. Camilla says it is 12:00. Who is correct? Explain.
 time is 4:46 on her digital watch. Explain where the hands on an analog clock are pointing when it is 4:46.
\qquad
\qquad
16. THINKSMARIER Write the time that is shown on the clock. Then write the time another way.

\qquad

A.M. and P.M.

Essential Question How can you tell when to use A.M. and P.M. with time?

Unlock the Problem

Lauren's family is going hiking tomorrow at 7:00. How should Lauren write the time to show that they are going in the morning, not in the evening?

You can use a number line to show the sequence or order of events. It can help you understand the number of hours in a day.

Think: The distance from one mark to the next mark represents one hour.

Tell time after midnight.
Midnight is 12:00 at night.
The times after midnight and before noon are written with A.M.

7:00 in the morning is written as
7:00 \qquad _

- Circle the helpful information that tells about the hiking time.
- What do you need to find?

After Midnight and Before Noon

So, Lauren should write the hiking time as 7:00

- Find the mark that shows 7:00 A.m. on the number line above. Circle the mark.

How are the number line on this page and the clock face alike? How are they different?

0
 Tell time after noon.

Callie's family is going for a canoe ride at 3:00 in the afternoon. How should Callie write the time?

Noon is 12:00 in the daytime.
The times after noon and before midnight are written with P.M. 3:00 in the afternoon is written as 3:00 \qquad

After Noon and Before Midnight

So, Callie should write the time as 3:00 \qquad

Share and Show

1. Name two things you do in the A.m. hours.

Name two things you do in the P.m. hours.

Write the time for the activity. Use a.m. or P.m.

2. ride a bicycle

(6) 3. make a sandwich
(4. get ready for bed

Explain how you decide whether to use A.M. or P.M. when you write the time.
\qquad

On Your Own

Write the time for the activity. Use a.m. or P.m.
6. eat breakfast
7:17
7:17
7:17
\qquad
9. go to the store

7. have science class

\qquad
10. leave on a morning airplane flight

8. play softball

11. look up at stars

\qquad

Write the time. Use A.m. or P.M.
12. quarter after 9:00 in the morning
14. one half hour past midnight
13. 6 minutes after 7:00 in the morning
15. 18 minutes before noon
16. Daylight saving time begins on the second Sunday in March at 2:00 in the morning. Write the time.

Use A.M. or P.M. \qquad
17. THINKSMARTER From midnight to noon each day, how many times does the minute hand on a clock pass 6 ? Explain how you found your answer.

PUnlock the Problem

18. Lea and her father arrived at the scenic overlook 15 minutes before noon and left 12 minutes after noon. Using A.M. or P.M., write the time when Lea and her father arrived at the scenic overlook and the time when they left.
a. What do you need to find? \qquad
\qquad
\qquad

b. What do you need to find first? \qquad
c. Marifentical (6) Describe a Method Show the steps you used to solve the problem.
d. They arrived at \qquad .M. They left at \qquad .M.
19. IHINKSMARTER The Davis family spent the day at the lake. Write the letter for each activity next to the time they did it.
(A) Went swimming soon after lunch.
\square 9:50 A.M.
(B) Ate breakfast at home. \square 7:00 P.M.
(C) Watched the sunset over the lake. \square 12:15 P.M.
(D) Got to the lake cabin in the morning.
\square 1:30 P.M.
(E) Had sandwiches for lunch.
\square 7:00 A.M.
\qquad

Measure Time Intervals

Essential Question How can you measure elapsed time in minutes?

Measurement and Data3.MD. 1

MATHEMATICAL PRACTICES MP.1, MP.3, MP.4, MP. 8

Unlock the Problem

Alicia and her family visited the Kennedy Space Center. They watched a movie that began at 4:10 P.M. and ended at 4:53 p.m. How long did the movie last?

To find elapsed time, find the amount of time that passes from the start of an activity to the end of the activity.

1) One Way Use a number line.

STEP 1 Find the time on the number line that the movie began.
STEP 2 Count on to the ending time, 4:53. Count on by tens
for each 10 minutes. Count on by ones for each minute. Write the times below the number line.

STEP 3 Draw the jumps on the number line to show the minutes from 4:10 to 4:53. Record the minutes. Then add them.

The elapsed time from 4:10 P.M. to
4:53 P.M. is \qquad minutes.

So, the movie lasted \qquad minutes.

- Circle the times the movie began and ended.
- Underline the question.
 use jumps on the number line to find the elapsed time from 4:10 P.M. to 4:53 P.M.

1) Other Ways

Start time: 4:10 P.M. End time: 4:53 P.M.
(A) Use an analog clock.

STEP 1 Find the starting time on the clock.
STEP 2 Count the minutes by counting on by fives and ones to 4:53 P.M. Write the missing counting numbers next to the clock.

B Use subtraction.

STEP 1 Write the ending time. Then write the starting time so that the hours and minutes line up.

STEP 2 The hours are the same, so subtract the minutes.

4 :
\leftarrow end time
-4:
\leftarrow start time
\leftarrow elapsed time

So, the elapsed time is \qquad minutes.

Try This! Find the elapsed time in minutes two ways.

Start time: 10:05 A.M. End time: 10:30 A.M.
(A) Use a number line.

STEP 1 Find 10:05 on the number line. Count on from 10:05 to 10:30. Draw marks and record the times on the number line. Then draw and label the jumps.
Think: Count on using longer amounts of time that make sense.

STEP 2 Add to find the total minutes from 10:05 to 10:30.

B Use subtraction.

Think: The hours are the same, so subtract the minutes.

10:30
-10:05

From 10:05 A.M. to \qquad is \qquad minutes.

So, the elapsed time is \qquad minutes.
\qquad

Share and Show

MATH BOARD

1. Use the number line to find the elapsed time
from 1:15 P.M. to 1:40 P.M. \qquad

Find the elapsed time.
(6) Start: 11:35 A.M. End: 11:54 A.M.
\qquad

On Your Own

3. Start: 4:20 P.M. End: 5:00 P.M.

Mathematical Practices
Explain how to use a number line to find the elapsed time from 11:10 A.M. until noon.

4. Start: 8:35 P.M. End: 8:55 P.M.

5. Start: 9:25 A.M. End: 9:43 A.M.

6. Start: 10:10 A.M. End: 10:41 A.m.

7. Start: 2:15 P.M. End: 2:52 P.M.

Problem Solving • Applications

8. John started reading his book about outer space at quarter after nine in the morning. He read until quarter to ten in the morning. How long did John read his book?

 arrived at the rocket display at 3:40 p.m. Alicia left the display at 3:56 p.m. Tim left at 3:49 P.M. If the answer is Alicia, what is the question?
9. FIDEEPER At the space center, Karen bought a model of a shuttle. She started working on the model the next day at 11:13 A.m. She worked until leaving for lunch at 11:51 A.m. After lunch, she worked on the model again from 1:29 P.M. until 1:48 p.M. How long did Karen work on the model?
10. THINK SMARIER Aiden arrived at the rocket
display at 3:35 P.M. and left at 3:49 P.M. Ava
arrived at the rocket display at 3:30 P.M. an
left at 3:56 P.M. Ava spent how many more
minutes at the rocket display than Aiden? THINK SMARIER Aiden arrived at the rocket
display at 3:35 P.M. and left at 3:49 P.M. Ava
arrived at the rocket display at 3:30 P.M. an
left at 3:56 P.M. Ava spent how many more
minutes at the rocket display than Aiden? THINK SMARIIR Aiden arrived at the rocket
display at 3:35 p.M. and left at 3:49 P.M. Ava
arrived at the rocket display at 3:30 P.M. and
left at 3:56 P.M. Ava spent how many more
minutes at the rocket display than Aiden? THINK SMARIER Aiden arrived at the rocket
display at 3:35 P.M. and left at 3:49 P.M. Ava
arrived at the rocket display at 3:30 P.M. and
left at 3:56 P.M. Ava spent how many more
minutes at the rocket display than Aiden? THINK SMARIER Aiden arrived at the rocket
display at 3:35 P.M. and left at 3:49 P.M. Ava
arrived at the rocket display at 3:30 P.M. an
left at 3:56 P.M. Ava spent how many more
minutes at the rocket display than Aiden? THINK SMARIER Aiden arrived at the rocket
display at 3:35 P.M. and left at 3:49 P.M. Ava
arrived at the rocket display at 3:30 P.M. an
left at 3:56 P.M. Ava spent how many more
minutes at the rocket display than Aiden?
\qquad
11. THINK SMARIER Kira got on the tour bus at 5:15 P.M. She 15 got off the bus at 5:37 p.m. How long was Kira on the bus?
Select the number to make the sentence true.
Kira was on the bus for \qquad minutes.
\qquad

Essential Question How can you find a starting time or an ending time when you know the elapsed time?

- Circle the information you need. -What time do you need to find?

Math size jumps to make on the number line.

Explain how you decided what
Mathematical Practices

Unlock the Problem

at 1:30 P.M. He spends 42 minutes painting a model of Earth and labeling the oceans. At what time does Javier finish working on his project?
(1) One Way Use a number line to find the ending time.

STEP 1 Find the time on the number line when Javier started working on the project.
STEP 2 Count forward on the number line to add the elapsed time. Draw and label the jumps to show the minutes.

Think: I can break apart 42 minutes into shorter amounts of time.

STEP 3 Write the times below the number line.

Javier begins working on his oceans project

The jumps end at \qquad
So, Javier finishes working on his project at \qquad
(1) Another Way Use a clock to find the ending time.

STEP 1 Find the starting time on the clock.
STEP 2 Count on by fives and ones for the elapsed time of 42 minutes. Write the missing counting numbers next to the clock.

So, the ending time is \qquad -

Find Starting Times

Whitney went swimming in the ocean for 25 minutes. She finished swimming at 11:15 A.m.
At what time did Whitney start swimming?
(I) One Way Use a number line to find the starting time.

STEP 1 Find the time on the number line when Whitney finished swimming in the ocean.

STEP 2 Count back on the number line to subtract the elapsed time. Draw and label the jumps to show the minutes.

STEP 3 Write the times below the number line.
So, Whitney started swimming at \qquad

Explain how the problem on this page is different from the problem on page 419.
(1) Another Way use a clock to find the starting time. STEP 1 Find the ending time on the clock.

STEP 2 Count back by fives for the elapsed time of 25 minutes. Write the missing counting numbers next to the clock.

Share and Show

MATH BOARD

1. Use the number line to find the starting time if the elapsed time is 35 minutes. \qquad

Explain how to find the starting time when you know the ending time and the elapsed time.

Name \qquad

Find the ending time.

2. Starting time: 1:40 P.m. Elapsed time: 33 minutes

On Your Own

Find the starting time.

4. Ending time: 3:05 P.M.

Elapsed time: 40 minutes
5. Ending time: 8:06 A.m. Elapsed time: 16 minutes

Problem Solving • Applications Werld

6. THINK SMARTER Suzi began fishing at 10:30 A.m. and fished until 11:10 A.m. James finished fishing at 11:45 A.m. He fished for the same length of time as Suzi. At what time did James start fishing? Explain.

7. THINK SMARTER Dante's surfing lesson began at 2:35 P.M. His lesson lasted 45 minutes.
Draw hands on the clock to show the time Dante's surfing lesson ended.

Connect [to Science

Tides

If you have ever been to the beach, you have seen the water rise and fall along the shore every day. This change in water level is called the tide. Ocean tides are mostly caused by the pull of the moon and the sun's gravity. High tide is when the water is at its highest level. Low tide is when the water is at its lowest level. In most places on Earth, high tide and low tide each occur about twice a day.
Use the table for 8-9.
8. FIDEEPER The first morning, Courtney walked on the beach for 20 minutes. She finished her walk 30 minutes before high tide. At what time did Courtney start her walk?
9.
 afternoon, Courtney started collecting shells at low tide. She collected shells for 35 minutes. At what time did Courtney finish collecting shells?

Tide Times Atlantic City, NJ		
Low Tide High Tide 2:12 A.M. 9:00 A.M.		
	2:54 P.M.	9:00 P.M.
	3:06 A.M.	9:36 A.M.
	3:36 P.M.	9:54 P.M.
Day 3	4:00 A.M.	10:12 A.M.
	4:30 P.M.	10:36 P.M.

Problem Solving • Time Intervals

Lesson 10.5

Essential Question How can you use the strategy draw a diagram to solve problems about time?

Measurement and Data-
 3.MD. 1 Also 3.OA.8, 3.NBT. 2

Unlock the Problem

Zach and his family are going to New York City. Their airplane leaves at 9:15 A.m. They need to arrive at the airport 60 minutes before their flight. It takes 15 minutes to get to the airport. The family needs 30 minutes to get ready to leave. At what time should Zach's family start getting ready?

What do I need to find?

I need to find what \qquad
Zach's family should start
\qquad .

Read the Problem

How will I use the information?

I will use a number line to find the answer.

Read the Problem	
What information do I need	
to use?	How will I use the information?
the time the \quad _ leaves; the time the family needs to arrive at the ___ the time it takes to get to the___ and the time the family needs to___	I will use a number line to find the answer.
Solve the Problem	

- Find 9:15 A.m. on the number line. Draw the jumps to show the time.
- Count back \qquad minutes for the time they need to arrive at
 the airport.
- Count back ___ minutes for the time to get to the airport.
- Count back ___ minutes for the time to get ready. So, Zach's family should start getting ready at \qquad .M.

How can you check your answer by starting with the time the family starts getting ready?

1) Try Another Problem

Bradley gets out of school at 2:45 P.m. It takes him 10 minutes to walk home. Then he spends 10 minutes eating a snack. He spends 8 minutes putting on his soccer uniform. It takes 20 minutes for Bradley's father to drive him to soccer practice. At what time does Bradley arrive at soccer practice?

Read the Problem

What do I need to find?
$\left|\begin{array}{l}\text { What information } \\ \text { do I need to use? }\end{array}\right|$

How will I use the information?

Solve the Problem

Draw a diagram to help you explain your answer.

1. At what time does Bradley arrive at soccer practice?
2. How do you know your answer is reasonable? \qquad
\qquad
\qquad

Unlock the Problem
 \checkmark Circle the question.
 \checkmark Underline important facts.
 $\sqrt{ }$ Choose a strategy you know.

1. Patty went to the shopping mall at 11:30 A.m.

She shopped for 25 minutes. She spent 40 minutes eating lunch. Then she met a friend at a movie.
At what time did Patty meet her friend?
First, begin with \qquad on the number line.

Then, count forward \qquad and \qquad .

Think: I can break apart the times into shorter amounts of time that make sense.

So, Patty met her friend at \qquad
\qquad M.
2. What if Patty goes to the mall at 11:30 A.M. and meets a friend at a movie at 1:15 P.m.? Patty wants to shop and have 45 minutes for lunch before meeting her friend. How much time can Patty spend shopping?
\qquad
3. Avery got on the bus at 1:10 P.M. The trip took 90 minutes. Then she walked for 32 minutes to get home. At what time did Avery arrive at home?

On Your Own

4. H पDEEPER Kyle and Josh have a total of 64 CDs. Kyle has 12 more CDs than Josh. How many CDs does each boy have?
5. Jamal spent 60 minutes using the computer. He spent a half hour of the time playing games and the rest of the time researching his report. How many minutes did Jamal spend researching his report?
6. IHINIS SMARTER When Caleb got home from school, he worked on his science project for 20 minutes. Then he studied for a test for
30 minutes. He finished at 4:35 P.M. At what 20 minutes. Then he studied for a test for
30 minutes. He finished at 4:35 P.M. At what time did Caleb get home from school?

 week. On Monday, he scored 83 points. His score went up 5 points each day. On what day did Miguel score 103 points? Explain how you found your answer.
\qquad
\qquad
7. THINKSMARTER When Laura arrived at the library, she spent 40 minutes reading a book. Then she spent 15 minutes reading a magazine. She left the library at 4:15 P.m.

Circle the time that makes the sentence true.
Laura arrived at the library at 3:20 P.M.
3:35 P.M.
5:10 P.M.
\qquad

Mid-Chapter Checkpoint

Vocabulary

Vocabulary

Choose the best term from the box.

1. In one \qquad , the minute hand moves from one mark to the next on a clock. (p. 407)
P.M.
2. The times after noon and before midnight are written with \qquad . (p. 412)

Concepts and Skills

Write the time for the activity. Use A.M. or P.M. (3.MD.1)
3. play ball

4. eat breakfast

5. do homework

6. sleep

\qquad

Find the elapsed time. (3.MD.1)
7. Start: 10:05 A.m. End: 10:50 A.m.

8. Start: 5:30 P.m. End: 5:49 p.M.

Find the starting time or the ending time. (3.MD.1)
9. Starting time: \qquad
Elapsed time: 50 minutes
Ending time: 9:05 A.m.
10. Starting time: 2:46 P.M. Elapsed time: 15 minutes

Ending time: \qquad

11. Veronica started walking to school at 7:45 A.m. She arrived at school 23 minutes later. At what time did Veronica arrive at school? (3.mD.1)
12. The clock shows the time the art class ends. At what time does it end? (3.MD.1)

13. Matt went to his friend's house. He arrived at 5:10 P.M. He left at 5:37 p.m. How long was Matt at his friend's house? (3.MD.1)
14. Brenda's train leaves at 7:30 A.M. She needs to arrive 10 minutes early to buy her ticket. It takes her 20 minutes to get to the train station. At what time should Brenda leave her house? (3.MD.1)
15. Write the time you get home from school. (3.MD.1)
\qquad

Measure Length

Essential Question How can you generate measurement data and show the data on a line plot?
connect You have learned how to measure length to the nearest inch. Sometimes the length of an object is not a whole unit. For example, a paper clip is more than 1 inch but less than 2 inches.

You can measure length to the nearest half inch or fourth inch. The half-inch markings on a ruler divide each inch into two equal parts. The fourth-inch markings divide each inch into four equal parts.

Math Idea

A ruler is like a number line.

\squareExample 1 Use a ruler to
measure the glue stick to the Example Use a ruler to
measure the glue stick to the nearest half inch.

- Line up the left end of the glue stick with the zero mark on the ruler.
- The right end of the glue stick is between the half-inch marks for
\qquad and .
- The mark that is closest to the right end of the glue stick is for \qquad inches. So, the length of the glue stick to the nearest half inch is \qquad inches.

Example 2 Use a ruler to

 measure the paper clip to the nearest fourth inch.

- Line up the left end of the paper clip with the zero mark on the ruler.
- The right end of the paper clip is between the fourth-inch marks for
\qquad and \qquad .
- The mark that is closest to the right end of the paper clip is for \qquad inches.

So, the length of the paper clip to the nearest fourth inch is \qquad inches.

(1) Activity Make a line plot to show measurement data.

Materials \quad inch ruler $■ 10$ crayons
Measure the length of 10 crayons to the nearest half inch.
Complete the line plot. Draw an \boldsymbol{X} for each length.

Length of Crayons Measured to the Nearest Half Inch

- Describe any patterns you see in your line plot.
\qquad
\qquad

Try This! Measure the length of your fingers to the nearest fourth inch. Complete the line plot. Draw an x for each length.

How do you think your line plot compares to line plots your classmates made? Explain.

Share and Show

MATH BOARD

\$1. Measure the length to the nearest half inch. Is the key closest to $1 \frac{1}{2}$ inches, 2 inches, or $2 \frac{1}{2}$ inches?
\qquad inches

Name \qquad

Measure the length to the nearest fourth inch.
$\circlearrowleft 2$.

\qquad inches

On Your Own

Use the lines for 3-4.

3. Measure the length of the lines to the nearest half inch and make a line plot.

\qquad
4. Measure the length of the lines to the nearest fourth inch and make a line plot.

Problem Solving • Applications

Use the line plot for 5-7.

5. FIDEEPER Tara has a magnet collection from places she visited. She measures the length of the magnets to the nearest half inch and records the data in a line plot. Are more magnets longer than $2 \frac{1}{2}$ inches or shorter than $2 \frac{1}{2}$ inches? Explain.

6. THINK SMARTER How many magnets measure a whole number of inches? How many magnets have a length between two whole numbers?
\qquad
7. starts at 1 and stops at 4.
\qquad
\qquad
\qquad
8. THINISMARTER What is the length of the pencil to the nearest half inch?

\qquad inches

Explain how you measured the pencil.
\qquad
\qquad
\qquad

Estimate and Measure Liquid Volume

Essential Question How can you estimate and measure liquid volume in metric units?

Unlock the Problem

Liquid volume is the amount of liquid in a container. The liter (\mathbf{L}) is the basic metric unit for measuring liquid volume.

(1) Activity 1

Materials $■ 1$-L beaker $■ 4$ containers $■$ water $■$ tape
STEP 1 Fill a 1-liter beaker with water to the 1-liter mark.
STEP 2 Pour 1 liter of water into a container. Mark the level of the water with a piece of tape. Draw the container below and name the container.

STEP 3 Repeat Steps 1 and 2 with three different-sized containers.

Container 1
\qquad

Container 3

Container 2
Math
Mathematical Practices
What can you say about the amount of liquid volume in each container?

1. How much water did you pour into each container? \qquad
2. Which containers are mostly full? Describe them.
3. Which containers are mostly empty? Describe them.

Compare Liquid Volumes

(1) Activity 2 Materials $■$ 1-L beaker $■ 5$ different containers $■$ water

STEP 1 Write the containers in order from the one you think will hold the least water to the one you think will hold the most water.
\qquad , \qquad , \qquad ,

STEP 2 Estimate how much each container will hold. Write more than 1 liter, about 1 liter, or less than 1 liter in the table.

STEP 3 Pour 1 liter of water into one of the containers. Repeat until the container is full. Record the number of liters you poured. Repeat for each container.

Container	Estimate	Number of Liters

STEP 4 Write the containers in order from the least to the greatest liquid volume.

Math

Was the order in Step 1 different than the order in Step 4? Explain why they may be different. ,
\qquad , \qquad
\qquad
\qquad , \qquad

Share and Show

1. The beaker is filled with water. Is the amount more than 1 liter, about 1 liter, or less than 1 liter?

Estimate how much liquid volume there will be when the container is filled. Write more than 1 liter, about 1 liter, or less than 1 liter.
2. cup of tea

On Your Own

5. pitcher

6. Did Rosario pour the same amount into each bottle?
7. Which bottle has the least amount of juice?
8. Which bottle has the most juice?
9. kitchen sink

Estimate how much liquid volume there will be when the container is filled. Write more than 1 liter, about 1 liter, or less than 1 liter.
6. juice box

Use the pictures for 8-10. Rosario pours juice into four bottles that are the same size.
\qquad
\qquad
\qquad

w

Problem Solving • Applications

Use the containers for 11-13. Container \boldsymbol{A} is full when 1 liter of water is poured into it.

11. GIDEEPER Estimate how many liters will fill Container C and how many liters will fill Container E. Which container will hold more water when filled?

12.

(unizaical 6) Name two containers that will be filled with about the same number of liters of water. Explain.
\qquad
\qquad

13. IHINKSMARTER What's the Error? Samuel says that you can pour more liters of water into Container B than into Container D. Is he correct? Explain.
\qquad

Personal Math Trainer

14. THINK SMARIER \dagger The bottle of tea holds about 1 liter. For numbers 14a-14e, choose Yes or No to tell whether it will hold more than 1 liter.

14a. teacup
\bigcirc Yes
○ No
14b. kitchen trash can
○ Yes
\bigcirc No
14c. small pool
○ Yes
○ No

14d. fish tank
\bigcirc Yes
\bigcirc No

14e. perfume bottle
\bigcirc Yes
○ No

Estimate and Measure Mass

Essential Question How can you estimate and measure mass

Unlock the Problem

Pedro has a dollar bill in his pocket. Should Pedro measure the mass of the dollar bill in grams or kilograms?

The gram (g) is the basic metric unit for measuring mass, or the amount of matter in an object. Mass can also be measured by using the metric unit kilogram (kg).

Think: The mass of a dollar bill is closer to the mass of a small paper clip than it is to a box of 1,000 paper clips.

So, Pedro should measure the mass of the dollar bill in \qquad .

(1) Activity 1

Materials $■$ pan balance $■$ gram and kilogram masses
You can use a pan balance to measure mass.
Do 10 grams have the same mass as 1 kilogram?

- Place 10 gram masses on one side of the balance.

- Place a 1-kilogram mass on the other side of the balance.

Think: If it is balanced, then the objects have the same mass. If it is not balanced, the objects do not have the same mass.

- Complete the picture of the balance above by drawing masses to show your balance.

The pan balance is \qquad .

So, 10 grams and 1 kilogram \qquad the same mass.

(1) Activity 2

Materials $■$ pan balance $■$ gram and kilogram masses $■$ classroom objects

STEP 1 Use the objects in the table. Decide if the object should be measured in grams or kilograms.

STEP 2 Estimate the mass of each object. Record your estimates in the table.

STEP 3 Find the mass of each object to the nearest gram or kilogram. Place the object on one side of the balance. Place gram or kilogram masses on the other side until both sides are balanced.

STEP 4 Add the measures of the gram or kilogram masses. This is the mass of the object. Record the mass in the table.

Mass		
Object	Estimate	
crayon		
stapler		
eraser		
marker		
small notepad		
scissors		

- Write the objects in order from greatest mass to least mass.
\qquad , \qquad , \qquad ,
\qquad , \qquad ,

Share and Show

1. Five bananas have a mass of about

Think: The pan balance is balanced, so the objects on both sides have the same mass.

\qquad

Choose the unit you would use to measure the mass. Write gram or kilogram.
2. strawberry

63. dog

Mathematical Practices
Explain how you decided which unit to use to measure mass.

Compare the masses of the objects. Write is less than, is the same as, or is more than.
4.

The mass of the bowling pin
\qquad the mass of the chess piece.
© 5.

The mass of the erasers
\qquad the clips.

On Your Own

Choose the unit you would use to measure the mass. Write gram or kilogram.
6. chair

7. sunglasses

8. watermelon

Compare the masses of the objects. Write is less than, is the same as, or is more than.
9.

The mass of the pen the mass of the paper clips.
10.

The mass of the straws \qquad the mass of the blocks.

Problem Solving • Applications

11. GПDEEPER Put the sports balls shown at the right in order from greatest mass to least mass.

Table tennis ball

Baseball

Bowling ball

Tennis ball
16. IHINKSMARTER Select the objects with a mass greater than 1 kilogram. Mark all that apply.
(A) skateboard
(D) egg
(B) laptop computer
(E) desk
(C) cell phone
(F) pencil

IHINKSMARIER Sense or Nonsense? Amber is buying produce at the grocery store. She says that a Fuji apple and a green bell pepper would have the same mass because they are the same size. Does her statement make sense? Explain.

\qquad
\qquad
\qquad

FOR MORE PRACTICE: Standards Practice Book
\qquad

Essential Question How can you use models to solve liquid volume and

Solve Problems About Liquid Volume and Mass

Essential Ques
mass problems?

? Unlock the Problem

A restaurant serves iced tea from a large container that can hold 24 liters. Sadie will fill the container with the pitchers of tea shown below. Will Sadie have tea left over after filling the container?
(1) Example 1 solve a problem about liquid volume.

Since there are \qquad equal groups of \qquad liters, you can multiply.
\square
\qquad $=$ \qquad
Circle the correct words to complete the sentences.

Try This! Use a bar model to solve.

Raul's fish tank contains 32 liters of water. He empties it with a bucket that holds 4 liters of water. How many times will Raul have to fill the bucket?

So, Raul will have to fill the bucket \qquad times.

(1) Activity Solve a problem about mass.

Materials $■$ pan balance $■$ glue stick $■$ gram masses Jeff has a glue stick and a 20 -gram mass on one side of a balance and gram masses on the other side. The pan balance is balanced. What is the mass of the glue stick?
STEP 1 Place a glue stick and a 20-gram mass on one side of the balance.

STEP 2 Place gram masses on the other side until the pans are balanced.

STEP 3 To find the mass of the glue stick, remove 20 grams from each side.

Think: I can remove 20 grams from both sides and the pan balance will still be balanced.

STEP 4 Then add the measures of the gram masses on
 the balance.

The gram masses have a measure of \qquad grams.

So, the glue stick has a mass of \qquad .

Try This! Use a bar model to solve.

A bag of peas has a mass of 432 grams.
A bag of carrots has a mass of 263 grams.
What is the total mass of both bags?

g
_ $=$ \qquad
So, both bags have a total mass of \qquad grams.

Share and Show

1. Ed's Delivery Service delivered three packages to Ms. Wilson. The packages have masses of 9 kilograms, 12 kilograms, and 5 kilograms. What is the total mass of the three packages? Use the bar model to help you solve.

MATH
BOARD
\qquad

Write an equation and solve the problem.

2. Ariel's recipe calls for 64 grams of apples and 86 grams of oranges. How many more grams of oranges than apples does the recipe call for?
 $=$ \qquad
\qquad

On Your Own

ATHEMATIC
PRACTIC
4) Write an Equation Write an equation and solve the problem.
6. IHINKSMARIER Ellen will pour water into Pitcher B until it has 1 more liter of water than Pitcher A. How many liters of water will she pour into Pitcher B ? Explain how you found your answer.
3. Dan's Clams restaurant sold 45 liters of lemonade. If it sold the same amount each hour for 9 hours, how many liters of lemonade did Dan's Clams sell each hour?

4. Sasha's box holds 4 kilograms of
napkins and 29 kilograms of napkin
rings. What is the total mass of the
napkins and napkin rings?
4. Sasha's box holds 4 kilograms of
napkins and 29 kilograms of napkin
rings. What is the total mass of the
4. Sasha's box holds 4 kilograms of
napkins and 29 kilograms of napkin
rings. What is the total mass of the
napkins and napkin rings? napkins and napkin rings?
$=$ \qquad

$$
\rightarrow-\operatorname{lo}
$$

5. Josh has 6 buckets for cleaning a restaurant. He fills each bucket with 4 liters of water. How many liters of water are in the buckets?

Unlock the Problem

8. Ken's Café serves fruit smoothies. Each smoothie has 9 grams of fresh strawberries. How many grams of strawberries are in 8 smoothies?
a. What do you need to find? \qquad
b. What operation will you use to find the answer? \qquad
C.

d. Complete the sentences.

There are \qquad smoothies with \qquad grams of strawberries in each.

Since each smoothie is an \qquad group, you can \qquad .
\square $=$ \qquad
So, there are \qquad grams of strawberries in 8 smoothies.
9. HIDEEPER Arturo has two containers, each filled with 12 liters of water. Daniel has two containers, each filled with 16 liters of water. What is the total liquid volume of the boys' containers?
10. THINKSMARTER A deli makes its own salad dressing. A small jar has 3 grams of spices. A large jar has 5 grams of spices. Will 25 grams of spices be enough to make 3 small jars and 3 large jars? Show your work.
\square
\qquad

Chapter 10 Review/Test

1. Yul and Sarah's art class started at 11:25 A.m. The class lasted 30 minutes. Yul left when the class was done. Sarah stayed an extra 5 minutes to talk with the teacher and then left.

Write the time that each student left. Explain how you found each time.
2. Julio measured an object that he found. It was $\frac{3}{4}$ inch wide.

For numbers 2a-2d, choose Yes or No to tell whether the object could be the one Julio measured.

2a.
$2 b$.

\bigcirc Yes
\bigcirc No

O Yes
\bigcirc No

2c.

2d.

Yes
\bigcirc No
3. Dina started swimming at 3:38 P.M. She swam until 4:15 P.M. How long did Dina swim?
\qquad minutes
4. Rita's class begins social studies at ten minutes before one in the afternoon. At what time does Rita's class begin social studies? Circle a time that makes the sentence true.

Rita's class begins social studies at | 1:10 A.M. |
| :---: |
| 1:10 P.M. |
| 12:50 A.M. |
| $12: 50$ P.M. |

5. Select the objects with a mass greater than 1 kilogram. Mark all that apply.
(A) bicycle
(C) eraser
(B) pen
(D) math book
6. A chicken dish needs to bake in the oven for 35 minutes. The dish needs to cool for at least 8 minutes before serving. Scott puts the chicken dish in the oven at 5:14 P.m.

For numbers 6a-6d, select True or False for each statement.
6a. Scott can serve the dish at 5:51 P.M. ○ True ○ False

6b. Scott can serve the dish at 5:58 P.M.

- True
- False

6c. Scott should take the dish out of the oven at 5:51 A.M.

- True
- False

6d. Scott should take the dish out of the oven at 5:49 P.M.

- True

○ False
\qquad
7. Anthony's family went out to dinner. They left at the time shown on the clock. They returned home at 6:52 P.m.

Part A
How long was Anthony's family gone?
\qquad hour \qquad minutes

Part B
Explain how you found your answer.
\qquad
\qquad
\qquad
\qquad
8. Tran checked the time on his watch after he finished his daily run.

Select the time that Tran finished running. Mark all that apply.

(A) 14 minutes before nine
(C) quarter to nine
(B) eight forty-six
(D) nine forty-six
9. Cara uses a balance scale to compare mass.

Circle a symbol that makes the comparison true.

10. A large bottle of water holds about 2 liters.

For numbers 10a-10e, choose Yes or No to tell whether the container will hold all of the water.
10a. kitchen sink
○ Yes
No
10b. water glass

- Yes
No
10c. ice cube tray
- Yes
No
10d. large soup pot
○ Yes
No
10e. lunchbox thermos
○ Yes
\bigcirc No

11. Select the items that would be best measured in grams. Mark all that apply.
(A) watermelon
(B) lettuce leaf
(C) grape
(D) onion
12. Samir made a list of what he did on Tuesday. Write the letter for each activity next to the time he did it.
(A) Get out of bed. \square 8:05 A.м.
(B) Walk to school. \square 6:25 P.M.
(C) Eat lunch. \square 3:50 p.M.
(D) Go to guitar lesson after school.
\square 11:48 A.M.
(E) Eat dinner at home. \square 6:25 A.м.
13. Amy has 30 grams of flour. She puts 4 grams of flour in each pot of chowder that she makes. She puts 5 grams of flour in each pot of potato soup that she makes. She makes 4 pots of chowder. Does Amy have enough flour left over to make 3 pots of potato soup?
\square
14. Use an inch ruler to measure.

Part A

What is the length of the leaf to the nearest fourth-inch?

Part B

Explain what happens if you line up the left side of the object with the 1 on the ruler.
15. Mrs. Park takes the 9:38 A.m. train to the city. The trip takes 3 hours and 20 minutes. What time does Mrs. Park arrive in the city?
\qquad
16. Hector buys two bags of gravel for his driveway. He buys a total of 35 kilograms of gravel. Select the bags he buys.

17. Ashley measures the shells she collects. She

Number of Shells	Length in Inches
1	1
2	$2 \frac{1}{2}$
3	$1 \frac{1}{2}$
1	2

Ashley found a razor clam shell this long. Use an inch ruler to measure. Record the measurement in the chart.

inches

Part B

Complete the line plot to show the data in the chart. How many shells are longer than 2 inches? Tell how you know.

Length of Shells Measured to the Nearest Half Inch
18. Lucy fills a bathroom sink with water. Is the amount of water more than 1 liter, about 1 liter, or less than 1 liter? Explain how you know.
\qquad
\qquad
\qquad

(1)
 Perimeter and Area

Show What You Know

Check your understanding of important skills.
Name \qquad

Use Nonstandard Units to Measure Length

Use paper clips to measure the object.
1.

about \qquad

2.

about \qquad

Add 3 Numbers Write the sum.
3. $2+7+3=$ \qquad 4. $3+5+2=$ \qquad 5. $6+1+9=$ \qquad

Model with Arrays Use the array. Complete.
6.

\qquad
7.

\qquad
\qquad
\qquad

Julia has a picture frame with side lengths of 12 inches and 24 inches. She wants to cut and glue one color of ribbon that will fit exactly around the edge. The green ribbon is 72 inches long. The red ribbon is 48 inches long. Be a Math Detective to find which ribbon she should use to glue around the picture frame.

Vocabulary Builder

Visualize It

Sort the words with a V into the Venn diagram.

Understand Vocabulary

Complete the sentences by using the review and preview

 words.1. The distance around a shape is the
\qquad .
2. The \qquad is the measure of the number of unit squares needed to cover a surface.

Review Words
addition
array
centimeter (cm)
Distributive Property
foot (ft)
inch (in.)
inverse operations
\checkmark length
meter (m)
multiplication
pattern
rectangle
repeated addition
\checkmark unit
\checkmark width

Preview Words
area
perimeter
\checkmark square unit (sq un)
\checkmark unit square
3. You can count, use \qquad or multiply to find the area of a rectangle.
4. A \qquad is a square with a side length of 1 unit and is used to measure area.
5. The \qquad shows that you can break apart a rectangle into smaller rectangles and add the area of each smaller rectangle to find the total area.
\qquad

Model Perimeter

Essential Question How can you find perimeter?

Measurement and Data3.MD. 8

MATHEMATICAL PRACTICES MP.1, MP.3, MP.4, MP. 7

Investigate

Perimeter is the distance around a figure.
Materials $■$ geoboard $■$ rubber bands
You can find the perimeter of a rectangle on a geoboard or on dot paper by counting the number of units on each side.
A. Make a rectangle on the geoboard that is 3 units on two sides and 2 units on the other two sides.
B. Draw your rectangle on this dot paper.

C. Write the length next to each side of your rectangle.
D. Add the number of units on each side.
\qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad
E. So, the perimeter of the rectangle
is \qquad units.

- How would the perimeter of the rectangle change if the length of two of the sides was 4 units instead of 3 units?

Draw Gonclusions

1. Describe how you would find the perimeter of a rectangle that is 5 units wide and 6 units long.
2. THINK SMARIER A rectangle has two pairs of sides of equal length. Explain how you can find the unknown length of two sides when the length of one side is 4 units, and the perimeter is 14 units.
\qquad
\qquad
\qquad
3. a figure with all sides of equal length is easier than finding the perimeter of other figures. Do you agree? Explain.

Make Connections

You can also use grid paper to find the perimeter of figures by counting the number of units on each side.

Start at the arrow and trace the perimeter. Begin counting with 1 . Continue counting each unit around the figure until

If a rectangle has a perimeter of 12 units, how many units wide and how many units long could it be? Explain. you have counted each unit.

Perimeter $=$ \qquad units

B

Perimeter $=$ \qquad units
\qquad
Share and Show
Find the perimeter of the figure. Each unit is 1 centimeter.
1.

\qquad centimeters
3.

\qquad centimeters

O 2.

\qquad centimeters
4.

\qquad centimeters

Find the perimeter.
5. A figure with four sides that measure 4 centimeters, 6 centimeters, 5 centimeters, and 1 centimeter
\qquad centimeters

Problem Solving • Applications

7. a triangle with sides of equal length, and a perimeter of 27 inches.
8. THINKSMARTER Luisa drew a rectangle with a perimeter of 18 centimeters. Select the rectangles that Luisa could have drawn. Mark all that apply. Use the grid to help you.
(A) 9 centimeters long and 2 centimeters wide
(B) 6 centimeters long and 3 centimeters wide
(C) 4 centimeters long and 4 centimeters wide
(D) 5 centimeters long and 4 centimeters wide
(E) 7 centimeters long and 2 centimeters wide

9. IHINKSMARIER What's the Error? Kevin is solving perimeter problems. He counts the units and says that the perimeter of this figure is 18 units.

Look at Kevin's solution.

Find Kevin's error.

- GIDEEPER Describe the error Kevin made. Circle the places in the drawing of Kevin's solution where he made an error.
\qquad
\qquad
\qquad

Find Perimeter

Essential Question How can you measure perimeter?
You can estimate and measure perimeter in

Unlock the Problem

Find the perimeter of the cover of a notebook.

() Activity Materials inch ruler

STEP 1 Estimate the perimeter of a notebook in inches. Record your estimate. \qquad inches

STEP 2 Use an inch ruler to measure the length of each side of the notebook to the nearest inch.

STEP 3 Record and add the lengths of the sides measured to the nearest inch.
\qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad
\qquad inches.

Explain how your estimate compares with your measurement.

Try This! Find the perimeter.

Use an inch ruler to find the length of each side.
\square
Add the lengths of the sides:
\qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad
The perimeter is \qquad inches.

Use a centimeter ruler to find the length of each side.

Add the lengths of the sides:
\qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad
The perimeter is \qquad centimeters.

Share and Show

1. Find the perimeter of the triangle in inches.

in. Think: How long is each side?

Mathematical Practices
Explain how many numbers you add together to find the perimeter of a figure.
\qquad in.
\qquad inches

Use a centimeter ruler to find the perimeter.
2.

\qquad centimeters
©3.

\qquad centimeters

Use an inch ruler to find the perimeter.
4.

$\circlearrowleft 5$.

\qquad in.
\qquad inches

On Your Own

Use a ruler to find the perimeter.
6.
in.

\qquad in.
\qquad inches
7.

cm
\qquad

\qquad cm
\qquad cm
\qquad centimeters
 a figure that has a perimeter of 24 centimeters. Label the length of each side.

Problem Solving • Applications

Use the photos for 9-10.

9. Which of the animal photos has a perimeter of 26 inches?
10. GIDEEPER How much greater is the perimeter of the bird photo than the perimeter of the cat photo?
\qquad
11. THINKSMARIER Erin is putting a fence around her square garden. Each side of her garden is 3 meters long. The fence costs $\$ 5$ for each meter. How much will the fence cost?
\qquad
12. WRITE Math Gary's garden is shaped like a rectangle with two pairs of sides of equal length, and it has a perimeter of 28 feet. Explain how to find the lengths of the other sides if one side measures 10 feet.
\qquad
\qquad
\qquad
\qquad
\qquad
13. THINK SMARTER Use an inch ruler to measure this sticker to the nearest inch. Then write an equation you can use to find its perimeter.

5 in.

Algebra • Find Unknown Side Lengths

Essential Question How can you find the unknown length of a side in a plane figure when you know its perimeter?

Lesson 11.3

2ss3.MD. 8 Also 3.NBT. 2

Unlock the Problem

Chen has 27 feet of fencing to put around his garden. He has already used the lengths of fencing shown. How much fencing does he have left for the last side?

(1) Find the unknown side length.

Write an equation for the perimeter.
Think: If I knew the length n, I would add all the side lengths to find the perimeter.

Add the lengths of the sides you know.
Think: Addition and subtraction are inverse operations.

Write a related equation.
So, Chen has \qquad feet of fencing left.

$$
5+3+\ldots+\ldots+n=27
$$

$$
n=27-19
$$

\qquad

Try This!

The perimeter of the figure is 24 meters.

Math Idea

A symbol or letter can stand for an unknown side length.

Find the unknown side length, w.

So, the unknown side length, w, is \qquad meters.
\square
Example Find unknown side lengths of a rectangle.

Lauren has a rectangular blanket. The perimeter is 28 feet. The width of the blanket is 5 feet. What is the length of the blanket?

Hint: A rectangle has two pairs of opposite sides that are equal in length.

You can predict the length and add to find the perimeter. If the perimeter is 28 feet, then that is the correct length.

Predict	Check	Does it check?
$I=7$ feet	$5+\ldots+5+\ldots$	Think: Perimeter is not 28 feet, so the length does not check.
$I=8$ feet	$5+\ldots+5+\ldots=$	Think: Perimeter is not 28 feet, so the length does not check.
$I=9$ feet	$5+\ldots+5+\ldots=$	Think: Perimeter is 28 feet, so the length is correct. \checkmark

So, the length of the blanket is \qquad feet.

Try This! Find unknown side lengths of a square.

The square has a perimeter of 20 inches. What is the length of each side of the square?

Think: A square has four sides that are equal in length.
You can multiply to find the perimeter.

- Write a multiplication equation for the perimeter.
$4 \times \quad s=20$
- Use a multiplication fact you know to solve.
$4 \times$ \qquad $=20$

So, the length of each side of the square is \qquad inches.
\qquad

Share and Show

MATH BOARD

Find the unknown side lengths.

1. Perimeter $=25$ centimeters

2. Perimeter $=34$ meters

$j=$ \qquad meters

On Your Own

Find the unknown side lengths.
4. Perimeter $=32$ centimeters

$k=$ \qquad centimeters
5. IHINKSMARTIER Perimeter $=42$ feet

$$
g=\ldots \quad \text { feet }
$$

 wants to put up a fence around her square garden. The garden has a perimeter of 28 meters. How long will each side of the fence be? Explain.

Math Talk
Mathematical Practices
Explain how you can use division to find the length of a side of a square.

Unlock the Problem

7. GDDEFPER Latesha wants to make a border with ribbon around a figure she made and sketched at the right. She will use 44 centimeters of ribbon for the border. What is the unknown side length?
a. What do you need to find?

b. How will you use what you know about perimeter to help you solve the problem?
\qquad
\qquad
c. Write an equation to solve the problem.
d. So, the length of side h is
\qquad centimeters.
8. THINK SMARTER A rectangle has a perimeter of 34 inches. The left side is 6 inches long. What is the length of the top side?

Personal Math Trainer
9. THINKSMARTER \ddagger Michael has 40 feet of fencing to make a rectangular dog run for his dog, Buddy. One side of the run will be 5 feet long. For numbers 9a-9d, choose Yes or No to show what the length of another side will be.

9a. 20 feet
\bigcirc Yes

- No

9b. 15 feet
○ Yes
\bigcirc No
9c. 10 feet
○ Yes
\bigcirc No
9d. 8 feet
○ Yes
○ No
\qquad

Understand Area

Essential Question How is finding the area of a figure different from finding the perimeter of a figure.

Unlock the Problem

connect You learned that perimeter is the distance around a figure. It is measured in linear units, or units that are used to measure the distance between two points.

Area is the measure of the number of unit squares needed to cover a flat surface. A unit square is a square with a side length of 1 unit. It has an area of 1 square unit (sq un).

Unit Square

1 unit +1 unit +1 unit + 1 unit $=4$ units

1 square unit

Math Idea

You can count the number of units on each side of a figure to find its perimeter. You can count the number of unit squares inside a figure to find its area in square units.

@) Activity Materials \quad geoboard $■$ rubber bands

(A) Use your geoboard to form a figure made from 2 unit squares. Record the figure on this dot paper.

What is the area of this figure?
Area $=$ \qquad square units
(B) Change the rubber band so that the figure is made from 3 unit squares. Record the figure on this dot paper.

What is the area of this figure?
Area $=\ldots$ square units

Math
Talk

Try This! Draw three different figures that are each made from 4 unit squares. Find the area of each figure.

Figure 1

Area $=$ \qquad square units

Figure 2

Area $=$ \qquad square units

Figure 3

Area $=$ \qquad square units

- How are the figures the same? How are the figures different?

Share and Show

MATH BOARD

1. Shade each unit square in the figure shown. Count the unit squares to find the area.

Area $=$ \qquad square units

Count to find the area of the figure.
2.

Area $=$ \qquad square units
3.

© 4.

Area $=$ \qquad square units
Area $=$ \qquad square units
Write area or perimeter for the situation.
5. buying a rug for a room
6. putting a fence around a garden
\qquad

On Your Dwn

Count to find the area of the figure.
7.

Area $=$ \qquad square units
10.

Area $=$ \qquad square units
8.

Area $=$ \qquad square units
11.

Area $=$ \qquad square units
9.

Area $=$ \qquad square units
12.

Area $=$ \qquad square units

Write area or perimeter for the situation.
13. painting a wall
15. putting a wallpaper border around a room
17. FIDEEPER Nicole's mother put tiles on a section of their kitchen floor. The section included 5 rows with 4 tiles in each row. Each tile cost $\$ 2$. How much money did Nicole's father spend on the tiles?
14. covering a patio with tiles
16. gluing a ribbon around a picture frame
\qquad

Problem Solving • Applications

Juan is building an enclosure for his small dog, Eli. Use the diagram for 18-19.
18. Juan will put fencing around the outside of the enclosure. How much fencing does he need for the enclosure?
19.
\square Maninilct) Use Appropriate Tools Juan will use grass sod to cover the ground in the enclosure. How much grass sod does Juan need?
20. THINK SMARIER Draw two different figures, each with an area of 10 square units.
21. THINK SMARIER What is the perimeter and area of this figure?

Explain how you found the answer.
Perimeter \qquad units

Area \qquad square units

Lesson 11.5

\qquad

Measure Area

Essential Question How can you find the area of a plane figure?

Unlock the Problem

Jaime is measuring the area of the rectangles with 1 -inch square tiles.

\squareActivity 1 Materials $\llbracket 1$-inch grid paper $■$ scissors Cut out eight 1 -inch squares. Use the dashed lines as guides to place tiles for $A-C$.

A Place 4 tiles on Rectangle A.

- Are there any gaps? \qquad
- Are there any overlaps? \qquad
- Jaime says that the area is 4 square inches. Is Jaime's measurement correct? \qquad
So, when you measure area, there can be no space between the tiles, or no gaps.

B Place 8 tiles on Rectangle B.

- Are there any gaps? \qquad
- Are there any overlaps? \qquad
- Jaime says that the area is 8 square inches. Is Jaime's measurement correct?

So, when you measure the area, the tiles cannot overlap.

C Place 6 tiles on Rectangle C.

- Are there any gaps? \qquad

1 square inch

Rectangle A

Rectangle B

Rectangle C

(1) Activity 2 Materials \square green and blue paper \square scissors

ERROR Alert
Be sure that there are no gaps or overlaps when you use square tiles to find area.

STEP 1 Estimate the number of blue square tiles it will take to cover the gray figure.
blue square tiles
STEP 2 Estimate the number of green tiles it will take to cover the gray figure. \qquad
STEP 3 Trace the blue square pattern ten times and cut out the squares.

STEP 4 Trace the green square pattern thirty-six times and cut out the squares.

STEP 5 Cover the gray figure with blue square tiles. Count and write the number of blue square tiles you used. Record the area of the figure.

Area $=$ \qquad blue square units
STEP 6 Cover the gray figure with green square tiles. Count and write the number of green square tiles you used. Record the area of the figure.
\qquad blue square tiles
green square tiles
\qquad green square units

Explain why the number of green square tiles needed to cover the figure is different than the number of blue square tiles needed.

Try This! Count to find the area of the figure.
is 1 square centimeter.

There are \qquad unit squares in the figure.

1					
2					

So, the area is \qquad square centimeters.
\qquad

Share and Show

1. Count to find the area of the figure. Each unit square is 1 square centimeter.

Think: Are there any gaps? Are there any overlaps?
There are \qquad unit squares in the figure.

So, the area is \qquad square centimeters.

Count to find the area of the figure.
Each unit square is 1 square centimeter.

Explain how you can use square centimeters to find the area of the figures in Exercises 2 and 3.
2.

Area $=$ \qquad square centimeters

On Your Own

Count to find the area of the figure.
Each unit square is $\mathbf{1}$ square inch.
4.

Area $=$ \qquad square inches
5.

Area $=$ \qquad square inches

Problem Solving • Applications

6. (समitancici 4) Use a Diagram Danny is placing tiles on the floor of an office lobby. Each tile is 1 square meter. The diagram shows the lobby. What is the area of the lobby?

7. HIDEPPER Angie is painting a space shuttle mural on a wall. Each section is one square foot. The diagram shows the unfinished mural. How many more square feet has Angie painted than NOT painted on her mural?
\qquad Rectangle A

8. THINK SMARTER You measure the area of a table top with blue unit squares and green unit squares. Which unit square will give you a greater number of square units for
 area? Explain.
\qquad
\qquad
\qquad
\qquad
9. THINK SMARTER How many squares need to be added to this figure so that it has the same area as a square with a side length of 5 units?
squares

\qquad

Use Area Models

Essential Question Why can you multiply to find the area of a rectangle?

Measurement and Data-3.MD.7,
3. MD.7a Also 3.MD.5, 3.MD.5a, 3.MD.5b, 3.MD.6, 3.MD.7b, 3.0A.3, 3.0A.7, 3.NBT. 2 MATHEMATICAL PRACTICES

Unlock the Problem

Cristina has a garden that is shaped like the rectangle below. Each unit square represents 1 square meter. What is the area of her garden?

- Circle the shape of the garden.

So, the area is \qquad square meters.

1 Other Ways

A Use repeated addition.

Count the number of rows. Count the number of unit squares in each row.
\qquad rows of \qquad $=$ \qquad unit squares

Write an addition equation. \qquad $+$ \qquad $+$ \qquad $=$ \qquad
So, the area is \qquad square meters.

B Use multiplication.

()One Way count unit squares.

Count the number of unit squares in all.
There are \qquad unit squares. -
 unit squares unit squares

Count the number of rows. Count the number of unit squares in each row.
\qquad rows of \qquad $=\square$

	unit squares in each row					
rows						

\qquad \times \qquad $=$ \qquad

Write a multiplication equation.
So, the area is \qquad square meters.

Math
Talk
Mathematical Practices
Explain when you can use different methods to find the same area.

Try This!

Find the area of the figure.
Each unit square is 1 square foot.
Think: There are 4 rows of 10 unit squares.
\qquad \times \qquad $=$ \qquad

So, the area is \qquad square feet.

Share and Show

1. Look at the figure.
\ldots rows of $\quad=\square$

Add. \qquad $+$ \qquad
\qquad $=$ \qquad
Multiply. \qquad \times \qquad $=$ \qquad
What is the area of the figure?

square units
Find the area of the figure.
Each unit square is 1 square foot.
2.

$\circlearrowleft 3$.

Find the area of the figure.

Each unit square is 1 square meter.
4.

5.

On Your Dwn

Find the area of the figure. Each unit square is 1 square foot.
6.

7.

Find the area of the figure.
Each unit square is 1 square meter.
8.

9.

10. MATHEMATICAL 4) Use Diagrams

Draw and shade three rectangles with an area of 24 square units. Then write an addition or multiplication equation for each.

Problem Solving • Applications

11. HIDEEPER Compare the areas of the two rugs at the right. Each unit square represents 1 square foot. Which rug has the greater area? Explain.

\qquad
\qquad
12. THINKSMARIER A tile company tiled a wall using square tiles. A mural is painted in the center. The drawing shows the design. The area of each tile used is 1 square foot.

Write a problem that can be solved by
 using the drawing. Then solve your problem.
\qquad
\qquad
\qquad
13. THINKSMARTER Colleen drew this rectangle. Select the equation that can be used to find the area of the rectangle. Mark all that apply.
(A)
$9 \times 6=n$
(B)
$9+9+9+9+9+9=n$
(C)
$9+6=n$
(D)
$6 \times 9=n$
(E)
$6+6+6+6+6+6=n$

\qquad

Mid-Chapter Checkpoint

Vogabulary

Vocabulary
Choose the best term from the box.

1. The distance around a figure is the \qquad . (p. 453)
2. The measure of the number of unit squares needed to cover a figure with no gaps or overlaps is the \qquad . (p. 465)

Concepts and Skills

Find the perimeter of the figure. Each unit is 1 centimeter. (3.MD.8)
3.

\qquad centimeters
Find the unknown side lengths. (3.mD.8)
5. Perimeter $=33$ centimeters
$g=$ \qquad centimeters

4.

\qquad centimeters

Find the area of the figure. Each unit square is 1 square meter.
(3.MD.5, 3.MD.5a, 3.MD.5b, 3.MD.6, 3.MD.7, 3.MD.7a)
7.

square meters
8.

9. Ramona is making a lid for her rectangular jewelry box. The jewelry box has side lengths of 6 centimeters and 4 centimeters. What is the area of the lid Ramona is making? (3.MD.7, з.MD.7a)
10. Adrienne is decorating a square picture frame. She glued 36 inches of ribbon around the edge of the frame. What is the length of each side of the picture frame? (3.MD.8)
11. Margo will sweep a room. A diagram of the floor that she needs to sweep is shown at the right. What is the area of the floor? (3.MD.5b, 3.MD.6)
12. Jeff is making a poster for a car wash for the Campout Club. What is the perimeter of the poster? (3.mD.8)
13. A rectangle has two side lengths of 8 inches and two side lengths of 10 inches. What is the perimeter of the rectangle? (3.MD.8)

3 ft

Name

Problem Solving • Area of Rectangles

Essential Question How can you use the strategy find a pattern to solve area problems?

Unlock the Problem

Mr. Koi wants to build storage buildings, so he drew plans for the buildings. He wants to know how the areas of the buildings are related. How
 does the area change from the area of Building A to the area of Building B ? How does the area change from the area of Building C to the area of Building D ?

Use the graphic organizer to help you solve the problem.
 4 ft

Read the Problem		
What do I need to find?	What information do I need to use?	How will I use the information?
I need to find how the areas will change from A to B and from \qquad to \qquad	I need to use the \qquad and \qquad of each building to find its area.	I will record the areas in a table. Then I will look for a pattern to see how the \qquad will change.
Solve the Problem		
I will complete the table to find patterns to solve the problem.		

	Length	Width	Area		Length	Width	Area
Building A	3 ft			Building C		4 ft	
Building B	3 ft			Building D		8 ft	

I see that the lengths will be the same and the widths will be doubled. The areas will change from \qquad to \qquad and from \qquad to \qquad .

So, when the lengths are the same and the widths are doubled,
the areas will be \qquad .

(1) Try Another Problem

Mr. Koi is building more storage buildings. He wants to know how the areas of the buildings are related. How does the area change from the area of Building E to the area of Building F ? How does the area change from the area of Building G to the area of Building H ?

Use the graphic organizer to help you solve the problem.

Read the Problem							
What do I need to find?			What information do I need to use?		How will I use the information?		
Solve the Problem							
	Length	Width	Area		Length	Width	Area
Building E				Building G			
Building F				Building H			

- How did your table help you find a pattern?
\qquad
\qquad

Share and Show

Use the table for 1-2.

1. Many pools come in rectangular shapes. How do the areas of the swimming pools change when the widths change?

First, complete the table by finding the area of each pool.

Think: I can find the area by multiplying the length and the width.

Then, find a pattern of how the

Swimming Pool Sizes			
Pool	Length (in feet)	Width (in feet)	Area (in square feet)
A	8	20	
B	8	30	
C	8	40	
D	8	50	

The \qquad stays the same. The widths
\qquad .

Last, describe a pattern of how the area changes.
The areas \qquad by \qquad square feet.
© 2. What if the length of each pool was 16 feet? Explain how the areas would change.
\qquad

On Your Own

 pool in the table is 20 feet, and the widths change from 5, to 6, to 7, and to 8 feet, describe the pattern of the areas.
 garden with an area of 56 square feet. The length of the garden is 8 feet. What is the width of the garden?
5. GחDEEPER A diagram of Paula's bedroom is at the right. Her bedroom is in the shape of a rectangle. Write the measurements for the other sides. What is the perimeter of the room? (Hint: The two pairs of opposite sides are equal lengths.)

12 ft
6. THINK SMARIER Elizabeth built a sandbox that is 4 feet long and 4 feet wide. She also built a flower garden that is 4 feet long and 6 feet wide and a vegetable garden that is 4 feet long and 8 feet wide.
 How do the areas change?
\qquad
\qquad
\qquad
\qquad
7. THINK SMARIER Find the pattern and complete the chart.

Total Area (in square feet)	50	60	70	80	
Length (in feet)	10	10		10	
Width (in feet)	5	6	7		

How can you use the chart to find the length and width of a figure with an area of 100 square feet?
\qquad
\qquad
\qquad

Area of Combined Rectangles

Essential Question How can you break apart a figure to find the area?

Measurement and Data-

3.MD.7c, 3.MD.7d

Also 3.MD.5, 3.MD.5a, 3.MD.5b, 3.MD.7b, 3.0A.3, 3.OA.5, 3.OA.7, 3.NBT. 2

MATHEMATICAL PRACTICES

Remember

You can use the Distributive Property to break apart an array.
$3 \times 3=3 \times(2+1)$

STEP 2 Draw a rectangle on the grid paper to show your model.

STEP 3 Draw a vertical line to break apart the model to make two smaller rectangles.

The side length 9 is broken into \qquad plus \qquad .

STEP 4 Find the area of each of the two smaller rectangles.
Rectangle 1: \qquad \times \qquad $=$ \qquad
Rectangle 2: \qquad \times \qquad $=$

STEP 5 Add the products to find the total area.
\qquad $+$ \qquad $=$ \qquad square feet

STEP 6 Check your answer by counting the number of square feet.
\qquad square feet

So, the area of Anna's rug is \qquad square feet.

Math
 Talk

Mathematical Practices
Did you draw a line in the same place as your classmates? Explain why you found the same total area.
connect Using the Distributive Property, you found that you could break apart a rectangle into smaller rectangles, and add the area of each smaller rectangle to find the total area.

How can you break apart this figure into rectangles to find its area?

(One Way use a horizontal line.

STEP 1 Write a multiplication equation for each rectangle.
Rectangle 1: \qquad \times \qquad $=$

Rectangle 2: \qquad \times \qquad
\qquad
STEP 2 Add the products to find the total area.
\qquad
\qquad $=$ \qquad square units
(f) Another Way use a vertical line.

STEP 1 Write a multiplication equation for each rectangle.

Rectangle 1: \qquad \times \qquad = \qquad
Rectangle 2: \qquad \times \qquad $=$

STEP 2 Add the products to find the total area.
\qquad $+$ \qquad $=$ \qquad square units

So, the area is \qquad square units.

Math Talk

Explain how you can check your answer.

1. Draw a line to break apart the figure into rectangles. Find the total area of the figure.
Think: I can draw vertical or horizontal lines to break apart the figure to make rectangles.

Rectangle 1: \qquad \times \qquad $=$ \qquad

Rectangle 2: \qquad \times \qquad $=$ \qquad
\qquad $+$ \qquad $=$ \qquad square units
\qquad
Use the Distributive Property to find the area. Show your multiplication and addition equations.
$\checkmark 2$.

\qquad
3.

© 3.
\ldots square units
\qquad square units

On Your Own

Use the Distributive Property to find the area. Show your multiplication and addition equations.
4.

5.

\qquad
\qquad square units

Problem Solving • Applications wall

8. A model of Ms. Lee's classroom is at the right. Each unit square is 1 square foot. Draw a line to break apart the figure into rectangles. What is the total area of Ms. Lee's classroom?

9. David has a rectangular bedroom with a rectangular closet. Each unit square is 1 square foot. Draw a line to break apart the figure into rectangles. What is the total area of David's bedroom?

10. IHINKSMARTER Explain how to break apart the figure to find its area.

1 unit square $=1$ square meter
 Distributive Property to find the area of the figure at the right. Write your multiplication and addition equations.

1 unit square $=1$ square centimeter
\qquad
12. THINKSMARTER Pete drew a diagram of his backyard on grid paper. Each unit square is 1 square meter. The area surrounding the patio is grass.
How much more of the backyard is grass than patio? Show your work.
\qquad more square meters
\qquad

Same Perimeter, Different Areas

Essential Question How can you use area to compare rectangles with the same perimeter?

Measurement and Data-3.MD. 8
Also 3.MD.5, 3.MD.5a, 3.MD.5b, 3.MD.7b, 3.OA.3, 3.OA.7, 3.NBT.2.

MATHEMATICAL PRACTICES MP.1, MP.3, MP.4, MP. 7

Unlock the Problem

Toby has 12 feet of boards to put around a rectangular sandbox. How long should

- What is the greatest perimeter Toby can make for his sandbox? he make each side so that the area of the sandbox is as large as possible?

(1) Activity

Materials \quad square tiles
Use square tiles to make all the rectangles you can that have a perimeter of 12 units. Draw and label the
 sandboxes. Then find the area of each.

5 ft

Sandbox 2

ft

Sandbox 3

__ft

Find the perimeter and area of each rectangle.

	Perimeter	Area
Sandbox 1	$\underline{5}+\underline{1}+\underline{5}+\underline{1}=\underline{12}$ feet	$\underline{1} \times \underline{5}=\ldots$ square feet
Sandbox 2	$\ldots{ }^{+}$_ + _ + _ = _ feet	$\ldots \times \ldots$ = _ square feet
Sandbox 3		$\ldots \times \ldots$ =__ square feet

The area of Sandbox \qquad is the greatest.

So, Toby should build a sandbox that is
How are the sandboxes alike? How are the sandboxes different?

(f) Examples Draw rectangles with the

same perimeter and different areas.
(A) Draw a rectangle that has a perimeter of 20 units and an area of 24 square units.

The sides of the rectangle measure
\qquad units and \qquad units.

(B) Draw a rectangle that has a perimeter of 20 units and an area of 25 square units.

The sides of the rectangle measure
\qquad units and \qquad units.

Math
Talk
Mathematical Practices
Explain how the perimeters of Example A and Example B are related. Explain how the areas are related.

Explain how you knew what the rectangle for Exercise 5 would look like.

Name \qquad

Find the perimeter and the area. Tell which rectangle has a greater area.
6.

A: Perimeter $=$ \qquad ; Area = \qquad
$B:$ Perimeter $=$ \qquad ; Area = \qquad
Rectangle \qquad has a greater area.

On Your Own

Find the perimeter and the area. Tell which rectangle has a greater area.
7.

A: Perimeter = \qquad
Area $=$ \qquad
B: Perimeter $=$ \qquad
Area $=$ \qquad
Rectangle \qquad has a greater area.
8.

B

A: Perimeter $=$ \qquad ;

Area $=$ \qquad

B: Perimeter $=$ \qquad ;

Area $=$ \qquad ; ;

Rectangle \qquad has a greater area.
 is 4 feet wide and 8 feet long. If the answer is 32 square feet, what is the question?
\qquad

Problem Solving • Applications (2ard

10.

THINKSMARTER Draw a rectangle with the same perimeter as Rectangle C, but with a smaller area. What is the area?
Area $=$ \qquad -

C
11. THINKSMARTER Which figure has a perimeter of 20 units and an area of 16 square units?

(A)

(B)

(C)

(D)

Connect to Reading

Cause and Effect

Sometimes one action has an effect on another action. The cause is the reason something happens. The effect is the result.
12. GIDEEPER Sam wanted to print a digital photo that is 3 inches wide and 5 inches long. What if Sam accidentally printed a photo that is 4 inches wide and 6 inches long?

Sam can make a table to understand cause and effect.

Cause	Effect
The wrong size photo was printed.	Each side of the photo is a greater length.

Use the information and the strategy to solve the problems.
a. What effect did the mistake have on the perimeter of the photo?
b. What effect did the mistake have on the area of the photo?
\qquad

Same Area, Different Perimeters

Essential Question How can you use perimeter to compare rectangles with the same area?

Measurement and Data-3.MD. 8
Also 3.MD.5, 3.MD.5a, 3.MD.5b,
3.MD.7b, 3.OA.3, 3.0A.7, 3.NBT.2

MATHEMATICAL PRACTICES
MP.2, MP.3, MP. 4

Unlock the Problem

Marcy is making a rectangular pen to hold her rabbits. The area of the pen should be 16 square meters with side lengths that are whole numbers.

- What does the least amount of fencing represent? What is the least amount of fencing she needs?

Activity Materials \quad - square tiles
Use 16 square tiles to make rectangles. Make as many different rectangles as you can with 16 tiles. Record the rectangles on the grid, write the multiplication equation for the area shown by the rectangle, and find the perimeter of each rectangle.

Area: \qquad x \qquad = 16 square meters = 16 square meters
\qquad
Area: \qquad \times = 16 square meters
Area: \qquad \times \qquad

Explain how you found the rectangles.

Perimeter: \qquad meters

Perimeter: \qquad meters on

Perimeter: \qquad meters

To use the least amount of fencing, Marcy should make a rectangular pen with side lengths of \qquad meters and \qquad meters.

So, \qquad meters is the least amount of fencing Marcy needs.

Try This!

Draw three rectangles that have an area of 18 square units on the grid. Find the perimeter of each rectangle.
Shade the rectangle that has the greatest perimeter.

Share and Show

MATH BOARD

1. The area of the rectangle at the right is
\qquad square units. The perimeter is \qquad units.

2. Draw a rectangle that has the same area as the rectangle in Exercise 1 but with a different perimeter.
3. The perimeter of the rectangle in Exercise 2 is
\qquad units.
4. Which rectangle has the greater perimeter?
5. If you were given a rectangle with a certain area, how would you draw it so that it had the greatest perimeter?

Math
Talk
Mathematical Practices
Did you and your classmate draw the same rectangle for Exercise 2? Explain.
\qquad
Find the perimeter and the area. Tell which rectangle has a greater perimeter.
$\circlearrowleft 6$

A: Area $=$ \qquad ; Perimeter = \qquad
$B:$ Area $=$ \qquad ; Perimeter $=$ \qquad
Rectangle \qquad has a greater perimeter.

On Your Own

Find the perimeter and the area. Tell which rectangle has a greater perimeter.
7.

8.

A

A: Area $=$ \qquad ;

Perimeter $=$ \qquad
B: Area $=$ \qquad ;

Perimeter $=$ \qquad
Rectangle \qquad has a greater perimeter.
9. THINK SMARTER Sense or Nonsense? Dora says that of all the possible rectangles with the same area, the rectangle with the largest perimeter will have two side lengths that are 1 unit. Does her statement make sense? Explain.

Unlock the Problem

10. Roberto has 12 tiles. Each tile is 1 square inch. He will arrange them into a rectangle and glue 1 -inch stones around the edge. How can Roberto arrange the tiles so that he uses the least number of stones?
a. you know about area and perimeter to help you solve the problem? \qquad
\qquad
\qquad
b. FIDEEPER Draw possible rectangles to solve the problem, and label them A, B, and C.
\qquad
\qquad

c. So, Roberto should arrange the tiles like Rectangle \qquad .
11. THINKSMARTIER Draw 2 different rectangles with an area of 20 square units. What is the perimeter of each rectangle you drew?
Area $=20$ square units
Perimeter $=$ \qquad units

Perimeter $=$ \qquad units
\qquad

Chapter 11 Review/Test

1. Find the perimeter of each figure on the grid. Identify the figure that have a perimeter of 14 units. Mark all that apply.

(A)
(B)
(C)
(D)
2. Kim wants to put trim around a picture she drew. How many centimeters of trim does Kim need for the perimeter of the picture?

\qquad centimeters
3. Sophia drew this rectangle on dot paper. What is the area of the rectangle?

\qquad square units
4. The drawing shows Seth's plan for a fort in his backyard. Each unit square is 1 square foot.

Which equations can Seth use to find the area of the fort? Mark all that apply.
(A) $4+4+4+4=16$
(D) $4 \times 4=16$
(B) $7+4+7+4=22$
(E) $7 \times 7=49$
(C) $7+7+7+7=28$
(F) $4 \times 7=28$
5. Which rectangle has a number of square units for its area equal to the number of units of its perimeter?
(A)

(C)

(B)

(D)

6. Vanessa uses a ruler to draw a square. The perimeter of the square is 12 centimeters. Select a number to complete the sentence.

7. Tomas drew two rectangles on grid paper.

Circle the words that make the sentence true.

less than
Rectangle A has an area that is
the same as greater than
the area of Rectangle B, and a perimeter that is

less than

the same as the perimeter of Rectangle B. greater than
8. Yuji drew this figure on grid paper. What is the perimeter of the figure?

9. What is the area of the figure shown? Each unit square is 1 square meter.

10. Shawn drew a rectangle that was 2 units wide and 6 units long. Draw a different rectangle that has the same perimeter but a different area.

11. Mrs. Rios put a wallpaper border around the room shown below. She used 72 feet of wallpaper border.

What is the unknown side length? Show your work.

\qquad feet
12. Elizabeth has two gardens in her yard. The first garden is 8 feet long and 6 feet wide. The second garden is half the length of the first garden. The area of the second garden is twice the area of the first garden. For numbers 12a-12d, select True or False.
12a. The area of the first garden is
○ True
False 48 square feet.
12b. The area of the secondo False garden is 24 square feet.
12c. The width of the second garden is 12 feet.
12d. The width of the second garden is 24 feet.
○ True
\bigcirc False
\qquad
13. Marcus bought some postcards. Each postcard had a perimeter of 16 inches. Which could be one of the postcards Marcus bought? Mark all that apply.
3 in.

6 in.

(A)
(B)
(C)
(D)
14. Anthony wants to make two different rectangular flowerbeds, each with an area of 24 square feet. He will build a wooden frame around each flowerbed. The flowerbeds will have side lengths that are whole numbers.

Part A

Each unit square on the grid below is 1 square foot. Draw two possible flowerbeds. Label each with a letter.

\square

Part B

Which of the flowerbeds will take more wood to frame? Explain how you know.
\qquad
\qquad
\qquad
15. Keisha draws a sketch of her living room on grid paper. Each unit square is 1 square meter. Write and solve a multiplication equation that can be used to find the area of the living room in square meters.

\qquad
\qquad square meters
16. Mr. Wicks designs houses. He uses grid paper to plan a new house design. The kitchen will have an area between 70 square feet and 85 square feet. The pantry will have an area between 4 square feet and 15 square feet. Draw and label a diagram to show what Mr. Wicks could design. Explain how to find the total area.

Project

Make a Mosaic

Have you ever worked to put puzzle pieces together to make a picture or design? Pieces of paper can be put together to make a colorful work of art called a mosaic.

Get Started

Materials $■$ construction paper $■$ glue $■$ ruler ■ scissors

Work with a partner to make a paper mosaic. Use the Important Facts to help you.

- Draw a simple pattern on a piece of paper.
- Cut out shapes, such as rectangles, squares, and triangles of the colors you need from construction paper. The shapes should be about 1 inch on each side.
- Glue the shapes into the pattern. Leave a little space between each shape to make the mosaic effect.

Describe and compare the shapes you used to make your mosaic.

Important Facts

- Mosaics is the art of using small pieces of materials, such as tiles or glass, to make a colorful picture or design.
- Mosaic pieces can be small plane shapes, such as rectangles, squares, and triangles.
- Mosaic designs and patterns can be anything from simple flower shapes to common objects found in your home or patterns in nature.

\qquad
\qquad
\qquad
\qquad
\qquad
Completed by

Two-Dimensional Shapes

Show What You Know

Check your understanding of important skills.

Name \qquad

Plane Shapes

1. Color the triangles blue.

2. Color the rectangles red.

Number of Sides Write the number of sides.

3.

\qquad sides
4.

\qquad sides
5. Circle the shapes that have 4 or more sides.

Whitney found this drawing that shows 9 small squares.
Be a Math Detective to find larger squares in the drawing. How many squares are there in all? Explain.

Vocabulary Builder

Visualize It

Complete the tree map by using the words with a $\sqrt{ }$.

Preview Words

Understand Vocabulary

Draw a line to match the word with its definition.

1. closed shape •
2. line segment \bullet
3. right angle •
4. hexagon •
5. angle •
6. polygon •

- A part of a line that includes two endpoints and all the points between them
- A shape formed by two rays that share an endpoint
- A shape that starts and ends at the same point
- An angle that forms a square corner
- A closed plane shape made up of line segments
- A polygon with 6 sides and 6 angles
angle
closed shape
hexagon
intersecting lines
line
line segment
open shape
parallel lines
perpendicular lines
point
polygon
\checkmark quadrilateral
ray
\checkmark rectangle
\checkmark rhombus
right angle
\checkmark square
\checkmark trapezoid
\checkmark triangle
Venn diagram
vertex
\qquad

Describe Plane Shapes

3
MATHEMATICAL PRACTICES MP.5, MP.6, MP. 7

Unlock the Problem

An architect draws plans for houses, stores, offices, and other buildings. Look at the shapes in the drawing at the right.

A plane shape is a shape on a flat surface. It is formed by points that make curved paths, line segments, or both.

Some plane shapes are made by connecting line segments at their endpoints. One example is a square. Describe a square using math words.

Think: How many line segments and endpoints does a square have?

A square has \qquad line segments. The line segments meet only at their \qquad .

Plane shapes have length and width but no thickness, so they are also called two-dimensional shapes.

Try This! Draw plane shapes.
Plane shapes can be open or closed.
A closed shape starts and ends at the same point.

In the space below, draw more examples of closed shapes.

An open shape does not start and end at the same point.

In the space below, draw more examples of open shapes.

Mathematical Practices
Explain whether a shape with a curved path must be a closed shape, an open shape, or can be either.

- Is the plane shape at the right a closed shape or an open shape? Explain how you know.

\qquad

Share and Show $\begin{aligned} & \text { MATH } \\ & \text { BOARD }\end{aligned}$

1. Write how many line segments the shape has. \qquad

Circle all the words that describe the shape.
2.

ray
point
3.

$\$ 4$
.

open shape closed shape
5.

line
line segment

Write whether the shape is open or closed.
6.

7.

$\delta 8$.

9.

On Your Own

Write how many line segments the shape has.
10.

line segments
14.

11.

line segments
12.

line segments
13.

line segments

Write whether the shape is open or closed.
15.

16.

17.

Problem Solving • Applications

18. What's the Error? Brittany says there are two endpoints in the shape shown at the right. Is she correct? Explain.
\qquad
\qquad
19. (manitical (Explain how you can make the shape at the right a closed shape. Change the shape so it is a closed shape.

20. GIDEEPER Look at Carly's drawing at the right. What did she draw? How is it like a line? How is it different? Change the drawing so that it is a line.
\qquad

\qquad
\qquad
21. THINKSMARTER Draw a closed shape in the workspace by connecting 5 line segments at their endpoints.

22. THINK SMARTER Draw each shape where it belongs in the table.

Closed Shape	Open Shape

\qquad

Describe Angles in Plane Shapes

Geometry-3.G. 1
mathematical practices MP.2, MP.4, MP. 5

Unlock the Problem

An angle is formed by two rays that share an endpoint. Plane shapes have angles formed by two line segments that share an endpoint. The shared endpoint is called a vertex. The plural of vertex is vertices.

Jason drew this shape on dot paper.

Look at the angles in the shape that Jason drew. How can you describe the angles?

(I) Describe angles.

A right angle is an angle that forms a square corner.

Some angles are less than a right angle.

Some angles are greater than a right angle.

Look at Jason's shape.
Two angles are \qquad angles, \qquad angle
is \qquad a right angle, and \qquad angle
is \qquad a right angle.

Find examples of each type of angle in your classroom. Describe each angle.

(1) Activity Model angles.

Materials $■$ bendable straws \llbracket scissors $■$ paper $■$ pencil

- Cut a small slit in the shorter section of a bendable straw. Cut off the shorter section of a second straw and the bendable part. Insert the slit end of the first straw into the second straw.

- Make an angle with the straws you put together. Compare the angle you made to a corner of the sheet of paper.
- Open and close the straws to make other types of angles.

In the space below, trace the angles you made with the straws. Label each right angle, less than a right angle, or greater than a right angle.

Share and Show

1. How many angles are in the triangle at the right?

MATH
BOARD BOARD

Mathematical Practices
Explain how you know an angle is greater than or less than a right angle.

Use the corner of a sheet of paper to tell whether the angle is a right angle, less than a right angle, or greater than a right angle.
2.

3.

$\circlearrowleft 4$.

\qquad
Write how many of each type of angle the shape has.
5.

right
\qquad less than a right
greater than a right
6.

\qquad right
___ less than a right
\qquad greater than a right
67.

right
\qquad less than a right
\qquad greater than a right

On Your Own

Use the corner of a sheet of paper to tell whether the angle is a right angle, less than a right angle, or greater than a right angle.
8.

9.

\qquad

Marifawical (1) Analyze Relationships Write how many of each type of angle the shape has.
11.

right divide a circle into 4 equal parts.
12.

right
\qquad less than a right
\qquad greater than a right
13.

right
\qquad less than a right
\qquad greater than a right
14. THINKSMARTER Describe the types of angles formed when you

Unlock the Problem

15. GIDEEPER Holly drew the four shapes below. Which shape does NOT have a right angle?

a. What do you need to know? \qquad
b. Tell how you might use a sheet of paper to solve the problem.
\qquad
\qquad
c. Shape Q has \qquad right angle(s), \qquad angle(s) greater than a right angle, and \qquad angle(s) less than a right angle.
Shape R has \qquad right angle(s), \qquad angle(s) greater than a right angle, and \qquad angle(s) less than a right angle.
Shape S has \qquad right angle(s), \qquad angle(s) greater than a right angle, and \qquad angle(s) less than a right angle.
Shape T has \qquad right angle(s), \qquad angle(s) greater than a right angle, and \qquad angle(s) less than a right angle.

So, shape \qquad does not have a right angle.
16. THINKSMARIER Circle a number or word from each box to complete the sentence to describe this shape.

than a right angle.
\qquad

Identify Polygons

Essential Question How can you use line segments and angles
to make polygons?

Geometry-3.G. 1
MATHEMATICAL PRACTICES MP.2, MP.6, MP. 7

CONNECT In earlier lessons, you learned about line segments and angles. In this lesson, you will see how line segments and angles make polygons.

A polygon is a closed plane shape that is made up of line segments that meet only at their endpoints. Each line segment in a polygon is a side.

Math Idea

All polygons are closed shapes. Not all closed shapes are polygons.

Unlock the Problem (acald

Circle all the words that describe the shape.

plane shape
open shape
closed shape
curved paths
line segments
polygon

B

plane shape
open shape
closed shape
curved paths
line segments
polygon

C

plane shape open shape closed shape curved paths
line segments
polygon
(D)

plane shape open shape closed shape curved paths line segments
polygon

Try This!

Fill in the blanks with sometimes, always, or never.
Polygons are \qquad plane shapes.

Mathematical Practices
Explain why not all closed shapes are polygons.
\qquad closed shapes.

Polygons are \qquad open shapes.

Plane shapes are \qquad polygons.

Name Polygons Polygons are named by the number of sides and angles they have.

Some traffic signs are in the shape of polygons. A stop sign is in the shape of which polygon?

(1) Count the number of sides and angles.
quadrilateral
4 sides
\qquad angles
3 angles

hexagon
\qquad sides

6 angles

angles

octagon
8 sides
\qquad

pentagon ___ sides 5 angles

decagon

How many sides does the stop sign have? \qquad
How many angles? \qquad

1. The shape at the right is a polygon. Circle all the words that describe the shape.
 plane shape open shape closed shape pentagon curved paths line segments hexagon quadrilateral
\qquad
Is the shape a polygon? Write yes or no.
2.

3.

64.

Write the number of sides and the number of angles. Then name the polygon.
5.

\qquad sides
\qquad angles
6.

\qquad sides
\qquad angles
\qquad

On Your Own

Is the shape a polygon? Write yes or no.

Write the number of sides and the number of

11.

12.

sides
\qquad angles

Explain what shape you will create if you draw a line segment to close Exercise 4.
© 7.

\qquad sides
\qquad angles
10.

13.

sides
\qquad angles

Problem Solving • Applications

14. WRITE Math Jake said Shapes $A-E$ are all polygons. Does this statement make sense? Explain your answer.

15. FIDEEPER I am a closed shape made of 6 line segments. I have 2 angles less than a right angle and no right angles. What shape am I? Draw an example in the workspace.
16. THINKISMARTER Is every closed shape a polygon? Use a drawing to help explain your answer.

17. पᄑम: shape at the right is an octagon. Do you agree or disagree? Explain. \qquad

18. THINK SMARTER For numbers 18a-18d, select True or False for each description of this shape.

| 18a. polygon | \circ True | \circ False |
| :--- | :--- | :--- | :--- |
| 18b. open shape | \bigcirc True | \bigcirc False |
| 18c. hexagon | \bigcirc True | \bigcirc False |
| 18d. pentagon | \circ True | \bigcirc False |

\qquad

Describe Sides of Polygons

Essential Question How can you describe line segments that are sides of polygons?

Unlock the Problem

Look at the polygon. How many pairs of sides are parallel?

TYPES OF LINES

Lines that cross or meet are intersecting lines. Intersecting lines form angles.

- How do you know the shape is a polygon?

Lines that cross or meet are intersecting lines. Intersecting lines form angles.	The orange and blue line segments meet and form an angle. So, they are \qquad
Intersecting lines that cross or meet to form right angles are perpendicular lines.	The red and blue line segments meet to form a right angle. So, they are \qquad
Lines that appear to never cross or meet and are always the same distance apart are parallel lines. They do not form any angles.	\qquad \qquad The green and blue line segments would never cross or meet. They are always the same distance apart. So, they appear to be \qquad .
So, the polygon above has \qquad pair of parallel sides.	

Try This! Draw a polygon with only 1 pair of parallel sides. Then draw a polygon with 2 pairs of parallel sides. Outline each pair of parallel sides with a different color.

Share and Show

1. Which sides appear to be parallel?

Think: Which pairs of sides appear to be the same distance apart?

Look at the green sides of the polygon. Tell if they appear to be intersecting, perpendicular, or parallel. Write all the words that describe the sides.
2.

© 6.

\qquad
\qquad

On Your Own

$\$ 4$.

Explain how intersecting and perpendicular lines are alike and how they are different.

Look at the green sides of the polygon. Tell if they appear to be intersecting, perpendicular, or parallel. Write all the words that describe the sides.

6.

7.

\qquad

Problem Solving • Applications

Use pattern blocks $\boldsymbol{A}-\boldsymbol{E}$ for 8-11.

Chelsea wants to sort pattern blocks by the types of sides.
8. Which blocks have intersecting sides?
9. Which blocks have parallel sides?
10. Which blocks have perpendicular sides?
11. Which blocks have neither parallel nor perpendicular sides?
\qquad
12. HIDESPER How many pairs of perpendicular line segments are in the box at the right?
\qquad
13. THINKSMARTER Can the same two lines be parallel, perpendicular, and intersecting at the same time? Explain your answer.

A The red line segments show 1 pair of perpendicular line segments.
\qquad

Unlock the Problem

14.

(unhicici pattern block that has 2 fewer sides than a hexagon. I have 2 pairs of parallel sides and 4 right angles. Which shape am I?

a. What do you need to know? \qquad
\qquad
b. How can you find the answer to the riddle? \qquad
c. Write yes or no in the table to solve the riddle.

2 fewer sides than a hexagon						
2 pairs of parallel sides						
4 right angles						

So, the \qquad is the shape.
15. THINK SMARIER Select the shapes that have at least one pair of parallel sides. Mark all that apply.
(A)

(C)

(B)

(D)

\qquad

Mid-Chapter Checkpoint

Vocabulary

Vocabulary
Choose the best term from the box to complete the sentence.

1. An \qquad is formed by two rays that share an endpoint. (p. 509)
angle
point
2. A \qquad is a closed shape made up
of line segments. (p. 513)
3. A \qquad forms a square corner. (p. 509)

Concepts and Skills

Use the corner of a sheet of paper to tell whether the angle is a right angle, less than a right angle, or greater than a right angle. (3.G.1)
4.

5.

6.

Write the number of sides and the number of angles. Then name the polygon. (3.G.1)
© Houghton Mifflin Harcourt Publishing Company
7.

\qquad sides
\qquad angles
8.

\qquad sides
\qquad angles
9.

\qquad sides
\qquad angles
10. Anne drew the shape at the right. Is her shape an open shape or a closed shape? (3.G.1)

11. This sign tells drivers there is a steep hill ahead. Write the number of sides and the number of angles in the shape of the sign. Then name the shape. (3.G.1)

12. Why is this closed plane shape NOT a polygon? (3.G.1)

13. Sean drew a shape with 2 fewer sides than an octagon. Which shape did he draw? (3.G.1)
14. John drew a polygon with two line segments that meet to form a right angle. Circle the words that describe the line segments. (3.G.1)

intersecting
curved
parallel
perpendicular

\qquad

Classify Quadrilaterals

,2, MP.4, MP. 6

Essential Question How can you use sides and angles to help you
describe quadrilaterals?

Unlock the Problem

Quadrilaterals are named by their sides and their angles.

0
Describe quadrilaterals. quadrilateral
\qquad sides

\qquad angles

ERROR Alert

Some quadrilaterals cannot be classified as a trapezoid, rectangle, square, or rhombus.

trapezoid

exactly \qquad pair of opposite sides that are parallel lengths of sides could be the same

rectangle

___ pairs of opposite sides that are parallel
\qquad pairs of sides that are of equal length
\qquad right angles

square

\qquad pairs of opposite sides that are parallel
\qquad sides that are of equal length
\qquad right angles

rhombus

___ pairs of opposite sides that are parallel sides that are of equal length

Mathematical Practices
Explain why a square can also be named a rectangle or a rhombus.

Look at the quadrilateral at the right.

1. Outline each pair of opposite sides that are parallel with a different color. How many pairs of opposite sides appear to be parallel? \qquad
2. Look at the parallel sides you colored.

The sides in each pair are of \qquad length.

Think: All the angles are right angles.
3. Name the quadrilateral. \qquad
Circle all the words that describe the quadrilateral.

rectangle
rhombus
square
trapezoid
5.

rhombus
quadrilateral
square
rectangle
6.

rectangle
rhombus
trapezoid
quadrilateral

On Your Own

Circle all the words that describe the quadrilateral.

rectangle
trapezoid
quadrilateral
rhombus
8.

rectangle
rhombus
trapezoid
square

Explain how you can have a rhombus that is not a square.
9.

quadrilateral
square
rectangle
rhombus
\qquad

Problem Solving • Applications

Use the quadrilaterals at the right for 10-12.

10. Which quadrilaterals appear to have 4 right angles?
11. Which quadrilaterals appear to have 2 pairs of opposite sides that are parallel?
12. Which quadrilaterals appear to have no right angles?

Write all or some to complete the sentence for 13-18.
13. The opposite sides of \qquad rectangles are parallel.
14. \qquad sides of a rhombus are the same length.
15. \qquad squares are rectangles.
17. \qquad quadrilaterals are polygons.
16. \qquad rhombuses are squares.
18. \qquad polygons are quadrilaterals.
19.
(unimicica (6) Circle the shape at the right that is not a quadrilateral. Explain your choice.
\qquad
\qquad
\qquad

20. THINK SMARIER

I am a polygon that has 4 sides and 4 angles. At least one of my angles is less than a right angle. Circle all the shapes that I could be.
quadrilateral rectangle square rhombus trapezoid

21. IHINKSMARTER Identify the quadrilateral that can have two pairs of parallel sides and no right angles.
(A) rhombus
(B) square
(C) trapezoid

Connect to Reading

Compare and Contrast

When you compare, you look for ways that things are alike. When you contrast, you look for ways that things are different.

Mr. Briggs drew some shapes on the board. He asked the class to
 tell how the shapes are alike and how they are different.

GПDEEPER Complete the sentences.

- Shapes \qquad , \qquad , \qquad , \qquad , \qquad and \qquad are polygons.
- Shapes \qquad , \qquad , and \qquad are not polygons.
- Shapes \qquad , \qquad , and \qquad are quadrilaterals.
- Shapes \qquad , \qquad , and \qquad appear to have only 1 pair of opposite sides that are parallel.
- Shapes \qquad , \qquad , and \qquad appear to have 2 pairs of opposite sides that are parallel.
- All 4 sides of shapes \qquad and \qquad appear to be the same length.
- In these polygons, all sides do not appear to be the same length. \qquad
- These shapes can be called rhombuses.
- Shapes \qquad and \qquad are quadrilaterals, but cannot be called rhombuses.
- Shape \qquad is a rhombus and can be called a square.

Draw Quadrilaterals

Essential Question How can you draw quadrilaterals?

Geometry-3.G. 1

mathematical practices MP.3, MP.6, MP.7, MP. 8

Unlock the Problem

connect You have learned to classify quadrilaterals by the number of pairs of opposite sides that are parallel, by the number of pairs of sides of equal length, and by the number of right angles.

How can you draw quadrilaterals?

(1) Activity 1 Use grid paper to draw quadrilaterals.

Materials $■$ ruler

- Use a ruler to draw line segments from points A to B, from B to C, from C to D, and from D to A.
- Write the name of your quadrilateral.

\qquad
(1) Activity 2 Draw a shape that does not belong.

Materials $■$ ruler
(A) Here are three examples of a quadrilateral. Draw an example of a polygon that is not a quadrilateral.

- Explain why your polygon is not a quadrilateral.
(B) Here are three examples of a square.

Draw a quadrilateral that is not a square.

- Explain why your quadrilateral is not a square.

C Here are three examples of a rectangle.
Draw a quadrilateral that is not a rectangle.

- Explain why your quadrilateral is not a rectangle.
(D) Here are three examples of a rhombus.

Draw a quadrilateral that is not a rhombus.

- Explain why your quadrilateral is not a rhombus.
\qquad

Share and Show

1. Choose four endpoints that connect to make a rectangle.

Think: A rectangle has 2 pairs of opposite sides that are parallel, 2 pairs of sides of equal length, and 4 right angles.

Draw a quadrilateral that is described.
Name the quadrilateral you drew.
2. 2 pairs of equal sides

Name
3. 4 sides of equal length

Talk Mathematical Practices

Explain one way the quadrilaterals you drew are alike and one way they are different.

Name \qquad

On Your Dwn

Practice: Copy and Solve Use grid paper to draw a quadrilateral that is described. Name the quadrilateral you drew.
4. exactly 1 pair of opposite sides that are parallel
5. 4 right angles
6. 2 pairs of sides of equal length

Draw a quadrilateral that does not belong. Then explain why.

7.

8.

Problem Solving • Applications

9. the right. She said it is a rectangle because it has 2 pairs of opposite sides that are parallel. Describe her error.

10. FIDEEPER Adam drew three quadrilaterals. One quadrilateral had no pairs of parallel sides, one quadrilateral had 1 pair of opposite sides that are parallel, and the last quadrilateral had 2 pairs of opposite sides that are parallel. Draw the three quadrilaterals that Adam could have drawn. Name the quadrilaterals.

11. THINK SMARTER Amy has 4 straws of equal length. Name the quadrilaterals that can be made using these 4 straws.
\qquad Amy cuts one of the straws in half. She uses the two halves and two of the other straws to
 make a quadrilateral. Name a quadrilateral that can
be made using these 4 straws. \qquad $-$
Personal Math Trainer
12. THINK SMARTER Jordan drew one side of a quadrilateral with 2 pairs of opposite sides that are parallel. Draw the other 3 sides to complete Jordan's quadrilateral.

\qquad

Describe Triangles

Essential Question How can you use sides and angles to help you describe triangles?

Geometry-3.G. 1

mathematical practices MP.4, MP.5, MP.7, MP. 8

Unlock the Problem
How can you use straws of different lengths to make triangles?
(.) Activity Materials $■$ straws \llbracket scissors \llbracket MathBoard

STEP 1 Cut straws into different lengths.
STEP 2 Find straw pieces that you can put together to make a triangle. Draw your triangle on the MathBoard.

STEP 3 Find straw pieces that you cannot put together to make a triangle.

1. Compare the lengths of the sides. Describe when you can make a triangle.

\qquad
\qquad

What if you had three straws of equal length? Can you make a triangle? Explain.

\qquad
\qquad
\qquad
3. Explain how you can change the straw pieces in

Step 3 to make a triangle. \qquad

Ways to Describe Triangles

What are two ways triangles can be described?

D One Way

Triangles can be described by the number of sides that are of equal length.

Draw a line to match the description of the triangle(s).

No sides are equal in length.

-

Two sides are equal in length.

Three sides are equal in length.

(1) Another Way

Triangles can be described by the types of angles they have.
Draw a line to match the description of the triangle(s).

One angle is a right angle.

One angle is greater than a right angle.

Three angles are less than a right angle.

Share and Show

1. Write the number of sides of equal length the triangle appears to have.

Use the triangles for 2-4. Write F, G, or H.

2. Triangle \qquad has 1 right angle.
63. Triangle \qquad has 1 angle greater than a right angle.
© 4. Triangle \qquad has 3 angles less than a right angle.

On Your Own

Use the triangles for 5-7. Write K, L, or M.
Then complete the sentences.

5. Triangle \qquad has 1 right angle and appears to have
\qquad sides of equal length.
6. Triangle \qquad has 3 angles less than a right angle and appears to have \qquad sides of equal length.
7. Triangle \qquad has 1 angle greater than a right angle and appears to have \qquad sides of equal length.

Problem Solving • Applications

 triangle can have two sides that are parallel. Does his statement make sense? Explain.
\qquad
\qquad
9. FIDEEPER Compare Triangles R and S. How are they alike? How are they different?

10. THINKSMARIER Use a ruler to draw a straight line from one corner of this rectangle to the opposite corner. What shapes did you make? What do you notice about the shapes?

\qquad
\qquad
11. THINK SMARIER Write the name of each triangle where it belongs in the table. Some triangles might belong in both parts of the table. Some triangles might not belong in either part.

Has 1 Right Angle	Has at Least 2 Sides of Equal Length

Problem Solving•Classify Plane Shapes

Lesson 12.8

Essential Question How can you use the strategy draw a diagram to classify plane shapes?

Geometry-3.G. 1
MATHEMATICAL PRACTICES MP.1, MP.2, MP.4, MP. 7

Unlock the Problem

A Venn diagram shows how sets of things are related. In the Venn diagram at the right, one circle has shapes that are rectangles. Shapes that are rhombuses are in the other circle. The shapes in the section where the circles overlap are both rectangles and rhombuses.

What type of quadrilateral is in both circles?

Read the Problem

What do I need to find?
\qquad
\qquad

What information do I need to use?

the circles labeled \qquad and

Solve the Problem

What is true about all quadrilaterals?

Which quadrilaterals have 2 pairs of opposite sides that are parallel?

Which quadrilaterals have 4 sides of equal length? \qquad
Which quadrilaterals have 4 right angles?

The quadrilaterals in the section where the circles overlap have \qquad pairs of opposite sides that are parallel, \qquad sides of equal length, and \qquad right angles.

So, \qquad are in both circles.

Does a \square fit in the Venn diagram? Explain.
(1) Try Another Problem

The Venn diagram shows the shapes Andrea used to make a picture. Where would the shape shown below be placed in the Venn diagram?

Read the Problem What do I need to find?

Solve the Problem
Record the steps you used to solve the problem.

What information do I need to use?

How will I use the information?

1. How many shapes do not have right angles?
2. How many red shapes have right angles but are not quadrilaterals? \qquad
 way to sort the shapes?

What name can be used to describe all the shapes in the Venn diagram? Explain how you know.
\qquad

Share and Show

```
MATH
BOARD
```


Use the Venn diagram for 1-3.

1. Jordan is sorting the shapes at the right in a Venn diagram. Where does the \langle go?
First, look at the sides and angles of the polygons.
Next, draw the polygons in the Venn diagram.
The shape has \qquad sides of equal length
and \qquad right angles.

So, the shape goes in the

\qquad
2. Where would you place a \square ?
3. What if Jordan sorted the shapes by Polygons with Right Angles and Polygons with Angles Less Than a Right Angle? Would the circles still overlap? Explain.

\qquad
\qquad
4. FIDEEPER Eva drew the Venn diagram below. What labels could she have used for the diagram?

On Your Own

5. Ben and Marta are both reading the same book. Ben has read $\frac{1}{3}$ of the book. Marta has read $\frac{1}{4}$ of the book. Who has read more? \qquad
 6 different classes in the school spelling bee. Each class has the same number of students in the spelling bee. Use the bar model to find how many students are from each class.

\qquad students \div \qquad classes $=$ \qquad students
6. THINKSMARIIER Draw and label a Venn diagram to show one way you can sort a parallelogram, a rectangle, a square, a trapezoid, and a rhombus.

7. Ashley is making a quilt with squares of fabric. There are 9 rows with 8 squares in each row. How many squares of fabric are there?
\qquad
8. THINK SMARTER ${ }^{\text {P }}$ Sketch where to place these shapes in the Venn diagram.

Polygons with All Sides of Equal Length

Quadrilaterals with
Right Angles
\qquad

Relate Shapes, Fractions, and Area

Essential Question How can you divide shapes into parts with equal areas and write the area as a unit fraction of the whole?

Geometry-3.G. 2
Also 3.NF.1, 3.NF.3d, 3.MD. 5

Investigate

Materials $■$ pattern blocks \llbracket color pencils $■$ ruler CONNECT You can use what you know about combining and separating plane shapes to explore the relationship between fractions and area.
A. Trace a hexagon pattern block.
B. Divide your hexagon into two parts with equal area.
C. Write the names of the new shapes.
D. Write the fraction that names each part of the whole you divided. \qquad
Each part is $\frac{1}{2}$ of the whole shape's area.
E. Write the fraction that names the whole area.

Draw Conclusions

1. Explain how you know the two shapes have the same area.
2. Predict what would happen if you divide the hexagon into three shapes with equal area. What fraction names the area of each part of the divided hexagon? What fraction names the whole area?
3. THINK SMARIER Show how you can divide the hexagon into four shapes with equal area.

Each part is \qquad of the whole shape's area.

Make Connections

The rectangle at the right is divided into four parts with equal area.

- Write the unit fraction that names each part of the divided whole. \qquad

- What is the area of each part? \qquad
- How many $\frac{1}{4}$ parts does it take to make one whole? \qquad
- Is the shape of each of the $\frac{1}{4}$ parts the same? \qquad
- Is the area of each of the $\frac{1}{4}$ parts the same? Explain how you know.

Divide the shape into equal parts.

Draw lines to divide the rectangle below into six parts with equal area.

- Write the fraction that names each part of the divided whole. \qquad
- Write the area of each part. \qquad
- Each part is \qquad of the whole shape's area.

Share and Show

MATH
 BOARD

1. Divide the trapezoid into 3 parts with equal area. Write the names of the new shapes. Then write the fraction that names the area of each part of the whole.

\qquad

Draw lines to divide the shape into equal parts

 that show the fraction given.2.

3.

$\frac{1}{2}$
© 4.

$\frac{1}{8}$

Draw lines to divide the shape into parts with equal area.
Write the area of each part as a unit fraction.
5.

8 equal parts

6 equal parts
7.

Problem Solving • Applications

8. the area of one \square, the area of how many $>$ equals four \square

Explain your answer.
9. THINK SMARTER Divide each shape into the number of equal parts shown. Then write the fraction that describes each part of the whole.

6 equal parts

10.

Divide the hexagon into six equal parts.

Which pattern block represents $\frac{1}{6}$ of the whole area?

Divide the trapezoid into three equal parts.

Which pattern block represents $\frac{1}{3}$ of the whole area?

Alexis said the area of $\frac{1}{3}$ of the trapezoid is greater than the area of $\frac{1}{6}$ of the hexagon because $\frac{1}{3}>\frac{1}{6}$. Does her statement make sense? Explain your answer.
\qquad
\qquad
\qquad

- Write a statement that makes sense.
\qquad
\qquad
- GIDEEPER What if you divide the hexagon into 3 equal parts? Write a sentence that compares the area of each equal part of the hexagon to each equal part of the trapezoid.
\qquad

Chapter 12 Review/Test

1. Which words describe this shape? Mark all that apply.
(A) polygon
(B) open shape
(C) pentagon
(D) quadrilateral
2. Umberto drew one side of a quadrilateral with 4 equal sides and no right angles. Draw the other 3 sides to complete Umberto's shape.

3. Mikael saw a painting that included this shape.

For numbers 3a-3d, select True or False for each statement about the shape.
3a. The shape has no

- True
False right angles.
3b. The shape has 2 angles
- True
False greater than a right angle.
3c. The shape has 2 right angles.
- True
False
3d. The shape has 1 angle
○ TrueFalse greater than a right angle.

4. Fran used a Venn Diagram to sort shapes.

Part A

Draw another plane shape that belongs inside the left circle of the diagram but NOT in the section where the circles overlap.

Polygons with Right Angles Quadrilaterals

\square

Part B

How can you describe the shapes in the section where the circles overlap?
\qquad
\qquad
5. Match each object in the left column with its name in the right column.

- point
- line
- ray
- line segment

6. Describe the angles and sides of this triangle.

\qquad
7. Which words describe this shape. Mark all that apply.

rectangle rhombus quadrilateral square
(A)
(B)
(C)
(D)
8. Divide each shape into the number of equal parts shown. Then write the fraction that describes each part of the whole.

9. Han drew a triangle with 1 angle greater than a right angle.

For numbers 9a-9d, choose Yes or No to tell whether the triangle could be the triangle Han drew.
9a.

\bigcirc Yes
\bigcirc No
\bigcirc Yes
\bigcirc No
9b.

9c.

9d.

\bigcirc Yes

○ No
10. Look at this group of pattern blocks.

Part A

Sort the pattern blocks by sides. How many groups did you make? Explain how you sorted the shapes.
\qquad
\qquad
\qquad
\qquad

Part B

Sort the pattern blocks by angles. How many groups did you make? Explain how you sorted the shapes.
\qquad
\qquad
\qquad
\qquad
11. Teresa drew a quadrilateral that had 4 sides of equal length and no right angles. What quadrilateral did she draw?
\qquad
12. Rhea used a Venn diagram to sort shapes. What label could she use for circle A ?

Polygons with All

13. Colette drew lines to divide a rectangle into equal parts that each represent $\frac{1}{6}$ of the whole area. Her first line is shown. Draw lines to complete Colette's model.

\square
14. Brad drew a quadrilateral. Select the pairs of sides that appear to be parallel. Mark all that apply.

(A) $\quad a$ and b
(C) c and a
(B) $\quad b$ and d
(D) d and c
15. Give two reasons that this shape is not a polygon.

16. A triangle has 1 angle greater than a right angle. What must be true about the other angles? Mark all that apply.
(A) At least one must be less than a right angle.
(B) One could be a right angle.
(C) Both must be less than a right angle.
(D) One must be greater than a right angle.
17. Ava drew a quadrilateral with 2 pairs of opposite sides that are parallel. The shape has at least 2 right angles. Draw a shape that Ava could have drawn.
\square
18. For 18a-18d, select True or False for each description of a ray.

18a. straight
\bigcirc True

- False
18b. has 2 endpoints
○ True
\bigcirc False
18c. part of a line
- True
\bigcirc False
18d. continues in 1 direction
TrueFalse

Pronunciation Key

```
a add, map
    ace, rate
â(r) care, air
    ä palm,
        father
b bat, rub
ch check, catch
d dog, rod
e end, pet
è equal, tree
```

f fit, half
g go, log
h hope, hate
it, give
i ice, write joy, ledge k cool, take
I look, rule m move, seem
n nice, tin
ng ring, song o odd, hot open, so order, jaw oil, boy ou pout, now
oo took, full
© $\overline{0}$ pool, food

p	pit, stop
r	run, poor
s	see, pass
sh	sure, rush
t	talk, sit
th thin, both	
th this, bathe	
un up, done	
ú pull, book	

û(r) burn, term yoo fuse, few
v vain, eve
w win, away
y yet, yearn
z zest, muse
zh vision, pleasure
ə the schwa, an unstressed vowel representing the sound spelled a in above, e in sicken, i in possible, o in melon, u in circus

Other symbols:

- separates words into syllables
- indicates stress on a syllable
addend [a'dend] sumando Any of the numbers that are added in addition
Examples: $2+3=5$

$$
\begin{array}{cl}
\uparrow & \uparrow \\
\text { addend } & \text { addend }
\end{array}
$$

addition [ə•dish'ən] suma The process of finding the total number of items when two or more groups of items are joined; the opposite operation of subtraction
A.M. [ā•em] a.m. The time after midnight and before noon
analog clock [an'əəlog kläk] reloj analógico A tool for measuring time, in which hands move around a circle to show hours and minutes
Example:

angle [ang'gal] ángulo A shape formed by two rays that share an endpoint Example:

Word History

When the letter g is replaced with the letter k in the word angle, the word becomes ankle. Both words come from the same Latin root, angulus, which means "a sharp bend."
area [âr'ē•ə] área The measure of the number of unit squares needed to cover a surface Example:

Area $=6$ square units
array［əə ${ }^{\prime}{ }^{\prime}$＇］matriz A set of objects arranged in rows and columns Example：

Associative Property of Addition［ə•sō＇shē•āt•iv präp＇ər•tē əv ə•dish＇ən］propiedad asociativa de la suma The property that states that you can group addends in different ways and still get the same sum
Example：
$4+(2+5)=11$
$(4+2)+5=11$

Associative Property of Multiplication

［ə•sō＇shē•āt•iv präp＇ər・ナē əv mul•ثə•plikā＇shən］ propiedad asociativa de la multiplicación The property that states that when the grouping of factors is changed，the product remains the same
Example：

$$
(3 \times 2) \times 4=24
$$

$$
3 \times(2 \times 4)=24
$$

B

bar graph［bär graf］gráfica de barras A graph that uses bars to show data Example：

capacity［kə•pas＇i•tē］capacidad The amount a container can hold
Example：
1 liter $=1,000$ milliliters
cent sign（ \subset ）［sent siñ］símbolo de centavo
A symbol that stands for cent or cents
Example：53申
centimeter（cm）［sen＇ta•mēt•ər］centímetro（cm）
A metric unit that is used to measure length or distance
Example：

circle［sûr＇kəl］círculo A round closed plane shape Example：

closed shape［klōzd shāp］figura cerrada A shape that begins and ends at the same point Examples：

Commutative Property of Addition

［kə•myōot＇əətiv präp＇ər・ナē əv ə•dish＇ən］ propiedad conmutativa de la suma The property that states that you can add two or more numbers in any order and get the same sum
Example：$\quad 6+7=13$ $7+6=13$

Commutative Property of Multiplication

［kə•myoot＇əətiv präp＇əə•tē əv mul・ナə•pli•kā＇shən］ propiedad conmutativa de la multiplicación The property that states that you can multiply two factors in any order and get the same product
Example：$\quad 2 \times 4=8$
$4 \times 2=8$
compare［kəm•pâr＇］comparar To describe whether numbers are equal to，less than， or greater than each other
compatible numbers［kəm•pat＇ə•bal num＇bərz］ números compatibles Numbers that are easy to compute with mentally
cone [kōn] cono A three-dimensional, pointed shape that has a flat, round base Example:

counting number [kount'ing num'bar] número natural A whole number that can be used to count a set of objects ($1,2,3,4 \ldots$)
cube [ky \bar{o} b] cubo A three-dimensional shape with six square faces of the same size Example:

cylinder [sil'ən•dər] cilindro A three-dimensional object that is shaped like a can Example:

D

data [dāt'ə] datos Information collected about people or things
decagon [dek'əəgän] decágono A polygon with ten sides and ten angles Example:

decimal point [des'ə•mal point] punto decimal A symbol used to separate dollars from cents in money
Example: \$4.52
\uparrow decimal point
denominator [dē•näm'ə•nāt•ər] denominador The part of a fraction below the line, which tells how many equal parts there are in the whole or in the group
Example: $\frac{3}{4}$
\leftarrow denominator
difference [dif'ər•əns] diferencia The answer to a subtraction problem
Example: $6-4=2$
\uparrow difference
digital clock [dij'iャtol kläk] reloj digital A clock that shows time to the minute, using digits
Example:

5:00

digits [dij'its] dígitos The symbols 0, 1, 2, 3, 4, $5,6,7,8$, and 9
dime [dïm] moneda de $10 ¢ \mathrm{~A}$ coin worth 10 cents and with a value equal to that of 10 pennies; $10 \Varangle$
Example:

Distributive Property [di•strib'yōo॰tiv präp'ər॰就] propiedad distributiva The property that states that multiplying a sum by a number is the same as multiplying each addend by the number and then adding the products
Example: $5 \times 8=5 \times(4+4)$
$5 \times 8=(5 \times 4)+(5 \times 4)$
$5 \times 8=20+20$
$5 \times 8=40$
divide [də॰vid'] dividir To separate into equal groups; the opposite operation of multiplication
dividend [div'ə•dend] dividendo The number that is to be divided in a division problem Example: $35 \div 5=7$
\uparrow dividend
division [dəvvizh'ən] división The process of sharing a number of items to find how many groups can be made or how many items will be in a group; the opposite operation of multiplication
divisor [de ${ }^{-i \prime z}$ zar] divisor The number that divides the dividend
Example: $35 \div 5=7$
\uparrow divisor
dollar [däl'ər] dólar Paper money worth 100 cents and equal to 100 pennies; \$1.00
Example:

E

edge [ej] arista A line segment formed where two faces meet

eighths [ātths] octavos

These are eighths
elapsed time [ē- lapst' tīm] tiempo transcurrido The time that passes from the start of an activity to the end of that activity
endpoint [end'point] extremo The point at either end of a line segment
equal groups [ē'kwel grōpz] grupos iguales Groups that have the same number of objects
equal parts [ē'kwel pärts] partes iguales Parts that are exactly the same size
equal sign (=) [é’kwal sin] signo de igualdad A symbol used to show that two numbers have the same value
Example: $384=384$
equal to (=) [ē’kwal $+\overline{o o}$] igual a Having the same value
Example: $4+4$ is equal to $3+5$.
equation [ē•kwā'zhən] ecuación A number sentence that uses the equal sign to show that two amounts are equal
Examples:

$$
\begin{aligned}
& 3+7=10 \\
& 4-1=3 \\
& 6 \times 7=42 \\
& 8 \div 2=4
\end{aligned}
$$

equivalent [ē-kwiv'ə•泣t] equivalente Two or more sets that name the same amount
equivalent fractions [ē•kwiv'ə.lənt frak'shənz] fracciones equivalentes Two or more fractions that name the same amount
Example:

estimate [es'tə•māt] verb estimar To find about how many or how much
estimate [es'tə•mit] noun estimación A number close to an exact amount
even [e'ven] par A whole number that has a $0,2,4,6$, or 8 in the ones place
expanded form [ek•span'did fôrm] forma desarrollada A way to write numbers by showing the value of each digit Example: $721=700+20+1$
experiment [ek•sper'ə•mənt] experimento A test that is done in order to find out something

F

face [fās] cara A polygon that is a flat surface of a solid shape

factor [fak'tər] factor A number that is multiplied by another number to find a product
Examples: $3 \times 8=24$
factor factor
foot (ft) [foot] pie A customary unit used to measure length or distance;
1 foot = 12 inches
fourths [fôrths] cuartos

These are fourths
fraction [frak'shən] fracción A number that names part of a whole or part of a group Examples:

Word History

Often, a fraction is a part of a whole that is broken into pieces. Fraction comes from the Latin word frangere, which means "to break."
fraction greater than 1 [frak'shən grāt'ər than wun] fracción mayor que 1 A number which has a numerator that is greater than its denominator Examples:

$\frac{6}{3} \quad \frac{2}{1}$
frequency table [frē'kwən•sē tā’bal] tabla de frecuencia A table that uses numbers to record data
Example:

Favorite Color	
Color	Number
Blue	10
Green	8
Red	7
Yellow	4

G

gram (g) [gram] gramo (g) A metric unit that is used to measure mass; 1 kilogram = 1,000 grams
greater than ($>$) [grāt'ər than] mayor que A symbol used to compare two numbers when the greater number is given first Example:
Read $6>4$ as "six is greater than four."
Grouping Property of Addition [groop'ing präp'ər•†ē $ə v$ ə•dish'ən] propiedad de agrupación de la suma See Associative Property of Addition.

Grouping Property of Multiplication [groop'ing präp'er•tē əv mul•tə•pli•kā'shən] propiedad de agrupación de la multiplicación See Associative Property of Multiplication.
half dollar [haf dol'ar] moneda de $50 \&$ A coin worth 50 cents and with a value equal to that of 50 pennies; $50 \nless$ Example:

half hour [haf our] media hora 30 minutes
Example: Between 4:00 and 4:30 is one half hour.
halves [havz] mitades

These are halves
hexagon [hek'sə•gän] hexágono A polygon
with six sides and six angles
Examples:

horizontal bar graph [hôroi•zänt'l bär graf] gráfica de barras horizontales A bar graph in which the bars go from left to right Examples:

hour (hr) [our] hora (h) A unit used to measure time; in one hour, the hour hand on an analog clock moves from one number to the next; 1 hour $=60$ minutes
hour hand [our hand] horario The short hand on an analog clock

I

Identity Property of Addition [īden'tə•tē präp'ər••ē əv $ə \cdot d$ ish'ən] propiedad de identidad de la suma The property that states that when you add zero to a number, the result is that number
Example: $24+0=24$
Identity Property of Multiplication [i•den'tə•tē präp'ər•tē əv mul•tə•pli•kā'shən] propiedad de identidad de la multiplicación The property that states that the product of any number and 1 is that number
Examples: $5 \times 1=5$

$$
1 \times 8=8
$$

inch (in.) [inch] pulgada (pulg.) A customary unit used to measure length or distance Example:

intersecting lines [in॰tər•sekt'ing linz] líneas secantes Lines that meet or cross Example:

inverse operations [in'vîrs äp•ə•rā'shənz] operaciones inversas Opposite operations, or operations that undo one another, such as addition and subtraction or multiplication and division

key [kē] clave The part of a map or graph that explains the symbols
kilogram (kg) [kilō־gram] kilogramo (kg) A metric unit used to measure mass; 1 kilogram $=1,000$ grams
length [lengkth] longitud The measurement of the distance between two points
less than ($<$) [les than] menor que A symbol used to compare two numbers when the lesser number is given first
Example:
Read $3<7$ as "three is less than seven."
line [lin] línea A straight path extending in both directions with no endpoints Example:

Word History

The word line comes from linen, a thread spun from the fibers of the flax plant. In early times, thread was held tight to mark a straight line between two points.
line plot [līn plät] diagrama de puntos A graph that records each piece of data on a number line
Example:

line segment [lin seg'mənt] segmento A part of a line that includes two points, called endpoints, and all of the points between them
Example:
liquid volume [lik'wid väl'yōm] volumen de un líquido The amount of liquid in a container
liter (L) [lēt'ər] litro (L) A metric unit used to measure capacity and liquid volume; 1 liter = 1,000 milliliters
mass [mas] masa The amount of matter in an object
meter (m) [mēt'ər] metro (m) A metric unit used to measure length or distance; 1 meter $=100$ centimeters
midnight [mid'nitt] medianoche 12:00 at night
milliliter (mL) [mil'ìlèt•ar] mililitro (mL)
A metric unit used to measure capacity and liquid volume
minute (min) [min'it] minuto (min) A unit used to measure short amounts of time; in one minute, the minute hand on an analog clock moves from one mark to the next
minute hand [min'it hand] minutero The long hand on an analog clock
multiple [mul'tə•pal] múltiplo A number that is the product of two counting numbers Examples:
multiplication [mul•tə•pli•kā'shən] multiplicación The process of finding the total number of items in two or more equal groups; the opposite operation of division
multiply [mul'təəplī] multiplicar To combine equal groups to find how many in all; the opposite operation of division
nickel [nik'əl] moneda de 5\& A coin worth 5 cents and with a value equal to that of 5 pennies; $5 申$
Example:

noon [nōn] mediodía 12:00 in the day
number line [num'bor lin] recta numérica A line on which numbers can be located Example:

number sentence [num'bar sent'ns] enunciado numérico A sentence that includes numbers, operation symbols, and a greater than symbol, a less than symbol, or an equal sign
Example: $5+3=8$
numerator [nō'mər•āt•ər] numerador The part of a fraction above the line, which tells how many parts are being counted
Example: $\frac{3}{4} \leftarrow$ numerator

0

octagon [äk'tə•gän] octágono A polygon with eight sides and eight angles Examples:

odd [od] impar A whole number that has a $1,3,5,7$, or 9 in the ones place
open shape [ō'pən shāp] figura abierta A shape that does not begin and end at the same point
Examples:

order [ôr'dər] orden A particular arrangement or placement of numbers or things, one after another
order of operations [ôr'dər əv äp•əərā'shənz] orden de las operaciones A special set of rules that gives the order in which calculations are done

Order Property of Addition [ôr'dər präp'ər•tē əv ə•dish'ən] propiedad de orden de la suma See Commutative Property of Addition.

Order Property of Multiplication [ôr'dər präp'ər•tē əv mul•tə•pli•kā'shən] propiedad de orden de la multiplicación See Commutative Property of Multiplication.

P

parallel lines [pâr'əəlel linz] líneas paralelas Lines in the same plane that never cross and are always the same distance apart Example:

pattern [pat'ərn] patrón An ordered set of numbers or objects in which the order helps you predict what will come next Examples:

2, 4, 6, 8, 10

pentagon [pen'tə•gän] pentágono A polygon with five sides and five angles Examples:

perimeter [pərrim'ətər] perímetro The distance around a shape Example:

perpendicular lines [pər•pən•dik'yōolar linz] líneas perpendiculares Lines that intersect to form right angles Example:

picture graph [pik'chər graf] gráfica con dibujos A graph that uses pictures to show and compare information
Example:

How We Get to School	
Walk	* *
Ride a Bike	* *
Ride a Bus	* $*_{*}^{*}$ 米
Ride in a Car	*
Key: Each = 10 students.	

place value [plās val'yō] valor posicional The value of each digit in a number, based on the location of the digit
plane [plān] plano A flat surface that extends without end in all directions Example:

plane shape [plān shāp] figura plana A shape in a plane that is formed by curves, line segments, or both
Example:

P.M. [pē•em] p.m. The time after noon and before midnight
point [point] punto An exact position or location
polygon [päli••gän] polígono A closed plane shape with straight sides that are line segments Examples:

polygons

not polygons

Did you ever think that a polygon looks like a bunch of knees that are bent? This is how the term got its name. Poly- is from the Greek word polys, which means "many." The ending -gon is from the Greek word gony, which means "knee."
product [präd'əkt] producto The answer in a multiplication problem
Example: $3 \times 8=24$ product

Q

quadrilateral [kwäd•riəlat'ər•ol] cuadrilátero A polygon with four sides and four angles Example:

quarter [kwôrt'ər] moneda de 25¢ A coin worth 25 cents and with a value equal to that of 25 pennies; $25 \not \subset$
Example:

quarter hour [kwôrt'er our] cuarto de hora 15 minutes
Example: Between 4:00 and 4:15 is one quarter hour.
quotient [kwō'shənt] cociente The number, not including the remainder, that results from division
Example: $8 \div 4=2$
quotient
ray [rā] semirrecta A part of a line, with one endpoint, that is straight and continues in one direction
Example:
rectangle [rek'tang•gol] rectángulo
A quadrilateral with two pairs of parallel sides, two pairs of sides of equal length, and four right angles
Example:

rectangular prism [rek•tang'gyə•lar priz'əm] prisma rectangular A three-dimensional shape with six faces that are all rectangles Example:

regroup [rē•groop'] reagrupar To exchange amounts of equal value to rename a number Example: $5+8=13$ ones or 1 ten 3 ones
related facts [ri॰lāt'id fakts] operaciones relacionadas A set of related addition and subtraction, or multiplication and division, number sentences

$$
\begin{array}{rlr}
\text { Examples: } 4 \times 7=28 & 28 \div 4=7 \\
7 \times 4=28 & 28 \div 7=4
\end{array}
$$

remainder [ri•mān'der] residuo The amount left over when a number cannot be divided evenly
results [ri•zults'] resultados The answers from a survey
rhombus [räm'bas] rombo A quadrilateral with two pairs of parallel sides and four sides of equal length
Example:

right angle [rīt ang'gal] ángulo recto An angle that forms a square corner Example:

round [round] redondear To replace a number with another number that tells about how many or how much

S

scale [skāl] escala The numbers placed at fixed distances on a graph to help label the graph
side [sid] lado A straight line segment in a polygon
sixths [siksths] sextos

These are sixths
skip count [skip kount] contar salteado A pattern of counting forward or backward Example: 5, 10, 15, 20, 25, 30, . . .
solid shape [sä’lid shāp] cuerpo geométrico See three-dimensional shape.
sphere [sfir] esfera A three-dimensional shape that has the shape of a round ball Example:

square [skwâr] cuadrado A quadrilateral with two pairs of parallel sides, four sides of equal length, and four right angles Example:

square unit [skwâr yōónit] unidad cuadrada A unit used to measure area such as square foot, square meter, and so on
standard form [stan'dərd fôrm] forma normal A way to write numbers by using the digits $0-9$, with each digit having a place value Example: $345 \leftarrow$ standard form
subtraction [səb•trak'shən] resta The process of finding how many are left when a number of items are taken away from a group of items; the process of finding the difference when two groups are compared; the opposite operation of addition
sum [sum] suma o total The answer to an addition problem Example: $6+4=10$

survey [sûr'vā] encuesta A method of gathering information

tally table [tal’ē tā'bal] tabla de conteo A table that uses tally marks to record data Example:

Favorite Sport

Sport	Tally
Soccer	HH III
Baseball	III
Football	HY
Basketball	HH I

thirds [thûrdz] tercios

These are thirds
three-dimensional shape [thrē də•men'shə•nəl shāp] figura tridimensional A shape that has length, width, and height
Example:

time line [tīm līn] línea cronológica A drawing that shows when and in what order events took place
trapezoid [trap'i•zoid] trapecio
A quadrilateral with exactly one pair of parallel sides
Example:

triangle [tri’ang•gal] triángulo A polygon with three sides and three angles Examples:

two-dimensional shape [too də॰men'shə•nəl shāp] figura bidimensional A shape that has only length and width
Example:

U

unit fraction [yōo'nit frak'shən] fracción unitaria A fraction that has 1 as its top number, or numerator Examples: $\frac{1}{2} \frac{1}{3} \frac{1}{4}$
unit square [yōo'nit skwâr] cuadrado de una unidad A square with a side length of 1 unit, used to measure area

Venn diagram [ven di'əəgram] diagrama de Venn A diagram that shows relationships among sets of things
Example:

vertex [vûr'teks] vértice The point at which two rays of an angle or two (or more) line segments meet in a plane shape or where three or more edges meet in a solid shape Examples:

vertical bar graph [vûr'tiokəl bär graf] gráfica de barras verticales A bar graph in which the bars go up from bottom to top

(w
whole [hōl] entero All of the parts of a shape or group Example:

This is one whole.
whole number [hōl num'bər] número entero One of the numbers $0,1,2,3,4, \ldots$ The set of whole numbers goes on without end
word form [wûrd fôrm] en palabras A way to write numbers by using words Example: The word form of 212 is two hundred twelve.

Z

Zero Property of Multiplication [zē'rō

 präp'ər॰tē əv mul॰†əplikā'shən] propiedad del cero de la multiplicación The property that states that the product of zero and any number is zeroExample: $0 \times 6=0$

CALIFORNIA COMMON CORE STATE STANDARDS

Standards You MY\|I Learn		Student Edition Lessons
Mathematical Practices		
MP. 1	Make sense of problems and persevere in solving them.	$\begin{aligned} & \text { Lessons } 1.1,2.1,2.4,5.3,6.4,7.2 \\ & 9.1,10.3,11.3 \end{aligned}$
MP. 2	Reason abstractly and quantitatively.	$\begin{aligned} & \text { Lessons 1.4, 1.5, 3.7, 5.2, 6.8, 7.2, } \\ & 10.9,11.4,12.8 \end{aligned}$
MP. 3	Construct viable arguments and critique the reasoning of others.	$\begin{aligned} & \text { Lessons } 2.6,4.7,5.3,7.5,9.1,10.4 \text {, } \\ & 10.5,11.1,12.6 \end{aligned}$
MP. 4	Model with mathematics.	$\begin{aligned} & \text { Lessons 1.12, 2.2, 3.2, 5.2, 6.1, 8.2, } \\ & 10.3,11.3,12.2 \end{aligned}$
MP. 5	Use appropriate tools strategically.	$\begin{aligned} & \text { Lessons 1.2, 2.1, 4.1, 5.2, 7.1, 7.3, } \\ & 9.1,11.4,12.7 \end{aligned}$
MP. 6	Attend to precision.	$\begin{aligned} & \text { Lessons 1.3, 2.1, 2.3, 5.2, 6.6, 7.1, } \\ & 9.4,10.1,12.6 \end{aligned}$
MP. 7	Look for and make use of structure.	$\begin{aligned} & \text { Lessons 1.1, 2.4, 3.2, 5.1, 6.5, 8.2, } \\ & 9.3,10.9,12.3 \end{aligned}$
MP. 8	Look for and express regularity in repeated reasoning.	$\begin{aligned} & \text { Lessons } 1.5,2.2,3.6,5.5,6.8,7.2 \\ & 9.2,11.3,12.4 \end{aligned}$
Domain: Operations and Algebraic Thinking		
Represent and solve problems involving multiplication and division.		
3.0A. 1	Interpret products of whole numbers, e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each.	Lessons 3.1, 3.2
3.0A. 2	Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each.	Lessons 6.2, 6.3, 6.4

Standards You Will Learn

Domain: Operations and Algebraic Thinking
 Represent and solve problems involving multiplication and division.

3.0A. 3	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.	$\begin{aligned} & \text { Lessons 3.3, 3.5, 4.1, 4.2, 4.3, 6.1, } \\ & 6.5,6.6,7.1,7.3,7.8 \end{aligned}$
3.0A. 4	Determine the unknown whole number in a multiplication or division equation relating three whole numbers.	Lessons 5.2, 7.8

Understand properties of multiplication and the relationship between multiplication and division.

3.0A. 5	Apply properties of operations as strategies to multiply and divide. Examples: If $6 \times 4=24$ is known, then $4 \times 6=24$ is also known (Commutative property of multiplication.) $3 \times 5 \times 2$ can be found by $3 \times 5=15$, then $15 \times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication.) Knowing that $8 \times 5=40$ and $8 \times 2=16$, one can find 8×7 as $8 \times(5+2)=$ $(8 \times 5)+(8 \times 2)=40+16=56$. (Distributive property.)	Lessons 3.6, 3.7, 4.4, 4.6, 6.9
3.0A. 6	Understand division as an unknown-factor problem.	Lesson 6.7
Multiply and divide with 100.		
3.0A. 7	Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=40$, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.	$\begin{aligned} & \text { Lessons 4.5, 4.8, 4.9, 6.8, 7.2, 7.4, } \\ & 7.5,7.6,7.7,7.9 \end{aligned}$

Standards You Will Learn

Domain: Operations and Algebraic Thinking
Solve problems involving the four operations, and identify and explain patterns in arithmetic.

3.OA. 8	Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	Lessons 1.12, 3.4, 4.10, 7.10, 7.11
3.0A. 9	Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations.	Lessons 1.1, 4.7, 5.1
Domain: Number and Operations in Base Ten		
Use place value understanding and properties of operations to perform multi-digit arithmetic.		
3.NBT. 1	Use place value understanding to round whole numbers to the nearest 10 or 100.	Lessons 1.2, 1.3
3.NBT. 2	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	$\begin{aligned} & \text { Lessons 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, } \\ & 1.10,1.11 \end{aligned}$
3.NBT. 3	Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., $9 \times 80,5 \times 60$) using strategies based on place value and properties of operations.	Lessons 5.3, 5.4, 5.5

Standards You Will Learn

Domain: Number and Operations-Fractions
Develop understanding of fractions as numbers.
3.NF. $1 \quad$ Understand a fraction $1 / b$ as the \quad Lessons 8.1, 8.2, 8.3, 8.4, 8.7, 8.8, 8.9 quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$.
3.NF. 2 Understand a fraction as a number on the number line; represent fractions on a number line diagram.
a. Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line.
b. Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line.

Lesson 8.5

Lesson 8.5

Standards You WFII Learn

Domain: Number and Operations-Fractions
Develop understanding of fractions as numbers.
3.NF. 3 Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size.
a. Understand two fractions as

Lesson 9.6 equivalent (equal) if they are the same size, or the same point on a number line.
b. Recognize and generate simple equivalent fractions, e.g., $1 / 2=2 / 4,4 / 6=2 / 3$). Explain why the fractions are equivalent, e.g., by using a visual fraction model.
c. Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers.
d. Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols $>$, $=$, or $<$, and justify the conclusions, e.g., by using a visual fraction model.

Standards You Will Learn

Domain: Measurement and Data		
Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects.		
3.MD. 1	Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram.	Lessons 10.1, 10.2, 10.3, 10.4, 10.5
3.MD. 2	Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (I). Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.	Lessons 10.7, 10.8, 10.9
Represent and interpret data.		
3.MD. 3	Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs.	Lessons 2.1, 2.2, 2.3, 2.4, 2.5, 2.6
3.MD. 4	Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units-whole numbers, halves, or quarters.	Lessons 2.7, 10.6

Domain: Measurement and Data
Geometric measurement: understand concepts of area and relate area to multiplication and to addition.

3.MD. 5	Recognize area as an attribute of plane figures and understand concepts of area measurement. a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. b. A plane figure which can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.	Lesson 11.4 Lesson 11.4 Lesson 11.5
3.MD. 6	Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).	Lesson 11.5
3.MD. 7	Relate area to the operations of multiplication and addition. a. Find the area of a rectangle with	Lesson 11.6 Lesson 11.6

4 whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.
b. Multiply side lengths to find areas of rectangles with wholenumber side lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.
c. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b+c$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning.
d. Recognize area as additive. Find areas of rectilinear figures by decomposing them into nonoverlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.

Standards You Will Learn

Domain: Measurement and Data

Geometric measurement: recognize perimeter as an attribute of
plane figures and distinguish between linear and area measures.
plane figures and distinguish between linear and area measures.

3.MD. 8	Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.	Lessons 11.1, 11.2, 11.3, 11.9, 11.10

Domain: Geometry

Reason with shapes and their attributes.

3.G. 1	Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.	$\begin{aligned} & \text { Lessons } 12.1,12.2,12.3,12.4,12.5 \text {, } \\ & 12.6,12.7,12.8 \end{aligned}$
3.G. 2	Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole.	Lesson 12.9

Act It Out, 219-222, 303-306, 367-370
Activities.
Activity, 5, 6, 90, 101, 119, 120, 123, 151, 165, 166, 203, 207, 223, 231, 232, 249, 265, 266, 337, 351, 385, 386, 430, 433, 434, 437, 438, 442, 457, 465, 469, 470, 483, 487, 491, 510, 527, 531
Cross-Curricular Activities and
Connections. See Cross-Curricular Activities and Connections
Investigate, 219-222, 303-306, 367-370
Math Detective, 3, 61, 99, 137, 187, 217, 263, 319, 365, 405, 451, 503

Addition

with addition tables, 5-6
bar models, 51-54
break apart strategy, 19, 25-28, 30, 40
with compatible numbers, 13-16, 18-19
draw a diagram, 51-54
elapsed time, 415-418
estimate sums, 13-16
with friendly numbers, 18-20
as inverse operations, 43, 461
of liquid volume, 441-444
of mass, 442-444
mental math strategies, 17-20
on number lines, 17-20, 415-416, 419-421, 423-425
place value strategy, 29-32
properties of
Associative, 21-24, 161
Commutative, 6, 21-24
Identity, 5, 21-24
regrouping, 29-31
related to area, 465-468, 469-472, 473-476, 483-486
related to multiplication, 105-108
rounding and, 13-16
three-digit numbers, 13-16, 17-20, 25-28, 29-32
of time intervals, 415-418, 419-422, 423-425
two-digit numbers, 17-20, 21-24
Addition tables, 5, 6

Algebra

addition
Associative Property of Addition, 21-24, 161
Commutative Property of Addition, 6, 21-24
describe a number pattern, 5-8, 189-192
Identity Property of Addition, 5, 21-24
patterns on the addition table, 5-8
related to area, 473-476, 483-486
related to multiplication, 105-108
unknown digits, 31
area, 199-202, 465-468, 473-476
division
factors, 281-284, 286-287, 299-302
related facts, 249-252
related to subtraction, 235-238
relate multiplication to division, 245-248, 249-252, 270-272, 278-280, 282-284, 286-288, 292-294, 295-298, 300-302
rules for one and zero, 253-256
unknown divisor, 296
equations, 193-196, 423
input/output tables, 165-168, 189-192
inverse operations, 43, 245-248
multiplication
area models, 199-202, 473-476, 479-482
arrays, 119-122, 151-154, 161, 193-194, 246-248
Associative Property of Multiplication, 161-164, 170
Commutative Property of Multiplication, 123-126, 155, 162
describe a number pattern, 165-168, 189-192
Distributive Property, 151-154, 155, 173, 199-202, 483-486
factors, 105-108
Identity Property of Multiplication, 127-130
number pattern, 165-168, 189-192
with one and zero, 127-130
order of operations, 307-310
patterns on a multiplication table, 165-168
related to addition, 105-108
related to area, 473-476, 479-482, 483-486
unknown factors, 125, 163, 193-196, 209, 283, 286-287
Zero Property of Multiplication, 127-130
order of operations, 307-310
patterns
on the addition table, 5-8
area, 479-482
describing, 5-8, 165-168, 174, 189-192
even and odd numbers, 5-8, 165-168, 170
explaining, using properties, 5-8, 165-168, 170
number, 5-8, 165-168
on the multiplication table, 165-168
perimeter
finding unknown side length, 461-464
measuring, 457-460
modeling, 453-456
solving problems, 465-468
using letters and symbols for an
unknown number, 193-196, 282,
461-464
subtraction
related to division, 235-238, 269, 295
unknown subtrahend, 45
A.M., 411-414

Analog clocks, 407-410, 411-413, 416-417, 419-422
Angles
classifying, 509-512
defined, 509
describing, 509-512, 535-538
modeling, 510
of plane shapes, 509-512
of polygons, 514-516, 535-538
of quadrilaterals, 523-526
right, 509-512, 523-526, 529, 532-534
of triangles, 514-515, 531-534
types of, 509-512
vertex of, 509
Area
area models. See Area models
of combined rectangles, 483-486
count unit squares, 465-468, 469-472, 473
defined, 465
Distributive Property, 483-486
equal areas, 491-494
partitioning shapes to make, 539-542
of equal parts of a shape, 539-542
finding, 465-468, 469-472, 473-476, 479-482, 483-486, 487-490, 491-494
find unknown side lengths, 487-490, 491-494
measuring, 469-472
partitioning, 321-324, 325-328, 329-332, 333-336, 343-346, 351-354, 371-374, 375-378, 389-392, 393-396, 467
of rectangles, 479-482, 487-490
same area, different perimeters, 491-494
same perimeter, different areas, 487-490
related to addition, 473-476
related to multiplication, 473-476, 479-482, 483-486
related to perimeter, 465-468
related to shapes and fractions, 539-542
solving problems, 479-482
square units, 465-468, 473, 484-485, 488-490, 492-493
tiling, 469-472, 483, 487, 491
unit squares, 465-468, 469-472, 473-476
Area models, 199-202, 321-324, 325-328, 329-332, 333-336, 343-346, 351-354, 371-374, 375-378, 389-392, 393-396, 465-468, 469-472, 473-476, 479-482,
483-486, 487-490, 491-494, 539-542
Arrays
Associative Property of Multiplication, 161
Commutative Property of Multiplication, 123-126, 155, 162
defined, 119
Distributive Property, 151-154, 155, 483-466
find factors, 119-122
find unknown factors, 193-196
modeling with,
division, 241-244, 246-248, 281-284, 291-294
multiplication, 119-122, 125, 151-154, 245-248
related facts, 249-252
square tiles, 119-122, 193-196, 241-244, 249-252

Assessment

Show What You Know, 3, 61, 99, 137, 187, 217, 263, 319, 365, 405, 451, 503

Mid-Chapter Checkpoint. 33-34, 75-76, 113-114, 159-160, 197-198, 239-240, 289-290, 341-342, 383384, 427-428, 477-478, 521-522
Chapter Review/Test. 55-60, 93-98, 131-136, 181-186, 211-216, 257262, 311-316, 359-364, 397-402, 445-450, 495-500, 543-548
Constructed Response, 60, 98, 136, 186, 216, 262, 316, 364, 402, 450, 500, 548
Performance Task, 60, 98, 136, 186, 216, 262, 316, 364, 402, 450, 500, 548

Associative Property

Addition, 21-24, 161
Multiplication, 161-164, 170

B

Bar graphs

defined, 77
drawing, 81-84
horizontal, 78
interpret data in, 77-80, 85-88
making, 81-84
solving problems, 85-88
vertical, 78
Bar models, 51-54, 115-117, 143-146, 231-234, 245-248, 441-444
Beakers, 433, 434
Break apart strategy
addition, 25-28, 30, 40
multiplication, 151-154, 205

California Common Core State Standards, H13-H20
Centimeters, 457-460
Chapter Openers, 3, 61, 99, 137, 187, 217, 263, 319, 365, 405, 451, 503
Chapter Review/Test, 55-60, 93-98, 131-136, 181-186, 211-216, 257-262, 311-316, 359-364, 397-402, 445-450, 495-500, 543-548
Checkpoint, Mid-Chapter. See Mid-Chapter Checkpoint

Classifying
angles, 509-512
plane shapes, 505-508, 535-538
polygons, 513-516
quadrilaterals, 523-526
triangles, 531-534
Clocks
analog, 407-410, 411-414, 416-417, 419-421
digital, 409, 412-413
elapsed time, 415-418, 419-422
telling time, 407-410, 411-414
time intervals, 415-418, 419-422
Closed shapes, 506-508, 513-516
Combine place values strategy, 47-50
Commutative Property
Addition, 6, 21-24
Multiplication, 123-126, 155, 162
Comparing
angles, 509-512
area, 465-465, 479-482, 487-490, 491-494
equal to, 367-370
fractions, 367-370, 379-382, 385-388, 389-392
act it out, 367-370
fraction strips, 371-374, 375-378
of a group, 371-374
on a number line, 371-374
using same denominator strategy, 371-374, 379-382, 385-388
using same numerator strategy, 375-378, 379-382, 385-388
using missing pieces strategy, 379-382
using models, 367-370, 375-378, 387, 389-392, 393-396
using reasoning, 371-374, 375-378
of a whole, 371-374
greater than, 367-370
less than, 367-370
liquid volume, 433-436, 441-444
mass, 437-440, 441-444
perimeter, 465-468, 487-490, 491-494
plane shapes, 505-508
polygons, 513-516
quadrilaterals, 523-526
triangles, 531-534
whole numbers
with base-ten blocks, 203, 207
with a number line, 337, 343

Compatible numbers
defined, 13
estimate differences, 35-38
estimate sums, 13-16
Connect, 21, 85, 161, 227, 307, 344, 429, 465, 484, 513, 527, 539
Constructed Response, 60, 98, 136, 186, 216, 262, 316, 364, 402, 450, 500, 548

Correlations,

California Common Core State Standards, H13-H20
Counting
back
on clocks, 408-410, 419-422
on number lines, 39-42, 236-238, 269-271, 273-275, 278, 419-422, 423-426
elapsed time, 415-418, 419-422, 423-426
equal groups, 101-104, 105-108, 109-112, 139-142, 219-222, 223-226, 227-230, 231-234, 241-244, 245-248, 249-252, 265-268, 277-280, 281, 285-288, 291-294, 299-302
number lines, 17-19, 109-112, 415-418, 419-422, 423-426
on
on clocks, 407-410, 415-418
on number lines, 17-20
skip counting, 140
equal groups, 101-104, 105-108, 109-112, 219-222
by fives, 143-146, 148
by sixes, 147-150
by tens, 143-146, 202-206
by threes, 147-150
by twos, 140-142
tens and ones, 17-19, 39-42
time intervals, 415-418, 419-422, 423-426
up
by fives, 273-275
on number lines, 39-42, 274-275, 419-422, 423-426

Counting numbers, 203, 408, 416, 453
Cross-Curricular Activities and Connections
Connect to Reading, 42, 92,158, 256, 392, 490, 526
Connect to Science, 172, 422
Connect to Social Studies, 310

Customary units

for length
feet, 109
inches, 90, 429-432, 457-469
for liquid volume and capacity, cups, 157
for weight, ounces, 108

D

Data, represent and interpret
bar graphs, 77-80, 81-84, 85-88
making, 81-84
using, 77-80, 85-88
collect data, 90
dot plots. See Line plots
experiments, 72, 83
frequency tables, 63-66
generating measurement data, 90, 429-432
key, 67
line plots, 89-92
making, 89-92
using, 89-92
shape of, 90
make a table, 63-66, 177-180
organizing data, 63-66
picture graphs, 67-70, 71-74, 81-84
making, 71-74
using, 67-70
scale, 77
solving problems, 85-88
surveys, 67, 69, 72, 78, 81, 89
tally tables, 63-66, 73
use a table, $12,16,28,38,46,50,109$, 122, 130, 146, 150, 157, 171, 175, 189-192, 196, 205, 222, 226, 234, 248, 252, 268, 280, 284, 298, 354, 370, 422, 481
Decagons, 514-516
Denominators, 333
comparing fractions with same, 371-374, 379-382
defined, 333
fraction greater than 1, 343-346
ordering fractions with same, 385-388
Diagrams. See also Graphic Organizers
Draw a Diagram, 51-54, 115-118, 199-202, 355-358, 423-426, 535-538
Venn diagrams, 4, 264, 452, 535-538
Digital clocks, 409, 412-413

Distributive Property

area, 483-486
multiplication, 151-154, 155, 173,
199-202, 483-486
Divide, 223
Dividends, 232

Division

act it out, 219-222, 303-306
with arrays, 241-244, 246-247, 249-252, 281-283, 291-294
bar models, 231-234, 245-248
count back on number line, 236-238, 269, 273, 278
dividend, 232
dividing by
eight, 295-298
five, 273-276
four, 281-284
nine, 299-302
one, 253-256
seven, 291-294
six, 285-288
ten, 269-272
three, 277-280
two, 265-268
dividing with zero, 253-256
divisors, 232, 296
doubles, 274
equal groups, 219-222, 223-226,
227-230, 231-234, 241-244, 265-268,
277-280, 281, 285-288, 291-294, 299-302
equations, 232-234, 235-238, 242-243, 245-248, 249-252, 253-256, 265-268, 283
as inverse operation, 245-248
of liquid volume, 441-444
of mass, 441-444
with measurement quantities, 296, 441-444
modeling, 219-222, 231-234
number lines, 236-238, 269, 278
quotients, 232
related facts, 249-252
related to multiplication, 245-248, 249-252, 270-272, 278-280, 282-284, 286-288, 292-294, 295-298, 300-302
repeated (successive) subtraction as, 235-238, 269-272, 295-298
rules for one and zero, 253-256
unknown factor problem, 270-272, 278, 282, 286, 292, 295, 300
using factors, 296
using related multiplication fact, 249-252, 270-274, 278, 282, 286, 292, 295, 300
Divisors, 232, 296
Doubles, 139-142, 148, 169
Draw a bar graph, 81-84
Draw a Diagram, 51-54, 115-118, 199-202, 355-358, 423-426, 535-538
Draw a picture graph, 71-74

Drawing

bar models, 51-53, 144-146, 231-234, 441-444
draw a bar graph, 81-84
draw a diagram, 51-54, 115-118, 199-202, 355-358, 535-538
draw a picture graph, 71-74
number lines, 17-20, 39-42, 107, 203-206
quadrilaterals, 505-508, 527-530
quick pictures, 107, 123-126, 127-130, 207-208, 225, 228, 253-256, 267, 323, 325, 328
shapes, 147, 506, 516, 518, 527-530, 539-542
solving problems, 51-54, 115-118, 343, 355-358

Eighths, 321-324
Elapsed time, 415-418, 419-422, 423-426
on clocks, 415-418, 419-422
defined, 415
find end time, 419-422, 423-426
find start time (begin), 419-422, 423-426
on number lines, 415-418, 419-422, 423-425
using subtraction, 416
Endpoints, 505
Equal groups
counting, 101-104, 105-108, 139-142, 219-222, 223-226, 227-230, 231-234, 241-244, 265-268, 277-280, 281-284, 285-288, 291-294, 299-302
defined, 101
division and, 219-222, 223-226, 227-230, 231-234, 241-244, 265-268, 277-280, 281-284, 285-288, 291-294, 299-302
multiplication and, 101-104, 105-108, 109-112, 245-248
number of, 227-230
size of, 223-226
skip counting, 101-104, 109-112
Equal parts, 321-324, 539-542
Equal parts of a whole, 321-324
Equal shares, 325-328
Equal-sized pieces in the whole, 321-324, 325-328, 329-332, 333-336, 343-346, 351-354
Equal to (=)
comparing to greater than and less than, 175, 367
fractions and, 367-370, 371-374, 375-378, 379-382
Equations
addition, 443, 461-464, 473-476, 483-486
defined, 193
division, 232-234, 235-238, 241-243, 245-248, 249-252, 253-256, 265-268, 280, 283, 288, 443
multiplication, 193-196, 245-248, 249252, 443, 462, 473-476, 483-486, 491
subtraction, 305, 443, 464
Equivalent
defined, 389
fractions, 389-392, 393-396
Equivalent fractions
defined, 389
describing, 389-392, 393-396
generating, 389-392
greater than 1, 394-396
modeling, 389-392, 393-396
on a number line, 390-391
to whole numbers, 394-396
Error Alert, 29, 83, 128, 169, 189, 235, 278, 295, 322, 376, 408, 470, 523
Estimate, 13, 35-38
Estimation
addition, 13-16, 25-28, 29-32
compatible numbers and, 13-16, 35-38
liquid volume, 433-436
mass, 438-439
perimeter, 457-460
rounding, 13-16, 35-38
subtraction, 35-38, 43-46, 47-49
Even numbers, 5-8, 166-168, 169-170
Expanded form, 18, 25-28, 30, 40
Experiments, 72, 83

Factors

defined, 106
find unknown, 193-196
multiplication, 106-108, 141
eight, 169-172
five, 143-146, 148
four, 139-142
nine, 173-176
one, 127-130
seven, 155-158
six, 147-150
ten, 143-146
three, 147-150
two, 139-142
unknown factors, 125, 145, 149, 163, 193-196, 286-287, 299-302
zero, 127-130
Feet, 109
Foot. See Feet
Fourths, 321-324
measure to nearest fourth inch, 429-432
Fractions, 539-542
area models, 321-324, 325-328, 329-332, 333-336, 343-346, 351-354, 371-374, 375-378, 389-392, 399-396
common denominators, 371-374
common numerators, 375-378
comparing, 367-370, 379-382, 385-388
act it out, 367-370
fraction strips, 371-374, 375-378
of a group, 371-374
on a number line, 371-374
using same denominator strategy, 371-374, 379-382, 385-388
using same numerator strategy, 375-378, 379-382, 385-388
using missing pieces strategy, 379-382
using models, 367-370, 375-378, 389-392, 393-396
using reasoning, 371-374, 375-378
of a whole, 371-374
defined, 329
denominator of, 333
draw a diagram, 355-358
eighths, 321
equal areas, 539-542
equal parts of whole, 321-324, 333-336
equal shares and, 325-328
equal sized pieces in the whole, 321-324, 325-328, 329-332, 333-336, 343-346, 351-354
equivalent, 389
defined, 389
describing, 389-392, 393-396
generating, 389-392
greater than 1, 394-396
modeling, 389-392, 393-396
on a number line, 390-391
to whole numbers, 394-396
find part of a group, 347-350, 351-354
fourths, 321
fractions greater than 1, 343-346, 348-349
of a group, 347-350, 351-354
halves, 321
linear models, 337-340, 343-346, 372-373, 385-388, 390-391
on number line, 337-340, 343-346, 372-373, 390-391
numerator of, 333
ordering, 385-388
using fraction strips, 385-388
using same denominators, 385-388
using same numerators, 385-388
part of a set, 347-350, 351-354
part of a whole, 321-324, 329-332, 333-336
related to shapes and area, 539-542
related to whole numbers, 343-346
representing
equal to 1, 389-392, 393-396
equal to whole number, 343-346
greater than 1, 343-346, 348-349
less than 1, 329-332, 333-336, 337-340
on a number line, 337-340
representations of fraction equivalence, 389-392, 393-396
set models, 347-350, 351-354
sixths, 321
thirds, 321
unit fractions, 329-332, 351-354, 355-358, 539-542
of a whole, 321-324, 333-336
writing, as whole numbers, 333-336, 343-346, 348-349
Fractions greater than 1, 343-346,

348-349

Frequency tables, 63-66

Geometric patterns, 479-482

Geometry

angles. See Angles
attributes of, 505-508, 509-512, 513-516, 517-520, 523-526, 527-530, 531-534, 535-538, 539-542
classifying plane shapes, 505-508, 535-538
closed shapes, 506-508
comparing plane shapes, 505-508, 523-526
decagons, 513-516
describing plane shapes, 505-508
drawing, 527-530
endpoints, 505
hexagons, 513-516
lines
defined, 505
intersecting, 517-520
parallel, 517-520
perpendicular, 517-520
line segments, 505
open shapes, 506-508
partitioning shapes to make equal areas, 539-542
plane shapes, 505-508, 509-512, 535-538
See also Two-dimensional shapes
points, 505
quadrilaterals
angles of, 523-526
classifying, 523-526
drawing, 527-530
rectangles, 523-526, 527-530
rhombuses, 523-526, 527-530
sides of, 523-526
squares, 523-526, 527-530
trapezoids, 523-526, 527-530
rays, 505
triangles
angles of, 531-534
classifying, 531-534
modeling, 531
sides of, 523-524, 531-534
two-dimensional shapes. See also Two-dimensional shapes
Glossary, H1-H12
Go Deeper, In some Student Edition lessons. Some examples are: 9, 84, 157, 238, 288, 346, 374, 410, 476, 534

Grams

defined, 437
as metric unit, 437-440
solving problems in, 437-440, 441-444
Graphic Organizers. See also Tables and charts
Bubble Map, 62, 218, 320
Flow Map, 366
problem solving, 51-52, 63-64, 115-116,
177-178, 199-200, 219-220, 303-306, 355-356, 367-368, 423-424, 479-480, 535-536
Tree Map, 100, 138, 188, 504
Venn diagram, 4, 264, 452

Graphs

bar graphs
analyzing and constructing, 77-80, 81-84
defined, 77
horizontal bar graphs, 77-78, 80-81, 84-87
scale, 77-80, 81-84
vertical bar graphs, 78-79, 82-83, 86-87, 88
key, 67
line plots
analyzing and constructing, 89-92
defined, 89
generating measurement data, 90 , 429-432
picture graphs
analyzing and constructing, 67-70, 71-74, 81-84
defined, 67
key, 67
solving problems, 85-88
Greater than ($>$)
angles and, 509-512
comparing with less than and equal to, 175, 367
fractions and, 367-370, 371-374, 375-378, 379-382
Grouping Property of Multiplication, 161-164

Groups

equal groups. See Equal groups
fractions of, 347-350, 351-354, 355-358

H

Half hours, 407, 411-414, 419, 423
Half symbol, 68

Halves, 321-324
measure to the nearest half inch, 429-432

Hexagons

angles of, 514-516
sides of, 514-516
Horizontal bar graphs, 77-78, 80-81, 84-87
Hour hand, 407-410
Hours
half, 405, 411-414, 419, 423
minutes after hour, 408
minutes before hour, 408
Hundreds
place value, 9-12, 14-16, 29-32, 36-38, 43-46, 47-50, 204-206, 208
round to nearest, 9-12

Identity Property
Addition, 5, 21-24
Multiplication, 127-130
Inches
as customary unit, 429-432
generating data in, 90, 429-432
measure to nearest fourth inch, 429-432
measure to nearest half inch, 429-432
measure to nearest inch, 90
Intersecting lines, 517-520
Inverse operations, 43, 245
Investigate, 241-244, 307-310, 389-392,
453-456, 539-542

K

Keys, 67-70, 71-74, 82, 118, 272

Kilograms

defined, 437
as metric unit, 437-440
solving problems in, 437-440, 441-444

Length

customary units for feet, 109, 459, 461-464 inches, 429-432, 459
measure in centimeters, 457-460
measure to nearest fourth inch, 429-432
measure to nearest half inch, 429-432
measure to nearest inch, 90
metric units for
centimeters, 65, 457-460
Less than (<)
angles and, 509-512
comparing with greater than and equal to, 175, 367
fractions and, 367-370, 371-374, 375-378, 379-382
Line plots
defined, 89
generating measurement data for, 90 , 429-432
making, 89-92
read and interpret data in, 89-92

Lines

defined, 505
intersecting, 517-520
parallel, 517-520
perpendicular, 517-520
Line segments, 505
describing, 507, 517-520
Liquid volume. See also Measurement;
Units
defined, 433
estimating and measuring, 433-436
liters, 433-436
metric units for, 433-436
solving problems, 433-436, 441-444
Liters
defined, 433
estimating and measuring, 433-436
as metric unit, 433-436
solving problems in, 433-436, 441-444

M

Make a table, 177-180
Make Connections, 242, 308, 390, 454, 540
Manipulatives and materials
addition tables, 5, 6
base-ten blocks, 203, 207
beakers, 433, 434
clock faces, 407-408, 411-414
containers, 433, 434
counters, 101, 223, 231, 265, 351
crayons, 5-6, 166, 389, 430
dot paper, 453
fraction strips, 337, 353, 367
geoboards, 453, 465
glue stick, 443
gram masses, 437, 438, 442
1-inch grid paper, 469
kilogram masses, 437, 438
MathBoard. See MathBoard measuring tape, 90
multiplication table, 165
number lines, 9-12, 19, 39, 203-205, 337-340, 343-346, 372-373, 390-391, 394, 415-418
pan balance, 437, 438, 442
pattern blocks, 539
pitchers. See Beakers
rubber bands, 453, 465
rulers, 88, 90, 430, 457, 527, 539
centimeter, 457-460
inch, 429-432, 457-460
square tiles, $119,120,123,125,151,241$, 249, 483, 487, 491
straws, 510, 531
two-color counters, 351
Mass. See also Measurement; Units
defined, 437
estimating and measuring, 437-440
metric units for, 437-440
solving problems, 437-440, 441-444
MathBoard, In every lesson. Some examples are: 31, 274, 296, 529, 540
Math Detective, 3, 61, 99, 137, 187, 217, 263, 319, 365, 405, 451, 503

Mathematical Practices

1. Make sense of problems and persevere in solving them. In many lessons. Some examples are: 17, 63, 77, 199, 231, 269, 367, 415, 461
2. Reason abstractly and quantitatively. In many lessons. Some examples are: 17, 21, 127, 193, 249, 269, 441, 465, 535
3. Construct viable arguments and critique the reasoning of others. In many lessons. Some examples are: 85, 165, 199, 281, 367, 419, 423, 453, 527
4. Model with mathematics. In many lessons. Some examples are: 51, 67, 105, 193, 219, 325, 415, 461, 509
5. Use appropriate tools strategically. In many lessons. Some examples are: 9, 63, 139, 193, 265, 273, 367, 465, 531
6. Attend to precision. In many lessons. Some examples are: 13, 63, 71, 193, 241, 265, 379, 407, 527
7. Look for and make use of structure. In many lessons. Some examples are: 5, 77, 105, 189, 235, 325, 375, 441, 513
8. Look for and express regularity in repeated reasoning. In many lessons. Some examples are: 21, 67, 123, 207, 249, 269, 371, 461, 517
Math Idea, 17, 21, 43, 68, 124, 161, 207, 242, 266, 333, 337, 343, 371, 390, 429, 461, 465, 513, 539
Math on the Spot Videos, In every Student Edition lesson. Some examples are: 20, 74, 146, 191, 276, 340, 392, 482, 516
Math Talk, In every lesson. Some examples are: 5, 31, 273, 295, 517, 539

Measurement

 areadefined, 465
finding, 465-468, 469-472, 473-476, 483-486
patterns and, 479-482
perimeter related to, 465-468, 487-490, 491-494
solving problems, 479-482
unknown lengths and, 487-490, 491-494
customary units,
for length
feet, 109
inches, 90, 429-432, 457-459
for liquid volume and capacity, cups, 157
for weight, ounces, 108
distinguish between linear and area,
453-456, 457-460, 461-464, 465-468,
469-472, 473-476, 487-490,
491-494
length
customary units for
feet, 109
inches, 90, 429-432, 457-459
measure in centimeters, 457-460
measure to nearest half inch, 429-432
measure to nearest fourth inch, 429-432
measure to nearest inch, 90
metric units for
centimeters, 65, 455, 457-460
liquid volume
defined, 433
measuring, 433-436
liters, 433-436
solving problems, 433-436, 441-444
mass
defined, 437
grams, 437-440
kilograms, 437-440
measuring, 437-440
solving problems, 437-440, 441-444
metric units
for length
centimeters, 65, 455, 457-460
for liquid volume and capacity, liters, 433-436
for mass
grams, 437-440
kilograms, 437-440
perimeter
area related to, 465-468, 487-490, 491-494
defined, 453
estimate and measure, 457-460
modeling, 453-456
unknown side lengths and, 461-464
Table of Measures, H39
weight
ounces, 108
Metric units
for length
centimeters, 65, 455, 457-460
for liquid volume and capacity, liters, 433-436
for mass
grams, 437-440
kilograms, 437-440
Mid-Chapter Checkpoint, 33-34, 75-76, 113-114, 159-160, 197-198, 239-240, 289-290, 341-342, 383-384, 427-428, 477-478, 521-522
Midnight, 411
Minute hand, 407-410
Minutes, 407-410
add and subtract, 415-418, 419-422
after the hour, 408
before the hour, 408
defined, 407
elapsed time in, 415-418, 419-422, 423-426
time intervals in, 415-418, 419-422, 423-426

Modeling

analog clock, 407-410, 411-414, 416-417, 420-421
angles, 509-512
area, 465-468, 473-476
area models, 241-244, 465-468, 473-476
bar models, 51-53, 85-88, 115-117, 144-146, 231-234, 245-248, 441-444
with base-ten blocks, 203, 207
with counters, 139-142, 219-222, 223-226, 227-230, 231-234, 265-268, 277-280, 285-286, 299-300, 347-350, 351-354, 355-358
division with arrays, 241-244, 246-248, 281-283, 291-294
equivalent fractions, 389-392, 393-396
fractions
with fraction circles, 368, 375-378, 379-382 with fraction strips, 337-340, 367, 371-374, 376-378, 385-388, 390
fractions greater than 1, 343-346, 348-349
multiplication, 115-118
multiplication with arrays, 119-122, 151-154, 246-248
multiplication with base-ten blocks, 203, 207
with number lines. See Number lines
part of a group, 347-350, 351-354
perimeter, 453-456
with square tiles, 119-122, 123-126, 193-194, 241-244, 249-252, 280, 291, 469, 483
triangles, 531-534
Money, 66, 104, 144, 164, 180, 190,196, 202, 205, 248, 273, 284, 303-306, 308-310

Multiples

defined, 143
of ten, 199-202, 203-206, 207-210

Multiplication

area models, 199-202, 473-476, 479-482
with arrays, 119-122, 125, 151-154, 161, 193-194, 245-248
bar models, 115-117, 143-146, 245-248
describe a number pattern, 165-168
doubles, 139-142, 148, 169
draw a diagram, 115-118, 199-202
of equal groups, 101-104, 105-108, 109-112, 219-222, 223-226
factors, 106 eight, 169-172 five, 143-146, 148
four, 129, 139-142
nine, 173-176
one, 127-130
seven, 155-158
six, 147-150
ten, 143-146
three, 129, 147-150
two, 139-142
unknown factors, 125, 149, 163, 193-196, 286-287, 299-302
zero, 127-130
as inverse operation, 245-248
of liquid volume, 441-444
of mass, 441-444
with measurement quantities, 441-444
with multiples of ten, 199-202, 203-206, 207-210
with multiplication table, 148
with number lines, 109-112, 143-144, 169, 203-205
place value strategy, 203-206
products, 106
properties of
Associative Property of Multiplication, 161-164, 170
Commutative Property of Multiplication, 123-126,155, 162
Distributive Property, 151-154, 155, 173, 199-202, 483-486
Grouping Property of Multiplication, 161-164
Identity Property of Multiplication, 127-130
Zero Property of Multiplication, 127-130
regrouping, 207-210
related facts, 249-252
related to addition, 105-108
related to area, 473-476, 479-482, 483-486
related to division, 245-248
related to perimeter, 462
strategies, 203-206

Multiply, 106

Multiplication tables, 148
find unknown divisor, 296
find unknown factor, 193-196
make a table, 177-180
patterns on the, 165-168

Nickels, 273
Noon, 412

Number lines

add and subtract minutes, 415, 420
adding with, 17-20, 415-418, 419
comparing fractions on, 372-373
counting back on, 39, 236-238, 269-272, 273-277, 278
counting up on, 274-275
dividing with, 235-238, 269, 273-276, 278
elapsed time. See Time
fractions greater than 1, 357-361
fractions on, 337-340
multiplying with, 109-112, 143-146, 169, 203-206
number line for hours in a day, 411
round numbers and, 9-12
skip counting, 109-112
by eights, 169
by fives, 143-144
by sixes, 109
by tens, 143-144
time intervals. See Time by twos, 140
subtracting with, 39-42
take away tens and ones, 39-42
use to represent
distances, 337-340
elapsed time, 415-417, 419-422, 423-426
whole numbers on, 337-340, 343-346
Number patterns, 5-8, 165-168, 174, 189-192

Numbers

compatible, 13-16, 18-19, 35-38
counting, 203, 408, 316, 453
even, 5-8, 165-168, 169-170
expanded form of, 18, 25-28, 30, 40
fractions, 321-324, 325-328, 315-318, 329-332, 337-340, 343-346, 347-350, 351-354, 355-358, 367-370, 371-374, 375-378, 379-382, 385-388, 389-392, 393-396
hundreds, 9-12, 14-16, 25-28, 29-32, 36-38, 40-41, 43-46, 47-50, 203-206, 207-210
odd, 5-8, 165-168, 169-172
ones, 17-20, 21-24, 25-28, 29-32, 36-38, 39-42, 43-46, 47-50, 127-130, 253-256
ordering, 385-388
rounding, 9-12, 13-16
standard form of, 26
tens, 9-12, 17-20, 21-24, 25-28, 29-32, 39-42, 43-46, 47-50, 143-146, 207-210
unknown, 45, 141, 145, 163, 193-196, 267, 282-283, 286-287, 292-293, 296-297, 301, 309
zero, 127-130, 253-256
Numerators, 333
comparing fractions with same, 375-378, 379-382
defined, 333
fractions greater than 1, 344-346
ordering fractions with same, 385-388

0

Octagons

angles of, 513-516
sides of, 513-516
Odd numbers, 5-8, 165-168, 169-170
Ones, 10-12, 17-20, 21-24, 25-28, 29-32, 36-38, 39-42, 43-46, 47-50, 127-130, 207-210
On Your Own, In most lessons. Some examples are: 7, 31, 275, 297, 529, 538
Open shapes, 506-508
Ordering
fractions, 385-388
fraction strips, 385-388
liquid volume, 434
mass, 438
Order of operations, 307-310
Organize data, 63-66

P

Parallel lines, 517-520

Partitioning

fractions, 321-324, 325-328
shapes, 539-542

Patterns

addition, 5-8, 189-192
on the addition table, 5-8
arithmetic, 5-8, 165-168, 189-192
defined, 5
describing, 189-192
explaining using properties, 5-8, 165-168, 170
finding, 479-482
multiplication, 165-168, 174, 189-192
on the multiplication table, 165-168
number, 5-8, 165-168
in a table, 189-192

Pentagons

angles of, 514-516
sides of, 514-516
Performance Task, 60, 98, 136, 186, 216, 262, 316, 364, 402, 450, 500, 548

Perimeter

area related to, 465-468
defined, 453
estimate and measure, 457-460
find unknown side length, 461-464
modeling, 453-456
of polygons, 461-464
of rectangles, 487-490
same area, different perimeters, 491-494
same perimeter, different areas, 487-490
solving problems, 465-468
Perpendicular lines, 517-520
Personal Math Trainer, In all Student Edition chapters. Some examples are: 3, 38, 70, 99, 167, 210, 217, 288, 365, 436, 486, 503
Picture graphs
defined, 67
drawing, 71-74
half symbol, 68
key, 67
making, 71-74
read and interpret data in, 71-74
show data in, 81-84
solving problems, 67-70, 71-74
Place value
addition and, 13-16, 17-20, 21-24, 25-28, 29-32
expanded form, 18, 25-28, 30, 40
hundreds, 9-12, 13-16, 25-28, 29-32,
36-38, 40-41, 43-46, 47-50, 204-206
multiplication and, 203-206, 207-210
ones, 10-12, 17-20, 21-24, 25-28, 29-32, 36-38, 39-42, 43-46, 47-50
rounding and, 10, 13-16, 35-38
standard form, 26
subtraction and, 35-38, 39-42, 43-46, 47-50
tens, 9-12, 17-20, 21, 25-28, 29-32, 39-42, 43-46, 47-50
Plane shapes. See Two-dimensional shapes
P.M., 411-414

Points, 505

Polygons

angles of, 514-516, 517-520
classifying, 513-516
comparing, 514
decagons, 514
defined, 513
describing, 513
hexagons, 514
identifying, 513-516
line segments of, 513-516
octagons, 514
pentagons, 514
perimeter of, 461-464
quadrilaterals, 514
sides of, 513-516, 517-520
triangles, 514
Pose a Problem, 54, 74, 276, 288, 309, 336, 388, 440, 472, 476
Pounds, 38
Practice
More Practice, For, In every lesson. Some examples are: 8, 32, 272, 298, 530, 542
Practice: Copy and Solve, 27, 31, 45, 49, 163, 209, 233, 255, 279, 283, 431, 443, 529

Prerequisite skills

Show What You Know, 3, 61, 99, 137, 187, 217, 263, 319, 365, 405, 451, 503
Problem solving applications. See also
Cross-Curricular Activities and
Connections
Investigate, 241-244, 307-310, 389-392, 453-456, 539-542
Pose a Problem, 53, 74, 79, 112, 171, 234, 248, 252, 272, 276, 288, 309, 336, 388, 440, 472, 476
Real World Problem Solving, In most lessons. Some examples are, 12, 38, 272, 298, 530, 542
Real World Unlock the Problem, In most lessons. Some examples are, 9, 29, 273, 295, 483, 535
Think Smarter problems, In every lesson. Some examples are: 7, 31, 272, 297, 530, 542

Try This!, In some lessons. Some examples are: 10, 30, 282, 322, 513, 518
What's the Error?. See What's the Error?
Problem solving strategies
act it out, 219-222, 303-306, 367-370
draw a diagram, 51-54, 115-118, 199-202, 355-358, 423-426, 535-538
find a pattern, 479-482
make a table, 63-66, 177-180
Products, 106
Projects, 1-2, 317-318, 403-404, 501-502

Properties

Associative Property of Addition, 21-24, 161
Associative Property of Multiplication, 161-164, 170
Commutative Property of Addition, 6, 21-24
Commutative Property of Multiplication, 123-126, 155, 162
Distributive Property, 151-154, 155, 173, 199-202, 483-486
Grouping Property of Multiplication, 161-164
Identity Property of Addition, 5, 21-24
Identity Property of Multiplication, 127-130
Zero Property of Multiplication, 127-130

Quadrilaterals

angles of, 514-516, 523-526
classifying, 523-526, 535
comparing, 523-526, 535
defined, 514
describing, 514-517, 523-526
drawing, 527-530
sides of, 514-516, 523-526
Quick pictures, 123-126, 127-130, 207-210,
321-324, 325-328
Quotients, 232

R

Rays, 505
Reading
Connect to Reading, 42, 92, 158, 256, 392, 490, 526
Read/Solve the Problem, 51-52, 63-64, 115-116, 177-178, 199-200, 219 -220, 303-304, 355-356, 367-368, 423-424, 479-480, 535-536
Strategies
Cause and Effect, 490
Compare and Contrast, 42, 256, 526

Make an Inference, 92
Summarize, 158, 392
Visualize It, 4, 62, 100, 138, 188, 218, 264, 320, 366, 406, 452, 504

Real World

Problem Solving, In most lessons. Some examples are, $12,38,272,298,530$, 542
Unlock the Problem, In most lessons. Some examples are, 9, 29, 273, 295, 491, 535
Reasonableness of an answer, 26, 29, 43, 47, 52, 407, 424

Rectangles

angles of, 523-526
area of, 469-472, 473-476, 479-482, 483-486, 487-490, 491-494
drawing, 487-490, 527-530
find unknown side length, 462
perimeter of, 487-490
sides of, 523-526

Related facts

defined, 249
multiplication and division facts, 249-252
using, 249-252, 270, 278, 282, 286, 292, 295, 300
Relationships, mathematical
addition to multiplication, 105-108
area to fractions and shapes, 539-542
area to multiplication, 473-476, 479-482, 483-486
area to perimeter, 465-468
division
to multiplication, 245-248, 269, 278, 282, 286
to subtraction, 235-238, 269-272, 295-298
fractions to shapes and area, 539-542
multiplication
to addition, 105-108
to division, 245-248, 269, 278, 282, 286
number of equal parts in a whole to size of the parts, 321-324, 325-328, 329-332, 333-336, 343-346, 351-354
part-whole, 321-324, 329-332, 333-336, 351-354
perimeter to area, 465-468
shapes to fractions and area, 539-542
subtraction to division, 235-238, 269-272, 295-298

Remember, 6, 14, 18, 92, 151, 203, 250, 282, 344, 367, 385, 483
Repeated addition, 105-108, 473-476
Repeated subtraction, 235-238, 269-272, 295-298

Represent fractions

area models, 321-324, 325-328, 329-332, 333-336, 343-346, 351-354, 371-374, 375-378, 389-392, 393-396
linear models, 337-340, 343-346, 372-373, 385-388, 390-391
on a number line, 337-340
set models, 347-350, 351-354
Review and test. See also Assessment
Chapter Review/Test. Chapter Review/Test Mid-Chapter Checkpoint. Mid-Chapter Checkpoint
Review Words, 4, 62, 100, 138, 188, 218, 264, 366, 406, 452
Show What You Know, 3, 61, 99, 137, 187, 217, 263, 319, 365, 405, 451, 503

Rhombuses

angles of, 523-526
drawing, 527-530
sides of, 523-526
Right angles, 509-512

Rounding

defined, 9
estimate differences, 35-38
estimate sums, 13-16
to nearest ten and hundred, 9-12
number line to, 9-12
Rules for dividing with one and zero, 253-256

Scales, 77-80, 81-84, 85-88
Science
Connect to Science, 172, 422
Sense or Nonsense?, 8, 46, 80, 108, 153, 164, 168, 209, 272, 324, 354, 377, 440, 493, 516, 534, 542
Shapes, 539-542. See also Two-dimensional shapes
closed, 506-508, 513-516
open, 506-508, 513-516
partition, 539-542

Share and Show, In every lesson. Some examples are:
7, 31, 274, 296, 529, 540
Show data in table, 63-65, 71-74, 80, 81-84, 90-91
Show What You Know, 3, 61, 99, 137, 187, 217, 263, 319, 365, 405, 451, 503
Sides
defined, 513
of polygons, 513-516, 517-520, 535-538
of quadrilaterals, 514, 523-526, 527-530
of triangles, 514, 531-534
Sixths, 321-324
Skip counting
by eights, 169
elapsed time, 415-418, 419-422
equal groups, 101-104, 109-112, 219-222
by eights, 169
by fives, 143-146
by fours, 140
by sixes, 109,147
by tens, 143-144
by threes, 147
time intervals, 407
by twos, 140
Social Studies
Connect to Social Studies, 310
Solve the Problem, 51-52, 63-64, 115-116, 177-178, 199-200, 219-220, 303-304, 355-356, 367-368, 423-424, 479-480, 535-536

Squares

angles of, 523-526
drawing, 527-530
find unknown side length, 462
sides of, 523-526
Square units, 465-468, 474-475, 484-485,
487-490, 492-494
centimeters, 470-471
defined, 465
feet, 474-476, 479-482, 483, 486, 487-490
inches, 469, 471, 490, 494
meters, 472, 473-475, 491
Standard form, 26, 204
Student help
Error Alert. See Error Alert
Math Idea. See Math Idea
Read Math, 344
Remember, 6, 14, 18, 92, 151, 203, 250, 282, 367, 385, 483

Subtraction

bar models, 51-53
break apart strategy, 40-41
combining place values strategy, 47-50
with compatible numbers, 35-38
draw a diagram, 51-54
elapsed time, 416
equations, 305, 443, 464
estimate differences, 35-38
with friendly numbers, 39-42
as inverse operations, 43
of liquid volume, 441-444
of mass, 441-444
mental math strategies, 39-42
modeling, 39-42, 51-54
place value strategy, 35-38, 39-42, 43-46
regrouping, 43-46, 47-50
related to division, 235-238
repeated subtraction and division, 235-238, 269-272, 295-298
rounding and, 35-38
three-digit numbers, 35-38, 39-42, 43-46, 47-50, 51-54
of time intervals, 415-418, 419-422, 423-426
two-digit numbers, 35-38, 39-42
using number lines, 39-42
Surveys, 67, 69, 72, 75, 78, 81, 89, 118

Table of Measures, H39
Tables and charts. See also Graphic
Organizers
addition tables, 5-6
completing tables, 63-65, 177-180, 479-482
frequency tables, 63-66
input/output tables, 167, 189-192
make a table, 177-180
making, 177-180
multiplication tables, 148, 165-168
for multiplying, 177-180
patterns in, 5-8, 189-192, 479-482
place-value charts, 35-38, 39-42, 43-46, 207-210
show data in, 71-73, 81-84
Table of Measures, H39
tally tables, 63-66, 73
Tally tables, 63-66, 73

Technology and digital resources
Go Digital, In most lessons. Some
examples are: 5, 63, 139, 321, 407, 505.
See also Chapter Review/Test; Show What You Know; Vocabulary Builder
Math on the Spot Videos, In every Student Edition lesson. Some examples are: 20, 74, 146, 191, 276, 340, 392, 482, 516
Multimedia eGlossary, access through the Go Math! Interactive 4, 62, 98, 138, $188,218,264,320,366,406,452,504$
Tens
round to nearest, 9-12, 36
Test and Review. See Review and test
Think Smarter, In every Student Edition lesson. Some examples are: 12, 73, 117, 167, 196, 226, 284, 336, 390, 421, 468, 511
Think Smarter +, In all Student Edition chapters. Some examples are: $3,38,70$, 99, 167, 210, 217, 288, 365, 436, 486, 503
Thirds, 321-324
Three-digit numbers
addition, 13-16, 17-20, 25-28, 29-32
combining place values strategy, 47-50
subtraction, 35-38, 39-42, 43-46, 47-50, 51-54
Time
adding and subtracting, 415-418, 419-422, 423-426
after midnight, 411
after noon, 412
A.M., 411-414
clocks
analog, 407-410, 411-413, 416-417, 419-421
digital, 409, 412-413
telling time, 407-410, 411-414
elapsed, 415-418, 419-422, 423-426
on clocks, 415-418, 419-422
defined, 415
find end time, 419-422, 423-426
find start time (begin), 419-422, 423-426
on number lines, 415-418, 419-422
using subtraction, 416
to half hour, 411-414
to hour, 407-408, 411-414
intervals
adding, 415-418, 419-422, 423-426
measure in minutes, 415-418, 419-422, 423-426
on a number line, 415-418, 419-422, 423-426
subtracting, 415-418, 419-422, 423-426
measure in minutes, 407-410
to minute, 407-410, 411-414
number line, 411, 415-418, 419-422
р.м., 411-414
reading time, 407-410
time lines, 411
telling time, 407-410, 411-414
writing time, 407-410, 411-414
Time intervals. See Elapsed time; Time
Trapezoids
angles of, 523-526
drawing, 527-530
sides of, 523-526
Triangles
angles of, 506-507, 532-534
classifying, 531-534
comparing, 532-534
describing, 531-534
drawing, 531-534
modeling, 531
sides of, 514-515, 531-534
Try Another Problem, 52, 64, 116, 178, 200, 220, 304, 356, 368, 424, 480, 536
Try This!, In some lessons. Some examples are: $10,30,282,322,513,518$
Two-digit numbers
addition, 14-16, 17-20, 21-24
subtraction, 35-38, 39-42
Two-dimensional shapes
angles. See Angles
area. See Area
attributes of, 505-508, 509-512, 513-516, 517-520, 523-526, 527-530, 531-534, 535-538, 539-545
classifying, 505-508, 523-526, 535-538
comparing, 503-508, 523-526
defined, 506
describing, 505-508
draw a diagram, 535-538
drawing, 506, 516, 518, 527-530
partitioning shapes to make equal areas, 539-542
perimeter. See Perimeter
plane shapes, 505-508, 509-512, 535-539 circles, 506, 513, 516 decagons, 513-516
hexagons, 513-516
octagons, 513-516
open or closed shapes, 506-508, 513-516
pentagons, 513-516
polygons, 513-516
quadrilaterals, 513-516, 523-526
rectangles, 523-526
rhombuses, 523-526
squares, 523-526
trapezoids, 523-526
triangles, 513-516, 531-534
polygons, See Polygons
quadrilaterals, 513
angles of, 523-526
classifying, 523-526
drawing, 527-530
rectangles, 523-526, 527-530
rhombuses, 523-526, 527-530
sides of, 523-526
squares, 523-526, 527-530
trapezoids, 523-526, 527-530
sides
defined, 513
describing, 517-520
of polygons, 514-516
of quadrilaterals, 514-515, 523-526
of triangles, 514-515, 531-534
vertex, 509
Two-step problems, 51-54, 115-118, 303-306, 307-310

U

Understand Vocabulary, 4, 62, 100, 138, 188, $218,264,320,366,406,452,504$
Unit fractions, 329-332, 333, 337-340, 351-354, 355-358, 539-542
Unit squares, 465
Units
customary units
for area
square feet, 474-476, 479-482, 483
square inches, 469, 471
for length
feet, 109
inches, 429-432, 457-459
for liquid volume and capacity, cups, 157
for mass, grams, 437-440
for weight, ounces, 108
metric units
for area
square centimeters, 470-471
square meters, 473-475, 491
for length, centimeters, 65, 455, 457-460
for liquid volume and capacity, liters, 433-436
for mass
grams, 437-440 kilograms, 437-440
square units, 465-468, 469-472, 473-476, 479-482, 483-486, 487-490, 491-494
Unlock the Problem, In most lessons. Some examples are: 5, 29, 273, 295, 517, 535
Unlock the Problem Tips, 53, 201, 221, 305, 357, 369, 425

V

Variables

using letters and symbols, 193-196, 282, 461-464
Venn diagrams, 4, 264, 452, 535-538
Vertical bar graphs, 78
Vertices (vertex)
of angles, 509
Visualize It, 4, 62, 100, 138, 188, 218, 264, 320, 366, 406, 452, 504
Vocabulary
Chapter Review/Test. 55-60, 93-98, 131-136, 181-186, 211-216, 257-262, 311-316, 359-364, 397-402, 445-450, 495-500, 543-548
Mid-Chapter Checkpoint. 33-34, 75-76, 113-114, 159-160, 197-198, 239-240, 289-290, 341-342, 383-384, 427-428, 477-478, 521-522
Multimedia eGlossary, 4, 62, 100, 138, 188, 218, 264, 320, 366, 406, 452, 504
Understand Vocabulary. 4, 62, 100, 138, 188, 218, 264, 320, 366, 406, 452, 504
Vocabulary Builder, 4, 62, 100, 138, 188, 218, 264, 320, 366, 406, 452, 504

Weight, 38, 108
What if, 42, 50, 53, 65, 67, 73, 74, 77, 79, 86, $87,101,102,109,117,126,127,150,178$, 179, 196, 201, 221, 228, 245, 273, 278, 305, 351, 357, 369, 396, 410, 425, 436, 480, 481, 490, 516, 537, 542
What's the Error?, 12, 28, 41, 69, 146, 154, 202, 252, 288, 336, 346, 374, 381, 432, 436, 456, 508, 516, 530
What's the Question?, 38, 87, 130, 175, 205, 238, 280, 350, 370, 418
Wholes, 321-324, 329-332, 333-336, 371, 379, 539-542

Whole numbers

unknown, 45, 141, 193-196, 267, 282-283, 287, 293, 297, 301, 309
using place value, $9-12,13-16,17-20$, 21-24, 25-28, 35-38, 39-42, 43-46, 47-50, 203-206, 207-210
writing, as fractions, 333-336, 343-346, 348-350
Write Math, Opportunities to write about mathematics appear in every exercise set. Some examples are: 108, 272, 332, 432, 541

Writing

Write Math, Opportunities to write about mathematics appear in every exercise set. Some examples are: 108, 272, 332, 432, 541

7

Zero Property of Multiplication, 127-130

Table of Measures

METRIC	CUSTOMARY
Length	
1 centimeter (cm) $=10$ millimeters (mm)	
$\mathbf{1}$ decimeter (dm) $=10$ centimeters (cm)	1 foot (ft) = 12 inches (in.)
1 meter (m) = 100 centimeters	1 yard (yd) = 3 feet, or 36 inches
1 meter (m) = 10 decimeters	1 mile (mi) = 1,760 yards, or 5,280 feet
1 kilometer (km) = 1,000 meters	
Capacity and Liquid Volume	
1 liter (L) 5 1,000 milliliters (mL)	1 pint (pt) = 2 cups (c)
	1 quart (qt) $=2$ pints
	gallon (gal) = 4 quarts
Mass/Weight	
1 kilogram (kg) = 1,000 grams (g)	1 pound (lb) = 16 ounces (oz)

$$
\text { TIME } \quad \begin{aligned}
1 \text { year }(\mathrm{yr})= & 12 \text { months (mo), or } \\
& \text { about } 52 \text { weeks } \\
1 \text { year }= & 365 \text { days } \\
1 \text { leap year }= & 366 \text { days } \\
1 \text { decade }= & 10 \text { years } \\
1 \text { century }= & 100 \text { years }
\end{aligned}
$$

1 minute (min) $=60$ seconds (sec)
1 hour (hr) = 60 minutes
1 day $=24$ hours
1 week (wk) = 7 days

MONEY

1 penny $=1$ cent ($($)
1 nickel $=5$ cents
1 dime $=10$ cents
1 quarter $=25$ cents
1 half dollar $=50$ cents
1 dollar (\$) = 100 cents

SYMBOLS
$<$ is less than
$>$ is greater than
$=$ is equal to

[^0]: WRITE Math • Show Your Work

[^1]: WRITE Math • Show Your Work

